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Abstract Well-designedmonitoring networks are crucial for obtainingprecise locations,magnitudes and
source parameters, both for natural and induced microearthquakes. The performance of a seismic network
depends on many factors, including network geometry, signal-to-noise ratio (SNR) at the seismic station, in-
strumentation and sampling rate. Therefore, designing a high-quality monitoring network in an urban envi-
ronment is challenging due to the high level of anthropogenic noise and dense building infrastructure, which
can impose geometrical limitations and elevated construction costs for sensor siting. To address these chal-
lenges, we apply a numerical optimization approach to design a microseismic surveillance network for in-
duced earthquakes in the metropolitan area of Munich (Germany), where several geothermal plants exploit
a deep hydrothermal reservoir. First of all, we develop a detailed noise model for the city of Munich, to cap-
ture the heterogeneous noise conditions. Then, we calculate the expected location precision for a randomly
chosen network geometry from the body-wave amplitudes and travel times of a synthetic earthquake catalog
considering the modeled local noise level at each network station. In the next step, to find the optimum net-
work configuration, we use a simulated annealing approach in order tominimize the error ellipsoid volume of
the linearized earthquake location problem. The results indicate that a surface station network cannot reach
the required location precision (0.5 km in epicentre and 2 km in source depth) and detection capability (mag-
nitude of completeness Mc = 1.0) due to the city’s high seismic noise level. In order to reach this goal, bore-
hole stations need to be added to increase the SNR of the microearthquake recordings, the accuracy of their
body-wave arrival times and source parameters. The findings help to better quantify the seismic monitoring
requirements for a safe operation of deep geothermal projects in urban areas.

1 Introduction
The main purpose of seismic networks is to deter-
mine earthquake locations and magnitudes, which is
important for earthquake characterization, hazard as-
sessment and emergency response both for natural and
induced seismicity (e.g., Havskov et al., 2012; Lomax
et al., 2009). Specifically, induced seismicity caused by
geothermal energy production is a growing concern,
since the number of geothermal projects is raising in
search of carbon-free heat and electricity generation
(Hirschberg et al., 2014; Lund and Toth, 2021). In most
cases the induced events have small magnitudes (ML <
2) and are not felt by the local population (Evans et al.,
2012). However, examples like the Deep Heat Mining
Project in Basel, Switzerland (Häring et al., 2008), and
geothermal projects near Strasbourg, France (Schmit-
tbuhl et al., 2021), where induced events with magni-
tudes ML > 3 were recorded, highlight the importance
ofmanaging the induced seismicity risk. Consequently,
a goodmonitoring network is a necessary component of
the risk governance strategy to detect and locate small
magnitude earthquakes, which enable the functioning
of magnitude-based traffic light systems (Kraft et al.,
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2020). The precision of earthquake location depends on
several factors, such as the distribution of seismic sta-
tions, detection of seismic waves and the accuracy of
their observed and calculated arrival times (e.g., Bondár
et al., 2004; Havskov et al., 2012). However, low-SNR
recordings hamper the detection of small magnitude
events and lead to high location uncertainties, which re-
sult in a poor performance of the monitoring network
(e.g., Bormann and Wielandt, 2013). This is especially
an issue in urban areas where often high seismic noise
levels are encountered. Even though, well-designed
monitoring networks are fundamental to allow the de-
tection of weak seismic signals, seismic network plan-
ning is stillmainly performed as amanual task based on
simple design rules, whichmay fail in complex settings.
Several different approaches have been proposed for
the improvement of seismic networks including 1) the
computation of the expected location errors and low-
est detectable magnitude (Stabile et al., 2013; De Lan-
dro et al., 2020), 2) seismic network evaluation through
simulation (e.g., D’Alessandro et al., 2011;Mahani et al.,
2016), 3) correction of teleseismic travel times (e.g., My-
ers and Schultz, 2000), and 4) implementation of the D-
criterion to identify an optimal seismic network config-
uration to decrease the location error (e.g., Steinberg
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Figure 1 a) The upper map shows an overview of Germany with the location of Munich marked. The lower map shows an
overviewof theMunich citywith thegeothermalpowerplant at Schäftlarnstraßeand its three injectionwells. The locationsof
several seismic stations inMunicharemarked. SYBADcorresponds toa180m-deepborehole stationandSYBOB is itsoverlying
surface station. MNH is a permanent surface station and EGA was temporarily installed within a park area. At SYBOB a 4.5 Hz
geophone is installed, at MNH a Mark L4-3D 1 Hz seismometer, at EGA a Trillium Compact 120s seismometer, and at SYBAD a
Trillium Compact PH 20s seismometer. The coordinate system is Gauss-Krüger (GK4). b) Root Power spectral density (PSD)
plots of data recorded at the seismic stations marked in a). The PSDs were computed from the vertical component for one
day of data.

and Rabinowitz, 2003; Kijko, 1977). In the last case, the
optimization problem can be solved using genetic algo-
rithm techniques (e.g., Bartal et al., 2000), simulated an-
nealing (e.g., Hardt and Scherbaum, 1994; Kraft et al.,
2013), or Bayesian techniques (e.g., Coles and Curtis,
2011).

In this studywe are applying themethod of Kraft et al.
(2013), which builds on the simulated annealing ap-
proach proposed by Hardt and Scherbaum (1994). This
approach allows the optimization of seismic networks
in complex settings, taking into account user-specified
velocitymodels and heterogeneous noise conditions, as
well as already existing monitoring stations. The pro-
gram returns expected location uncertainties and de-
tection thresholds of the resulting network.

We apply this method to the metropolitan area of
Munich (Fig. 1 a), where currently 17 deep geothermal
power plants operate (Agemar et al., 2014). This in-
cludes the geothermal project in Schäftlarnstraße (SLS),
which is located in Munich’s inner-city with a total of
six deep wells (3 production, 3 re-injection) and a foot-
print of several square kilometers (Lentsch and Schwe-
ingruber, 2022). Since induced earthquakes were ob-
served at surrounding geothermal power plants with
magnitudes up to 2.4 (Megies and Wassermann, 2014;
Seithel et al., 2019), the induced seismicity risk needs
to be considered also at this recently realized project,
which rises the requirement for a high quality monitor-
ing network. The monitoring network for the geother-

mal power plants south of Munich was already opti-
mized during the MAGS2 project (Megies and Wasser-
mann, 2017), however, the inner-city project SLS had
not been constructed at that time.

Since the number of geothermal projects in Germany
is growing and consequently the risk of induced seis-
micity increases, Baisch et al. (2012) proposed anumber
of seismic monitoring recommendations for induced
seismicity for the German Research College Physics of
the Earth (FKPE). They recommend a monitoring net-
work that is able to reliably detect and locate all earth-
quakes with magnitudes ML ≥ 1 with epicentral un-
certainties of less than 500 m and vertical uncertainties
of less than 2 km. These thresholds should be reached
in an area of 5 km surrounding the target areas of the
geothermal project. For the following quality assess-
ment of themonitoring network in theMunich area, we
are taking these recommendations into account.

First of all, we construct a detailed model of anthro-
pogenic noise in the metropolitan region of Munich to
capture its heterogeneous noise conditions. In the next
step the quality of the existing monitoring network is
evaluated according to the FKPE recommendations. Af-
terwards, a number of numerical network optimization
runs are performed that test how the FKPE recommen-
dations can be met by adding new surface and bore-
holes stations to the existing network.
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2 Methodology
For the network optimization, we use a simulated
annealing code initially developed by Hardt and
Scherbaum (1994) that was substantially extended by
Kraft et al. (2013) (hereafter referred to as NetOpt3D).
Due to license issues, NetOpt3D was recently rewritten
by Antuens et al. (2023) using open software libraries.
For the current analysis, the python wrapper pyNe-
tOpt3D (Megies et al., 2023) was built around the
binaries of Antuens et al. (2023) to handle the input
and output of the optimization code more easily. In the
following, we briefly describe the concept of NetOpt3D
and pyNetOpt3D.
NetOpt3D finds the D-optimal design by minimiz-

ing the volume of the error ellipsoid of the linearized
earthquake location problem (D-criterion, e.g., Kijko,
1977) using a simulated annealing approach (Kirk-
patrick et al., 1983). The simulated annealing param-
eters (e.g. starting temperature, minimum tempera-
ture, cooling schedule, maximum number of temper-
ature steps, temperature reduction by step, and trials
per step) were fine-tuned by trial and error in order to
achieve a slow and smooth convergence of the solution
to the global minimum. In order to solve the optimiza-
tion problem the program computes traveltimes of seis-
mic body waves using the finite difference ray tracer of
Podvin and Lecomte (1991) and a user-defined velocity
model. Furthermore, to evaluate the detectability of an
event at the seismic stations body wave amplitudes are
calculated based on earthquake source processes and
wave propagation effects. Path effects are only treated
in an approximate way by geometrical spreading, con-
stant attenuation and free-surface amplification. The
Brune model (Brune, 1970) is implemented as seismic
source. The SNR is defined as the ratio of the synthetic
body wave amplitude and the observed or estimated
long-termroot-mean-squared ground velocity at the sta-
tion. We choose a SNR of 5 as the threshold for an earth-
quake to be observed at a certain station. In general
a SNR ≥ 3 is considered being sufficient to reliably de-
tect a seismic phase onset in a seismogram (e.g., Hardt
and Scherbaum, 1994; Baisch et al., 2012). However, we
chose a more conservative threshold as the estimated
signal amplitude in our optimization approach corre-
sponds to themaximum expected amplitude of the con-
sidered body wave at the recording station, which may
be significantly larger than the amplitude of the phase
onset (Kraft et al., 2013). We utilize the estimated SNR
of a seismic phase at a station to calculate the expected
uncertainty of the phase’s onset time following the ap-
proachofAki (1976) based on information theory (Shan-
non, 1948). According to Shannon (1948) a simple rela-
tion for the estimation of the information content of a
signal exists:

WTlog2

S2 + N2

N2
(1)

where S2 and N2 represents the power of signal and
noise, respectively, and T is the duration of the time
series. The signal bandwidth W is approximated by
max(fc, fmax). Here fc represents the Brune corner fre-

quency of the event, and fmax corresponds to the high-
frequency band limitation of the radiated field, as es-
timated from the attenuation model of Edwards et al.
(2011) for Switzerland. More details about theNetOpt3D
program, including the annealing schedule and the cal-
culation of body wave traveltimes and amplitudes are
given in Kraft et al. (2013).
In its current form, NetOpt3D is lacking usability and

it is time consuming to set up new optimization prob-
lems. Input files (e.g. velocity models, synthetic earth-
quake catalogs) have to be set up manually in fixed
legacy ASCII formats defined by the underlying C codes
and a large number of helper programs (e.g. Linux shell
scripts) are used for preparational steps and for analysis
and visualization of results. Therefore, the consistent
and easy-to-use Python Application Programming In-
terface (API) pyNetOpt3D was developed that internally
uses NetOpt3D C codes but hides all unwieldy steps
from the user. It enables the start of a complete opti-
mization runwith a single, short Python script using the
newly developed API. All coordinate conversions from
global geographic coordinates (WGS84) to local geode-
tic coordinates (e.g. UTM, Gauß-Krüger, Swiss Grid, ...)
and vice versa are handled automatically. Functionali-
ties to calculate convex hulls, buffers and equistant sta-
tion grids are included. It also enhances reproducibility
by providing (de)serialization of a full optimization run
including all input data and results into a singlefile. Fur-
thermore, pyNetOpt3D provides command line tools to
quickly plot optimization results from a serialized file
on disk.
In order for the NetOpt3D program to perform the op-
timization, a number of user-specified input data is re-
quired, which will be discussed in detail in the next sec-
tions.

3 Ambient Noise Analysis
The detectability of an event at a specific station de-
pends on the amplitude of the earthquake signal and
the noise level at the site. Therefore, an estimate of the
background noise at the existing stations and the po-
tential new network sites is required. First of all, we
investigate the frequency content of the seismic noise
by computing power spectral densities (PSD) at several
stations located in the Munich city (Fig. 1). The sur-
face station SYBOB1 clearly shows higher PSD values
for frequencies above 3 Hz compared to the underlying
180m-deep borehole station SYBAD. The highest power
at SYBOB is observed between 10-20 Hz, while the PSD
values at SYBAD decrease for frequencies above 6 Hz.
The PSD values of the surface station MNH are high
for frequencies larger than 2 Hz. Above 5 Hz the tem-
porary installed station EGA displays PSD values lower
than SYBOB and MNH, which can be explained by the
installationwithin apark area. From these observations
it can be inferred that the anthropogenic noise sources
(e.g. trains, vehicles, construction work, industrial op-
eration) influence the noise amplitudes at high frequen-
cies (>1 Hz), which is consistent with findings of other

1Note that at SYBOB a 4.5 Hz geophone is installed, therefore the data
should not be interpreted for frequencies much lower than 4.5 Hz.
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Figure2 a) Seismicnoise recordedat the surface stationSYBOB inMunich in a frequency rangeof 1 - 20Hz. The95%quantile
of the data is shown by the red lines. The I95 value is computed from the 95%quantiles for 10minute timewindows. b) Violin
plots of I95 values calculated at the surface station SYBOB and the underlying 180m-deep borehole station SYBAD for the east
(E), north (N) and vertical (Z) component. The I95 values were calculated over 5 working days (Monday - Friday) in 10minute
timewindows andwere separated into daytime (6am - 10pm) and nighttime (10pm - 6am). Themedian values aremarked in
the plot.

authors (e.g., Asten and Henstridge, 1984; Groos and
Ritter, 2009). In addition, the noise amplitudes at the
seismic station can be reduced through installation in
boreholes andmore isolated areas, like parks and green
spaces.
Another measure to evaluate the noise level at a site

is the I95 value, which represent the 95th percentiles of
the ground velocity amplitude recordings (Fig. 2 a). We
calculate the I95 values in a frequency range of 1-20 Hz,
which contains the dominant amplitudes of the cultural
noise and corresponds to the main frequency range of
the induced events observed in the Munich area (Me-
gies and Wassermann, 2017). To investigate the vari-
ation of anthropogenic noise, the I95 values are com-
puted at the surface station SYBOB and the borehole sta-
tion SYBAD for 10-minute timewindows during the day-
time and nighttime, respectively. The computed I95 val-
ues are summed in violin plots and the median is taken
as a representative value for the noise amplitude at the
site (Fig. 2 b). A clear variation between daytime and
nighttime is visible. For the surface station SYBOB the
median noise amplitudes are reduced by a factor of 2
during the night. In addition, the noise amplitudes at
the surface station SYBOB are by a factor of 10 larger for
the vertical component compared to the borehole sta-
tion SYBAD.This value is close to a factor of 13 that is es-
timatedusing the simple assumption that thenoise level
in the borehole decreases by a factor of

√

depth[m]. As-
suming the most inconvenient noise conditions for the
detection of microseismic events, we take the median
I95 value during the day as a measure for the noise am-
plitudes at the site. In order to implement the calcu-
lated noise values into the pyNetOpt3D program the I95
values have to be converted to root-mean-square (RMS)

ground velocity values. Assuming that the noise distri-
bution is Gaussian, the I95 values can be converted by
RMS = I95/2 (Neuffer and Kremers, 2017).
To estimate thebackgroundnoise at thepotential new

network sites, a noise map for the Munich area has
to be developed. Kraft (2014, 2016) developed an am-
bient seismic noise model for Europe based on land-
use data derived from satellite imagery by the Euro-
pean Commission project CORINE (Büttner et al., 2004)
and open GIS data on infrastructure from the Open-
StreetMap project. The model is available for Europe
in a 250m × 250m resolution and divides the surface
into three classes that represent good, intermediate and
bad ambient noise conditions. Kraft (2014, 2016) de-
fined following RMS bounds for each noise class: Low:
RMS ≤ 30nm/s, Middle: 30nm/s < RMS ≤ 120nm/s,
High: RMS > 120nm/s. Almost the entire Munich city
is characterized by high ambient noise values (Fig. 3).
By comparing themeasured noise values at the stations
with the values assigned in the noise map, we see that
they are mainly underestimated in the model. There-
fore, for optimizing the seismic monitoring network in
the urban area of Munich a more detailed noise model
is required in order to capture the small-scale heteroge-
neous noise conditions.
Wedevelop such anoisemodel for theMunich city ex-

tending the approach of Kraft (2014, 2016). First of all,
land-use data from the Bavarian surveying administra-
tion (see data availability) is used to categorize the area
into different classes including industrial buildings, res-
idential buildings, sports and recreation areas, vegeta-
tion or water bodies and based on that assign a mini-
mum noise level (Table 1). In the second step, different
types of roads are identified as noise sources and sub-
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Figure 3 Noise map of Munich after Kraft (2014, 2016). The city boundary is outlined by the black line. The area is divided
into threenoise classeswith low, intermediate andhighnoise values. The yellowareas are assigneda valueof 0.015µm/s, the
orange areas 0.06 µm/s and the red areas a value of 0.325 µm/s. The small circles show noise measurements at permanent
and temporary installed seismic stations. The coordinate system is Gauss-Krüger (GK4). In the lower left corner the observed
RMS value at the seismic stations are plotted against the calculated pixel value in the noise model.

divided into different classes based on OpenStreetMap
data (see data availability). Highways are assumed to
have a higher noise contribution, compared to intercity
roads, railways or residential streets. In order to ac-
count for noise propagation away from these sources,
we implement noise-distance relations, that were de-
rived from seismic measurements at distinct noise fea-
tures (Riedl, 2017). Hereby, several seismometers were
installed with increasing distance from the source to
map the decreasing amplitude of the ambient vibra-
tions. As last input traffic volume data from the city of
Munich (see data availability) are implemented to ad-
just the noise level for busy roads. The overall noise
value at one point is then calculated by adding the min-
imum noise level assigned from the land-use data and
the noise contribution of themain sources scaled by the
noise-distance relation. The resulting noise model of
Munich’s inner-city (Fig. 4) has a resolution of 5 × 5 m.
To verify the calculated noise levels we compare them
to the measured noise values at permanent and tempo-
rary installed stations. For sites with low noise level the
calculated values are mostly close to the measured val-
ues. For sites with high noise level our model underes-
timates the RMS value, which is most likely due to noise
sources and site effects that are not mapped into our
model. As can be seen in Fig. 4, our noise model for

Table 1 Land use classes with assigned minimum I95
noise level after Riedl (2017).

Land use class Noise value [µm/s]
Industrial usage 1.2

Housing 0.6
Sports/recreation 0.3
Vegetation, water 0.15

Munich is dominated by street trafficnoise. In addition,
the overall noise level in the city center is higher com-
pared to the surroundings. Nevertheless, even within
the city low noise areas are identified, which might be
suitable for the installation of monitoring stations. We
implement thehigh-resolutionnoisemapof theMunich
city into the larger-scale background noisemap of Kraft
(2014, 2016) for the surrounding areas.
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Figure 4 High-resolution noisemapofMunich’s inner-city. The city boundary is outlined by the black line. Colors represent
the noise level, which is calculated as I95 values in a frequency range of 1-20 Hz and converted to RMS. Circles show locations
of noise measurements from permanent and temporary installed seismic stations. The coordinate system is Gauss-Krüger
(GK4). In the lower left corner the observed RMS value at the seismic stations are plotted against the calculated pixel value in
the noise model.

Figure 5 1D P- and S-wave velocity profiles (Vp, Vs) imple-
mented into pyNetOpt3D for the calculation of body wave
amplitudes and traveltimes.

4 Model Set-up

To calculate the signal-to-noise ratio at the potential sta-
tion, we implement the high resolution noisemodel de-
veloped in section 3. As next step, in order to calculate
bodywave traveltimes, a velocitymodel has to be imple-
mented. In theMunich area, information on the bound-
aries of the main geological units are available from a
structural model developed by the Bavarian State Office
for Environment (Bayerisches Landesamt für Umwelt,
2012). The P-wave velocities within the layers are based
on a 3D seismic survey conducted in 2015/16 as part of
the GRAME project (Hecht and Pletl, 2015), which cov-
ered 170 km2 in the southern and western parts of Mu-
nich. The S-wave velocities are calculated from Vp/Vs
ratios found byWawerzinek et al. (2021) for the Munich
area. The NetOpt3D program is able to implement 3D
velocitymodels, however, in this studywe only consider
a 1D velocity profile (Fig. 5) since we assume that 3D ef-
fects only have a minor influence on the results.
Seismic waves attenuate while propagating and their

amplitudes usually decrease with propagation distance.
To account for seismic attenuation, we implement the
attenuation model of Eulenfeld and Wegler (2016) for
the geothermal project in Unterhaching south of Mu-
nich, since the ray geometry and geologic setting at this
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Figure 6 Set-up of the input data for the network optimization program. TheMunich city boundary is outlined by the black
line. Existing surface and borehole stations, as well as location of injection wells are plotted. The event locations are placed
at the injectionwells. The colors show the computed background noise level as RMS ground velocity. Small circles represent
schematically the grid of possible station locations that can be selected during the optimization process. The coordinate
system is Gauss-Krüger (GK4).

site is very similar to the one expected for other loca-
tions in the study area. They estimated a mean S-wave
quality factor (Qs) of 100 averaged over the whole ray
path, which is constant for frequencies lower than 8Hz.
Due to the lack of further information on the attenua-
tion of P-waves, we set the P-wave quality factor (Qp) to
200, as literature suggests that Qp is approximately two
times higher than Qs (e.g., Fowler, 1990).

For the network optimization a synthetic earthquake
catalogue has to be generated. We place the events in
the crystalline basement at 3 - 4 km depth underneath
the re-injectionwells of the geothermal power plants, as
most of the recorded induced seismicity occurred close
to these locations (Megies and Wassermann, 2014; Sei-
thel et al., 2019). The focal mechanisms for the events
were chosen to resemble those of the known induced
earthquakes and the fault geometry in the study area,
which generally corresponds to left-lateral strike-slip
mechanisms with normal faulting component. We im-
plement the events with MW 1.3, which was converted
from ML 1.0 according to the relation found by Grün-
thal and Wahlström (2003) for earthquakes in central
Europe.

As the optimization algorithm is able to take already

existing stations into account, we implement the exist-
ing surface and borehole stations in the area with their
observed noise levels.

As a last step, we have to define the geographical re-
gion for possible new station locations. We set the sta-
tion perimeter with a maximum distance of 8 km to the
earthquake epicenters, which corresponds to approxi-
mately twice the maximum hypocentral depth. Plac-
ing the stations at greater distance would not improve
the network performance, as will be shown in sec-
tion 5. The station perimeter was then filled by a grid
of possible station locations with a spacing of 100 m,
which is enough to cover the low-noise areas within the
city. With decreasing station spacing the computational
costs increase since a larger number of network config-
urations has to be tested. Locations where it would be
impossible to install a station, e.g. inwater bodies, were
already excluded from this grid.

The final set-up of the input data, generated by pyNe-
tOpt3D and used by the binaries of Antuens et al. (2023)
for the optimization, is shown in Fig. 6.
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Figure 7 Evaluation of monitoring performance for a MW 1.3 event at 3 km depth. The performance of the a) existing
network, b) optimized network with 5 new stations under consideration of all re-injection wells in the region, c) optimized
network with 5 new stations and focus on the three inner-city re-injection wells, is shown. The panels from left to right show
the number of P-arrival detections (i.e., recordingswith SNR≥ 5), the epicentral uncertainty and the vertical uncertainty. The
location of the inner-city geothermal power plant SLS is plotted. The shaded circles around the three SLS re-injection wells
mark a radius of 5 km. The red outline in the epicentral uncertainty plotsmark the 500m contour line. The coordinate system
is Gauss-Krüger (GK4).
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Figure 8 Zoom into the network optimization result for the scenario shown in Fig. 7(c). The pink triangles mark the 5 new
surface stations placed by the algorithm. The colors show the computed background noise level as RMS ground velocity. The
coordinate system is Gauss-Krüger (GK4).

5 Optimization results and discussion

First of all, the performance of the existing network
with a focus on the area surrounding the recently in-
stalled SLS power plant is tested using the NetOpt3D
program without optimization. The performance in
case of a MW 1.3 event at 3 km depth is tested, which
corresponds to theminimumdetectableMW -converted
magnitude recommended by the FKPE (Baisch et al.,
2012), and is hereafter referred to as target event. The
program returns expected location uncertainties and
number of detections (i.e., recordings with SNR ≥ 5).
The largest number of P-wave detections per event is
reached for events occurring south of the city-center,
while this number decreases significantly in the north-
east and in the surrounding of SLS (Fig. 7 a). In the
northernmost part of the 5 km radius surrounding SLS,
the target events would be detected by even less than 3
stations. Since the source model is implemented based
on scaling relations found for Switzerland, the loca-
tion uncertainties have to be calibrated using recorded
events at the geothermal plants in the southern part of
the study area (Megies and Wassermann, 2014). To ob-
tain comparable epicentral and vertical uncertainties,
the computed values are divided by a factor of three. In
this case, the threshold for the FKPE-recommended epi-
central uncertainty of < 500 m is only reached south
of the city-center, while in the vicinity of SLS epicentral
uncertainties of more than 2 km are computed. The 2
km threshold for the vertical uncertainty is once more
mostly reached south of the city-center. In general, the
poor performance of the existing network in the SLS
area can be explained by 1) a lack of monitoring sta-
tions in the northwest and a consequent azimuthal gap
in this region and 2) the high noise levels in the inner-

city, which cause low-SNR recordings resulting in poor
onset-time precision and consequently higher location
uncertainties.

Considering these observations, we next evaluate
how to improve the seismic network by adding new sta-
tions. Weperformanoptimization run for the randomly
chosen number of 5 new surface stations, implement-
ing the input data as shown in Fig. 6. The NetOpt3D
program performs the simulated annealing and returns
the optimal locations for these 5 new stations (Fig. 7 b).
All the new stations are placed in the north-northeast,
which increases the number of P-wave detections and
decreases the epicentral and vertical uncertainties in
this area significantly. Nevertheless, in the vicinity of
SLS the performance only slightly improved, since none
of the stations was placed in the city center. The algo-
rithmplacedmost of the stations in the north-northeast
as the noise levels are lower compared to the city-center
and the code tends to locate stations in the quietest sites
only (Kraft et al., 2013). Furthermore, it resulted in the
largest improvement of the network performance since
the improved SNRat a quiet site overrules the lower SNR
at a geometrically more optimal site (Kraft et al., 2013).
In order to improve the network specifically in the city
center, we perform a new optimization run with 5 new
surface stations, but only considering the three SLS re-
injection wells as event locations. Therefore, the grid
of possible station locations only samples the city cen-
ter. This time the algorithm places the 5 stations closer
to SLS (Fig. 7 c). Accordingly, the number of P-wave
detections increases in this region. In addition, the epi-
central and vertical uncertainties decrease, however, it
is not enough to reach the FKPE-recommended location
accuracy. The reason are the relatively low SNR values,
which results in a poor onset-time precision. Again,

9 SEISMICA | volume 2.2 | 2023



SEISMICA | RESEARCH ARTICLE | Optimal Network Design

Figure 9 Evaluation of monitoring performance for a MW 1.3 event at 3 km depth. The performance of the a) optimized
network with 5 new stations considering a station perimeter of 12 km and focus on the three inner-city re-injection wells, b)
optimized network with 15 new stations and focus on the three inner-city re-injection wells, is shown. The panels from left
to right show the number of P-arrival detections (i.e., recordings with SNR ≥ 5), the epicentral uncertainty and the vertical
uncertainty. The location of the inner-city geothermal power plant SLS is plotted. The shaded circles around the three SLS
re-injection wells mark a radius of 5 km. The red outline in the epicentral uncertainty plots mark the 500m contour line. The
coordinate system is Gauss-Krüger (GK4).

the algorithm places the new stations in low noise ar-
eas (Fig. 8), which mainly correspond to park areas
within the city. This highlights the importance of ahigh-
resolution noise map.
To allow the algorithm to choose low-noise areas out-

side of the city, we increase the station perimeter from
8 km to 12 km. Nevertheless, the algorithm still places
four of the new surface stations close to the SLS power
plant and only one station closer to the edge of the city
(Fig. 9 a). The resulting epicentral and vertical uncer-
tainties are similar to the values in Fig. 7 c). Therefore,
we have shown that considering a station perimeter of 8
km is enough, as placing stations at larger distance does
not improve the monitoring performance significantly.
This is most likely related to the decreasing amplitude
of the ground motion away from the epicenter.
To see if a larger number of surface stations could

reach the recommended location precision, the same

optimization run is performed using 15 new stations
(Fig. 9 b). The number of P-wave detections signif-
icantly increases. Nevertheless, even though the epi-
central and vertical uncertainties improve it is not suf-
ficient to reach the FKPE-recommended location preci-
sion in the vicinity of SLS. In fact, adding evenmore sta-
tions does not significantly improve the location preci-
sion any further.

In order to increase the SNR and allow a more accu-
rate determination of the event location, borehole sta-
tions are considered in thenext stepof the optimization.
In section 3 the 180m-deep borehole station SYBADwas
compared to the overlying surface station SYBOB. We
observed that for the vertical component the noise level
in theborehole is a factor of 10 lower than at the surface.
Therefore, to simulate the noise level for borehole sta-
tions inMunichwe divide the noisemodel by a factor of
10 and input it into the NetOpt3D program. Then a net-

10 SEISMICA | volume 2.2 | 2023



SEISMICA | RESEARCH ARTICLE | Optimal Network Design

Figure 10 Evaluation of monitoring performance for a MW 1.3 event at 3 km depth. The performance of the a) optimized
network with 5 new 180m-deep borehole stations and focus on the three inner-city re-injection wells, b) optimized network
with 5 new 36m-deep borehole stations and focus on the three inner-city re-injection wells, c) optimized network with 3 new
180m-deep borehole stations and 5 new surface stations and focus on the three inner-city re-injectionwells. The panels from
left to right show the number of P-arrival detections, the epicentral uncertainty and the vertical uncertainty. The location
of the inner-city geothermal power plant SLS is plotted. The shaded circles around the three SLS re-injection wells mark a
radius of 5 km. The red outline in the epicentral uncertainty plots mark the 500 m contour line. The coordinate system is
Gauss-Krüger (GK4).
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work optimization for borehole stations is performed.
We find that at least 5 new borehole stations are suffi-
cient to reach the recommended epicentral uncertainty
of less than 500 m in the surroundings of the SLS re-
injection wells (Fig. 10 a). Additionally, the vertical un-
certainty threshold of < 2 km is reached almost within
the entire 5 km radius, except for some outermost parts.
To estimate the minimum required borehole depth

we stepwise decrease the borehole noise level factor for
the background noise map. We find that a factor of 6 is
sufficient to reach the recommended location accuracy
(Fig. 10 b). Assuming the simple relation of noise de-
creasing with depth by a factor of

√

depth[m] this would
correspond to a borehole depth of 36 m.
Even though borehole stations significantly improve

the quality of the monitoring network, their installa-
tion is not always feasible due to high costs and infras-
tructural limitations. Therefore, we test if less borehole
stations in combinationwith additional surface stations
could also reach the FKPE-recommended location pre-
cision. At first, the optimization is performed for 3 new
borehole stations by scaling the noise map with a fac-
tor 10. This is followed by an optimization run with 5
new surface stations, while fixing the previously deter-
mined borehole stations. The recommended epicentral
and vertical uncertainty thresholds are reached in this
case (Fig. 10 c).

6 Conclusion

Weperformed a network optimization using the python
wrapper pyNetOpt3D around the NetOpt3D program in
order to improve themicroseismicmonitoring for a safe
operation of deep geothermal plants in Munich’s inner-
city. In the first step we constructed a noise model for
the Munich area in order to capture the heterogeneous
noise conditions. This high resolution noise model en-
abled the algorithm to find suitable station locations
even within the city center. The results suggest that
the current monitoring network is not suitable to locate
ML 1 earthquakes with a FKPE-recommended epicen-
tral uncertainty of < 500 m and vertical uncertainty of
< 2 km. We showed that adding solely surface stations
to the inner-city network is not sufficient to reach the
recommended thresholds. The additionof borehole sta-
tions significantly improved the quality of the monitor-
ing network, which indicates that borehole installations
may be indispensable in urban environments. However
borehole installations are not always feasible and come
with high costs. We were able to show that a combi-
nation of new borehole and new surface stations can
be used to record and locate ML 1 events in Munich
with the recommended location precision. This study
presents procedures and shows solutions for improving
the microseismic monitoring within urban areas both
for induced and natural seismicity. Nevertheless, we
emphasise that proper seismic monitoring is only one
component of a comprehensive risk governance strat-
egy for induced seismicity.
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