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Abstract This report presents the 2022-2023 South Evia island seismic sequence, in the western Aegean
sea. An automatedworkflow, undergoing testing for efficient observatorymonitoring in thewake of dense af-
tershock sequences, was employed to enhance the seismic catalog. It includes a deep-learning phase picker,
absolute and relative hypocenter relocation, and moment tensor automatic calculations. The relocated cat-
alog reveals a concentration of earthquake epicenters in a narrow NW-SE zone, with sinistral strike-slip fault
movement. The findings of the study indicate the occurrence of an asymmetric rupturewithin conjugate fault
structures in the western Aegean region. These fault structures, although not necessarily both active, play a
significant role in marking the transition from dextral (SW-NE) to sinistral (NW-SE) strike-slip ruptures, con-
necting the Aegean shear zone with normal faulting in mainland Greece. The South Evia 2022-2023 seismic
sequence has revealed the activation of this NW-SE strike-slip structure, contrary to previous assumptions of
low seismicity in the region. The study highlights the importance of reassessing seismic hazardmaps and con-
sidering the potential activation of similar zones further south in the future. It also emphasizes the need for
the expansion and the densification of seismic networks within the Aegean.

Non-technical summary This report presents a study on the seismic activity that occurred in the
SouthEvia island regionof thewesternAegeanSea from2022 to 2023. In order to analyze the earthquakedata,
a range of advanced automatic techniques, including state-of-the-art machine learning methods, were em-
ployed and tested for rapid observatory monitoring after significant aftershock sequences. The study’s find-
ings show that earthquakeepicenters are concentrated in anarrowzone running fromnorthwest to southeast.
The movement along these faults suggests a horizontal left-lateral strike-slip motion. Asymmetric rupture
occurring within interconnected fault structures in the western Aegean region plays a significant role in the
transition from right-lateral strike-slip fault motion (southwest to northeast) to left-lateral strike-slip (north-
west to southeast). The South Evia 2022-2023 seismic sequence shows the activation of a fault structure with
northwest-to-southeast strike-slip horizontalmotion, contradicting previous assumptions of low seismicity in
the area. The study emphasizes the need to reevaluate seismic hazard maps in the region and consider the
possibility of similar fault zones being activated further south in the future. It also emphasizes the need to
expand the coverage of the seismic networks in the Aegean.

Introduction
The occurrence of two moderate events on the eastern
shores of Evia Island in central Greece on November
29, 2022 (moment magnitude (Mw) 4.6 04:32 UTC and
Mw 4.8 20:06 UTC), resulted in unrest among the civil-
ian population in the Athens metropolitan area, situ-
ated around 50 km to the east. A series of minor pre-
shocks was initiated a month before. The moment ten-
sors (MTs) for themainshocks provided by the National
Observatory of Athens (NOA) revealed strike-slip focal
mechanisms with either NW-SE or SW-NE strikes. As of
June 2023, microearthquake activity persists, including
an event of Mw 4.5 that took place on April 22, 2023.
The northern and central parts of the Aegean Sea

are dominated by strike-slip zones that reflect the east-
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ward shear transmitted frommajor andminor branches
of the North Anatolian Fault (NAT) (e.g. Barbot and
Weiss, 2021). These right-lateral strike-slip zones con-
tinue westward and end near the primarily E-W ori-
ented normal faulting system, which governs the Greek
mainland. It seems that the strike-slip faulting extends
as far as Evia Island, but it does not traverse through
central Greece (Fig.1). To date, no active faults on the
surface have been identified in the southern part of
Evia Island (Ganas et al., 2013). Moreover, the Greek
Database of Seismogenic Sources (GreDaSS) does not
report the existence of seismogenic faults in this area
(Caputo and Pavlides, 2013). According to the routine
seismic catalogs provided by NOA, the studied region
exhibits relatively limited background seismicity com-
pared to other areas in Greece. As a result, this region
has been considered to have relatively lower seismic
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hazard compared to other regions of mainland Greece
(Danciu et al., 2021).
In this report, we image the earthquake activity in

the area by utilizing automated techniques to signifi-
cantly enhance the NOA seismic catalog and image the
details of the ruptured faults. We produce a new seis-
mic catalog by deploying a deep-learning phase picker
(Mousavi et al., 2020), a rapid arrival earthquake asso-
ciation (Zhang et al., 2019), an absolute location (Klein,
2002), and a relative relocation method (Trugman and
Shearer, 2017). We also calculate as many as possi-
ble MTs solutions using Gisola, an automated regional
moment tensor determination tool (Triantafyllis et al.,
2021). This seismic monitoring workflow was first im-
plementedbyFountoulakis et al. (2023), after theMw7.0
earthquake that occurred in Samos in 2020. Our pri-
mary objective is to establish this procedure as an op-
erational system at NOA for analyzing dense aftershock
sequences captured by numerous permanent and tem-
porary seismic stations.

Event detection and location
Continuous seismic records from broadband seismic
stations located up to 110 km from the main events
epicenters were used for the period between October
2022 and April 2023 (Fig. 1). The installation of addi-
tional stations from the temporary network 1Y (Wolf-
gang Friederich et al., 2022), part of the AdriaArray ex-
periment, improved significantly the seismic monitor-
ing capacity in the area.
Using the EQTransformer signal detector (Mousavi

et al., 2020), a deep-learning-based system that uses an
attentionmechanism to detect seismic signals and iden-
tify primary and secondary seismic arrivals, we identify
earthquake signals and pick P and S seismic wave on-
sets. The independently identified arrivals are associ-
ated with seismic events using the REAL associator and
initial locator (Zhang et al., 2019). It deploys a 3D grid
around the station with the first recorded P arrival and
searches for possible earthquake locations by counting
other seismic arrivals within a time window based on
theoretical traveltimes. To assure high-quality events,
we required event identification with at least four P and
S phases each. The local P-wave velocity model by Kon-
stantinou et al. (2020)withVp/Vs=1.73was employed for
the theoretical traveltime calculations.
We locate the associated events with the HYPOIN-

VERSE code (Klein, 2002). Low-quality events with az-
imuthal gaps > 280◦, average root-mean-square (RMS)
residuals > 0.5 sec, and horizontal/vertical error > 0.5
km were discarded from the catalog, leaving 5838 well-
located events. We further improve the earthquake
locations using the GrowClust code (Trugman and
Shearer, 2017), which incorporates techniques for hier-
archical clustering and relocation based on waveform
cross-correlation (WCC) values. We cross-correlate
waveforms for event pairs that appear in common sta-
tions. To ensure high relocation precision, we consider
only event pairs with 0.65 average minimum WCC val-
ues and a minimum of three phases with WCC values
> 0.65. From the 5838 events in the input catalog, 1893

events were successfully relocated and clustered. The
exclusive utilization of WCC relocation was driven by
the objective of focusing specifically on events thatwere
effectively located. This deliberate choice enabled the
precise mapping of the activated fault structures within
the designated study area, as depicted in Fig. 2. Grow-
clust utilizes the bootstrap method to assess formal un-
certainties by resampling the input WCC data. This it-
erative process generates a perturbed set of event loca-
tions that is specific to each bootstrap iteration. To cal-
culate the relative relocation uncertainties, bootstrap-
ping was employed with 30 resamplings of the input
WCC data, resulting in mean horizontal and vertical er-
rors of approximately 500 m and 450 m, respectively.
For the detected and relocated final catalogs, the local
magnitudes (ML) were calculated using the local mag-
nitude scale of Scordilis et al. (2016).
To precisely pinpoint the hypocenters of the three

greatest events, we relied mostly on the manual seis-
mic phases provided by NOA and the NonLinLoc lo-
cation code (Lomax et al., 2000). Here, we do not
perform GrowClust relocation because the waveforms
from these larger events do not correlatewell with those
from the other smaller events. NonLinLoc was chosen
due to its ability to account for the non-linear nature of
the problem, allowing for a solid uncertainty analysis
and providing a probability density function, resulting
in a more comprehensive representation of the error
volume. Hypocenter solutions of these events are pre-
sented in Table S1.
The magnitude characteristics of the catalog were

additionally examined by analyzing the Frequency-
Magnitude distribution. To estimate the magnitude of
completeness (Mc) and the corresponding b-values, we
employed the Maximum Curvature method proposed
by Wiemer and Wyss (2000). As shown in Figure 3 and
Table S2, there is a reduction of Mc for the WCC cat-
alog (Mc 1.4) compared to the manually compiled in-
stitutional NOA catalog (Mc 1.8) and a significant in-
crease in the detectability levels just by employing au-
tomated signal detector and associator routineswithout
WCC (Mc 0.9).
Moment tensor (MT) solutions for the major events

of the sequence were obtained using Gisola (Triantafyl-
lis et al., 2021). Table S3 lists those events with reliable
solutions.

Results and Discussion
The relocated catalog reveals a concentration of epi-
centers aligned in a narrow NW-SE zone, spanning
approximately 5 to 6 kilometers in length (Fig. 2a).
This alignment corresponds to the predominant NW-
trending sinistral strike-slip fault plane in most calcu-
lated MTs, oriented approximately 130◦N. When ex-
amining a vertical cross-section along the strike, it be-
comes evident that the majority of events are clustered
offshore, specifically within a 3 km long segment (Fig.
2b). Most of these events are confined between 8 to
12 km depth (Fig. 2b). Additionally, a lateral migra-
tion of events is observed, originating from the fore-
shocks (Figure S1). This migration, at an approximate
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Figure 1 North and central Aegean map. NOA focal mechanisms for earthquakes greater than Mw 4.5 from 2012 onwards
are plotted in black (Triantafyllis et al., 2021). Focal mechanisms for events greater than Mw 6 between 1967 and 2012 are
plotted in gray, derived from the Centroid Moment Tensor (CMT) catalog (Dziewonski et al., 1981) and other local studies
(Kiratzi et al., 1991; Taymaz et al., 1991; Konstantinou et al., 2010). The light red symbols show focalmechanisms obtained by
this study and others (Roumelioti et al., 2003; Ganas et al., 2005; Kiratzi, 2014). Fault traces from the GEMGlobal Active Faults
Database (Styron and Pagani, 2020) are plotted in red. Permanent stations used in this study from HL (National Observatory
of Athens, Institute of Geodynamics, Athens, 1975) and HA (University of Athens, 2008) seismic networks are shown in blue
triangles. Temporary stations from seismic network 1Y (Wolfgang Friederich et al., 2022) are shown in orange triangles. AN:
Andros Island, CH: Chios island, ED: Edremit, EV: Evia island, IK: Ikaria island, LE: Lesvos island, MY: Mykonos basin, PS: Psara
island, SK:Skyrosbasin, SP:Sporadesbasin. Top left insetmap: Ageneralmapviewof theHellenic subductionzonewhere the
Africanplate subductsbeneath theAegeanarea, boundedby thedextralNorthAnatolianFault (NAF) andNorthAegeanTrough
(NAT) in thenortheast and theKefaloniaTransformFault (KTF) in thewest. Tracesof normal, dextral strike-slip, sinistral strike-
slip, and reverse faults from the GEM database are plotted in red, blue, purple, and black, respectively. The green box outline
marks the north and central Aegean area shown in themain figure. Top right inset: A general map view of Europe. The green
box outline is similar to the other inset. Lower right inset sketch: a graphical illustration based on Yaltırak et al. (2012) for
the broken slat model proposed by Taymaz et al. (1991) depicts the transition from dextral strike-slip systems in the east to
sinistral ones in the west.
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rate of 50 m/day, ultimately leads up to the date of the
two main events on November 29, 2022. Interestingly,
a comparable migration speed of 70 m/day was identi-
fied during the Thiva 2020-2021 earthquake sequence,
occurring just 80 km to the northwest. In that case, the
migration was attributed to the diffusion of pore-fluid
pressure on a normal fault (Kaviris et al., 2022). As the
rupture zone transitions towards onshore regions in the
northwest, there is a decrease in the number of relo-
cated events. These remaining events that are observed
in onshore regions tend to occur at greater depths, typi-
cally ranging from 10 to 12 km. A vertical cross-section
perpendicular to the 130◦ strike images the existence of
a fault zone oriented in a NW-SE direction with a steep
SW dip (Fig. 2c). The MT of the largest event shows a
fault dip that is parallel to the aftershock lineations ob-
served on the eastern fault (Fig. S2). The clustered lin-
eations observed in Figures 2 and S2 indicate the pres-
ence of another fault running parallel to the west.
A noticeable cluster of seismic activity is observed in

the northwest region, near Zarakes village, which is dis-
tinct from the main rupture zone (Fig. 2). This par-
ticular cluster is separated from the main rupture zone
by a higher topographic relief zone that spans approxi-
mately 3 km in length. The abundance of seismic activ-
ity in this elevated area suggests two possible scenarios.
Firstly, there could be a separate secondary fault within
the NW-SE strike-slip fault zone. Alternatively, it could
indicate a larger fault zone that fractures into segments,
with an unbroken section in the middle.
The analysis of the relocated catalog reveals the pres-

ence of numerous offshore events that exhibit a gen-
eral SW-NE direction. However, due to the limited avail-
ability of seismic stations in the eastern offshore re-
gion, most of the eastward events have not been relo-
cated using WCC techniques. As a result, SW-NE align-
ments are not as clearly defined in the relocated cata-
log. If some SW-NE lineations were more clearly evi-
dent, they could potentially be associated with the dex-
tral strike observed in most calculated MTs, which is
approximately 220◦. However, based on the available
MTs and theWCC relocations, there is no conclusive ev-
idence of any significant event occurring along a right-
lateral offshore fault (Fig. 2). Therefore, the reloca-
tion of this earthquake sequence suggests an asymmet-
ric rupture takingplacewithin a steepNW-SE fault zone,
which persists for at least 6 months. It also emphasizes
the need for better coverage of seismic stations to over-
come this limitation and obtain a more complete pic-
ture of the seismic activity, particularly in offshore re-
gions in the Aegean. This consideration is crucial for
improving our understanding of fault structures and
earthquake mechanisms in the study area.
As the Hellenic subduction zone is rolling back to-

wards the southwest, a pair of opposite rotations occur.
Dextrally rotated blocks are observed between the Ke-
falonia Transform Fault (KTF) and the western edge of
the Aegean Sea across Skyros, Evia, etc (Fig. 1). Con-
versely, on the other side of the Aegean, the southeast
Dodecanese islands, Crete, and southwestern Turkey
blocks undergo sinistral rotation (e.g. Martin, 2007). In
themiddle, theAegeanmicroplate is constrainedby two

rigid indentors, the Anatolia (eastern end) and the Apu-
lia (western end) platforms (e.g. Wallace et al., 2009).
The proposed model, referred to as the “dual inden-
tor” model, describes the opposing rotation of main-
land Greece in a dextral-clockwise direction and Ana-
tolia in a sinistral-anticlockwise direction. This concept
bears resemblance to the pinned, broken slat model in-
troduced Taymaz et al. (1991), as well as the “double sa-
loon door” concept put forth by Martin (2007). Consid-
ering that the kinematics of the northern and central
Aegean can be described from the broken slat model of
Taymaz et al. (1991), where a right-hand margin of par-
allel slats has rotatedmore than the left, there are points
of abrupt change in slip vector, the breakpoints on the
slats, that produce conjugate strike-slip fault structures
(Fig. 1). Distinct conjugate areas can be identified from
north to south based on focalmechanisms. These struc-
turesmaynot exhibit similar seismic activity in terms of
temporal occurrence and density. Instead, they serve as
indicators of the transition from predominantly dextral
to sinistral strike-slip motions. Such areas include the
region between Skopelos and Alonissos islands in the
Sporades basin, marking the termination of the North-
ern Aegean Trough (Fig. 1). Another area is found
near the Skyros basin, signifying the end of the Skyros-
Edremit Trough. Additionally, the South Evia area, the
region focused on in this study, lies at the termination of
another branch of the Lesvos-Edremit fault system (Fig.
1). Further south, the extension of the Chios-Psara fault
system suggests a potential conjugate fault structure be-
tween Evia and Andros islands (Fig. 1). Additionally, if
the extension of the Ikaria faults, which currently lacks
any recordedMTs, exhibits a similar sense of motion, it
could potentially indicate the presence of a similar geo-
logical structure within the Mykonos basin (Fig. 1).

The existence of these fault structures in the west-
ern Aegean that marks the transition from SW-NE dex-
tral strike-slip ruptures to NW-SE sinistral strike-slip
ruptures links the Aegean shear zone with the normal
faulting in the mainland (Kiratzi, 2014). The first well-
documented occurrence of left-lateral strike-slip mo-
tions can be traced back to the 2001 Skyros earthquake
(Roumelioti et al., 2003; Ganas et al., 2005). Several pre-
ceding significant earthquakes, such as the 1965 event
in the Sporades basin (Fig. 1), may be also associ-
ated with left-lateral strike-slip motions (Kiratzi, 2014).
Furthermore, a small seismic sequence on the western
shores of northern Evia, which occurred in November
2013, offered supplementary evidence for left-lateral
strike-slip motions (Kiratzi, 2014).

The South Evia 2022-2023 sequence has emerged as
the southernmost observed area where strike-slip NW-
SE faults have been activated. This finding contradicts
previous assumptions regarding the relatively low seis-
micity in the region east of the Athens metropolis. It
also implies the potential activation in the future of sim-
ilar zones, either between Evia and Andros islands or
even between Tinos and Mykonos islands in the south
(Fig. 1). Consequently, seismichazardmaps for the area
need to be reassessed to incorporate this new informa-
tion and ensure precise evaluations of seismic risk.
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Figure 2 (a) Relocated 2022-2023 earthquake sequence colored based on days since November 29th, 2022, sized propor-
tionally to their local magnitude. Hypocenters in light red are those detected events not relocated withWCC. Moment tensor
solutions are colored similarly to the hypocenters. Red and green stars indicate the location of the two largest events of the
sequence on the 29th of November 2022. The orange star marks the Mw 4.5 aftershock on April 22, 2023 (b) NW-SE vertical
cross-section along fault strike. (c) SW-NE vertical cross-section with orthogonal orientation to the strike of the main fault.
The width of the cross-sections are 2 km and 1 km, respectively. Hypocenter colors in vertical cross-sections are similar to
the map view in (a).
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Figure 3 The Frequency-Magnitude distribution (FMD) of the detected (ALL), relocated (WCC), and NOA catalogs with a bin
width of 0.1. Colored crosses and circles show the number and the cumulative number of events per magnitude bin, respec-
tively. Themagnitudes of completeness (Mc) are estimated using the Maximum Curvature method proposed by Wiemer and
Wyss (2000).
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