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Abstract We have assembled CREW, the Curated Regional Earthquake Waveforms Dataset, which is a
dataset of earthquake arrivals recorded at local and regional distances. CREW was assembled from millions
of waveforms with quality control through semi-supervised learning. CREW includes 1.6 million waveforms
that have global coverage. Each waveform consists of a 5 minute three component seismogram with labels
for both a P andS arrival. CREWprovides a high quality labeledwaveformdata set that can be used to develop
and test machine learning models for the analysis of earthquakes recorded at regional distances.

1 Introduction
The Deep Learning seismological data landscape is
dominated by local recordings. STEAD (Mousavi et al.,
2019) contains over 1.2 million three component earth-
quake waveforms recorded at distances up to 350 km,
with 8 percent of the data recorded at more than 110
km. STEAD provides 60 s waveforms from around the
world that include both P and S arrival labels. IN-
STANCE (Michelini et al., 2021) contains over 1.1 mil-
lion three component earthquake waveforms recorded
at distances up to 600 km. INSTANCE provides 120 s
waveforms from Italy and its surroundings with at least
a P or S arrival. LENDB (Magrini et al., 2020) contains
over 600,000 three component earthquake waveforms
recorded at distances up to 134 km. LENDB provides
27 s waveforms from around the world with picked P ar-
rivals. The Pacific Northwest AI-ready Seismic Dataset
(Ni et al., 2023) contains 190,000 three componentwave-
forms for earthquakes and exotic events. This dataset
provides 150 s waveforms. These four datasets also con-
tain noise waveforms. The NEIC dataset (Yeck et al.,
2020) contains over 1.3 million earthquake waveforms
recorded at distances up to 90 degrees. This dataset pro-
vides 60 seconds long waveforms around the phases P,
Pn, Pg, Sn, Sg and S, with themajority corresponding to
P phases. The MLAAPDE dataset (Cole et al., 2023) con-
tains 5.1 million three component waveforms for earth-
quakes recorded at distances ranging from local to tele-
seismic. This dataset provides 120 s waveforms. The
GEOFON dataset (Woollam et al., 2022) also covers the
local to teleseismic distance range, with nearly 275K la-
beled arrivals, mostly P waves.

∗Corresponding author: aguilars@stanford.edu

Most seismological deep learning research on earth-
quake detection and phase picking has used short du-
ration waveforms from small earthquakes at short dis-
tances. PhaseNet (Zhu and Beroza, 2019) was trained
on 30 second waveforms to predict the timing of P and
S wave arrivals in Northern California. Earthquake
Transformer (Mousavi et al., 2020) was trained on 60
s waveforms to simultaneously detect earthquakes and
pick the arrival times of P and S waves. (Woollam et al.,
2019) used 6 s windows for phase picking and (Ross
et al., 2018) employed 4 s windows to predict the type
of dominant energy in the seismogram (P or S), train-
ing on seismograms recorded within 100 km from the
epicenter.
Most of the world is sparsely instrumented andmany

earthquakes are recorded only at distances over 100 km.
This is true for the important case of seismicity near
most subduction trenches, which are often more than
100 km from the nearest land. At regional distances,
which are often taken to bemore than 100 km and up to
1,000 km, seismic waves are strongly modified by inter-
action of the wavefield with the crust and uppermantle.
S and P arrivals are also separated by greater times than
for shorter distances, such that existing deep learning
models may not perform well on these out of distribu-
tion data. This provides the motivation for developing
CREW. The increase in source-receiver distance comes
with mounting complexity in the waveforms due to the
accumulation of propagation effects and the decrease
in wave amplitudes. Figure 1 schematically compares
wave propagation at local distances vs. regional dis-
tances.
Thewaveforms on top are recordings of the 2023 Lake

Almanor earthquake in Northern California. This MW
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Figure1 Comparisonof local and regional recordings for the 2023 LakeAlmanor earthquake inNorthernCalifornia. The top
waveform was recorded at around 50 km while the bottom one was recorded at about 500 km. Note: The focal mechanism,
elevation and fault geometry are not related to the real Lake Almanor earthquake setting.

5.5 earthquake was recorded over many instruments at
both distance ranges. The top seismogram comes from
stationBEK from theNevada SeismologicalNetwork at a
distance of around 50 km. In this case the arrivals of the
crustal phases Pg and Sg are very impulsive and they are
around 10 seconds apart. The bottom waveform, from
station BBGB of the Northern California Seismic Net-
work recorded the earthquake at a distance close to 500
km from the epicenter, shows that the waves that trav-
eled through the uppermost mantle, Pn and Sn, arrive
before the direct crustal arrivals, Pg and Sg. The Pn and
Sn arrivals are emergent and more difficult to see. Both
seismograms are 5 minutes long and are aligned on the
first arrival. The vertical scale of both seismograms is
the same, with the top one having a peak ground veloc-
ity of 1.81mm/s while the regional recording has a peak
ground velocity of 0.40mm/s, which is almost a five fold
decrease in peak ground velocity.

As indicated in Figure 1, for earthquakes recorded
at short local distances, the first arrivals are the direct
crustal phases Pg and Sg, which propagated through
the crust. As the source to receiver distance increases,
earthquake recordings may include the Moho-reflected
phases PmP and SmS. Beyond the crossover distance,
Pn and Sn will be the first arrivals. These waves travel
from the source and propagate through the uppermost
mantle before turning to the surface again (Storchak
et al., 2003). The crossover distance is a function of
earthquake depth and crustal thickness, and ranges
from 30 km in thin oceanic crust to 200 km in thick con-
tinental crust, since crustal thickness can vary from 6
km to 70 km (Mooney et al., 1998). For reference, for
a 30 km thick continental crust and assuming typical
seismic velocities for the crust and upper mantle, the
crossover distance for a surface source would be ∼ 150
km.

For most regional earthquake recordings the first ar-
rival is thePnphase and for Swaves, thefirst arrival is its
analog Sn. As seen in Figure 1, the characteristics of the
waveforms are different for the local and the regional
recordings. The first arrivals Pn and Sn are known to be
emergent, compared to the impulsive nature of Pg and
Sg. The decay of coda (its envelope) for local record-
ings tends to follow a one over time pattern (Sato et al.,
2012), with the maximum amplitude very close to the
first arrival. In contrast, for the regional recording, the
envelope of the P and S codas looks more like a spindle,
with the maximum amplitudes not as close to the first
arrivals. This change in shape is attributed to scattering,
which is strongest in the crust and uppermost mantle
(Shearer and Earle, 2004). Even though in Figure 1 the
secondary S arrival is labeled as Sg, at longer distances,
close to 1000 km the high frequency S wave train has
been attenuated and only S waves trapped in the crustal
waveguide, known as Lg will be the secondary S wave
arrival. Lg phases are complex, and can be blocked by
changes in crustal structure (Al-Damegh et al., 2004).
Careful attention to the demanding task of precise pick-
ing of these regional seismic phases leads to improved
earthquake catalogs in zones that are otherwise chal-
lenging to monitor (Fuenzalida et al., 2013), which sug-
gests that deep-learning-based methods should be ex-
tremely useful at these distances.

Figure 2 shows the International Seismological Cen-
tre station inventory list with the inverted blue trian-
gles. Seismically active parts of Europe, Japan, New
Zealand and the United States, have the greatest con-
centration of instruments. The green contours and ar-
eas are those for which there is aminimum of 5 stations
within a radius of 3 degrees. These green outlines en-
close those highly instrumented regions of the world
where ”local” earthquakemonitoringwith direct crustal
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Figure 2 Top. Stations in the ISC inventory list. Bottom. Global seismicity. In both panels the green regions are those for
which there are at least 5 stations within a 3 degree radius and the purple regions are those for which there are a minimum
of 5 stations within a 10 degree radius and the azimuthal gap for an earthquake within this region would be less than 180
degrees.

phases should be possible. The purple-shaded region
indicates where there is aminimum of 5 stations within
a 10 degree radius and where the azimuthal gap for an
earthquake at each point is less than 180 degrees. These
purple regions are those that can be considered suitable
for regional monitoring. The area ratio between the
green and purple regions is about 10, which indicates
that there should be great benefit to more effective re-
gional earthquake monitoring. For the important case
of small islands, such as the Azores or Ascension in the
SouthAtlantic, they donotmeet the azimuthal gap crite-
ria due to their limited areal footprint. From thepoint of
viewof earthquakemonitoring,mid-ocean ridgesmight
be considered the least well-monitored seismic zones
onEarth. Also, note that this set of stations doesnot rep-
resent current monitoring conditions accurately, since

we do not consider information on the lifespan of these
stations. For example, the Transportable Array sta-
tions across the United States only operated for approx-
imately two years at any particular location, such that
much of that area is covered by regional, rather than lo-
cal, monitoring. That is, monitoring from permanent
seismic networks in much of the world is not as effec-
tive as this figure suggests.

Adapting themachine learning workflows to regional
earthquake monitoring and earthquake catalog build-
ing requires adapting the data and the algorithms.
The Curated Regional Earthquake Waveforms (CREW)
dataset is the first step towards extending deep (i.e.,
deep learning-based) earthquake catalogs to regional
earthquake monitoring, by assembling a high quality
benchmark dataset for training deep-learning models.
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Figure 3 Stations and sources in CREW. Earthquakes are color-coded by depth.

2 Metadata and Data Collection

We queried all datacenters available through Obspy
(Beyreuther et al., 2010) to retrieve their earthquake cat-
alogs (see Table 2). We retained only those catalogs that
contain information on both P and S arrivals, including
phase arrivals P,Pg,Pn and S,Sg,Sn. For instance, cata-
logs that report only P arrivals were excluded from our
workflow. Of the over 30 million metadata entries, we
kept only those which for the same station-earthquake
pair there were at least one picked arrival of P, Pg, Pn
and one picked arrival of S,Sg,Sn on the same trace.
That is, we required at least one of the P set and one of
the S set to be labeled for each example. The number
of traces for which simultaneous P and S information
is available is an order of magnitude less than those for
which only the first arriving P wave is labeled. Later, we
queried all datacenters accesible via Obpsy to retrieve
the appropriate waveforms in the distance range of 1
to 20 degrees of source to receiver distance, which is
the range where the first arrivals are mainly Pn and Sn.
Initially, we retrieved 7 minute waveforms, including 2
minutes before the earliest arriving P phase and 5 min-
utes after. This included all the instruments for each sta-
tion, encompassing seismometers and accelerometers,
with sampling rates ranging from 20 to 200 Hz. We de-
trended and resampled these data at 100 Hz. We then
cut the waveforms randomly so that the earliest arriv-
ing P wave is at least 10 seconds after the start of the
seismic trace and the total duration is 5 minutes (300
seconds), zero paddingwhen required to complete the 5
minutes. Then, the waveforms were normalized to the
absolute peak amplitude among the three channels. Ul-
timately, we kept the data from the ISC catalog (Stor-
chak et al., 2013) and waveforms from the IRIS DMC
(Trabant et al., 2012). The initial pool of data included
nearly 3.3 million waveforms and their corresponding
arrivals. The sources and receivers represented in the
dataset are shown in Figure 3. The database includes
523,294 unique events recorded at 4,071 unique stations
around the world. The distribution of earthquakes is
representative of global seismology, spanning all lati-
tudes, longitudes and all depths. In contrast, the cov-
erage of receivers is not uniform, as the places with the
highest density of instruments are the USA, Chile, and
Europe.
Figure 4 displays five examples in the dataset, with

their three-component waveforms, along with the ar-

rivals and their labels, and indicate the instrument type
and information on the earthquake location and mag-
nitude, as well as the source to receiver distance. These
examples are shown for the presence of 2,3 and 4 picked
arrivals. Panels A and B represent the most common
cases in CREW, where only the first arriving P wave and
the first arriving S wave are labeled. For the example
in (A), generic P and S labels are provided, whereas for
(B), more specific Pn and Sn labels are provided. Panel
(C) depicts a case in which three labels are provided, P,
Pn and S, but P and Pn represent the same timestamp,
so there are effectively two labeled arrivals. (D) shows
the case of three distinct phases labeled, Pn, Sn and Sg.
The bottom panel of Figure 4 (E) shows an uncommon
example, in which the four phases Pn,Pg, Sn and Sg are
all labeled, only a few thousand such examples occur
in the dataset because most datacenters do not label ar-
rivals other than the first arrival. Note that this exam-
ple has been bandpass filtered to enhance the visibil-
ity of the arrivals. These rare examples typically come
from stable continental regions, where the propagation
of regional phases is not blocked by crustal and mantle
structure (Gök et al., 2003). Panel C is a case in which
there are two differently labeled arrivals, Pn and P that
are very close in time, corresponding to the same ar-
rival, but having an almost negligible time difference.
In cases like this, we preserved all the available labels,
but in subsequent workflows we only employed the ear-
liest of the available P arrivals and the earliest of the S
arrivals.

3 From Big Data to Good Data
In several fields employing machine learning, perfor-
mance gains fromdataset cleaning and refinement have
been shown to surpass those from model architecture
improvements (Northcutt et al., 2021a,b). Moreover, if
data quality is high, effective training of deep neural
networks requires fewer data (Motamedi et al., 2021).
This has caused a shift in attention from the quantity
of data to the quality of the data, as Data-Centric AI has
gained traction (Zha et al., 2023) and led to data-centric
initiatives (https://cleanlab.ai/) and competitions (Ng
et al., 2021) (https://https-deeplearning-ai.github.io/data-
centric-comp/) formore controlled benchmark datasets.
(Northcutt et al., 2021a) documented the prevalence
of faulty examples for ten of the most used machine
learning benchmark datasets including image, text and
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Figure 4 Examples from CREW with 2 (A,B), 3 (B,C), and 4 (E) labeled arrivals. Depth is in km, and distance in degrees.
Example in panel (E) has been bandpassed filtered between 1 and 10 Hz to facilitate visualization of the arrivals.

audio, MNIST, CIFAR, and ImageNet among others
(https://labelerrors.com/). These examples contain ei-
ther faulty data or defective or incomplete labels, that
end up affecting model selection and performance.
Seismological data can contain errors such as inaccu-
rate picked phase arrivals, and seismometer data is
prone to corrupted transmission or storage. Strategies
to mitigate the effects of bad labels and bad data have
been devised (Cordeiro and Carneiro, 2020; Northcutt
et al., 2021b), and it remains an active research field.
This motivated our shift in approach, from iterating
over a fixed dataset and optimizing for model param-

eters, to fixing the architecture and iteratively improv-
ing the dataset by identifying faulty examples, outliers,
and edge cases, and/or by synthesizing new examples.
CREWwas built to have both big and good data.

Upon inspection of the initial dataset, it was clear that
there were many faulty examples of various types. We
manually checked a random sample of 10,000 exam-
ples and classified them into the following categories:
(1) good examples, which have seemingly accurate ar-
rival time labels on clean seismograms and (2) bad ex-
amples, which have inaccurate arrival time labels, cor-
rupted seismograms, or other problems. Another cate-
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Figure 5 Comparison of labels and predictions, dotted lines are the labels in red for P waves and blue for S waves. The
solid lines are the predictions and the inferred picks. The time difference between the two are displayed in the bottom right.
Examples in A and B were kept in CREW, while examples in C and D were removed.
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Figure 6 Examples rejected fromCREW. (A) uncataloged earthquake. (B) multiple uncataloged earthquakes. (C) accurate P
arrival next to an inaccurate S arrival. (D) no earthquake signal visible. (E) accurate Pn arrival but data is incomplete for the
Sn arrival.
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Figure 7 Number of picks in each category.

gory, (3) multiplets, accounted for the class where there
aremultiple earthquakes, but only one is labeled. From
this sorting scheme 72%of the datawas deemed as good
(category 1) and the remaining 28% was flagged (cate-
gories 2 and 3) because it was deemed to contain inac-
curate training labels, or corrupted data.
To automate the screening of faulty examples, we

trained a convolutional neural network, a U-Net with
skip connections, based on the architecture of PhaseNet
(Zhu andBeroza, 2019). Ourmodel has several extra lay-
ers to process input waveforms that are 10 times longer
than those for the original PhaseNet, such that it pro-
duces representations in the deepest layers of similar
size. The CNNwas trained to learn triangular labels that
are centered on the pick positions. These labels have a
half width of 5 seconds, or 500 sample points on each
side, for a total duration of 10 seconds, with a linear in-
crease from 0 to 1 and then a linear decrease from 1
to 0. The labels are the same for both P and S waves,
and there is a third channel for noise, which is equal
to one minus the label of P and minus the label of S.
These triangular labels were made using the earliest ar-
rival among the available arrivals. For instance for the
example displayed in Figure 4 the labels used were Pn
and Sn. There are multiple examples in the dataset for
which multiple arrivals are reported, but in some cases
they are very close in time and hard to distinguish. For
instance, in Figure 4 panel C there labels for both P and
Pn and they are almost overlapping. We leave at the dis-
cretion of the user the use of these labels but note that
the pruning procedure described here used the earliest
arriving among P,Pn, and Pg and the earliest arriving
among S,Sn, and Sg. Future research will address work-
ing with secondary arrivals.
The training data consists of a mix of data in its raw

form, augmented data, and synthetic noise. The details
of the architecture, training and deployment of these
models and other auxiliary models will be presented in
a forthcoming paper. The augmented versions of the
data consisted of a superposition of multiple copies of
the same example waveforms with a time delay. De-

pending on the S minus P time, we added a random
choice between two or three copies, and with the ap-
propriate labels, those were added to the example. We
did this to train the model to work for the frequently
encountered scenariowheremore than one earthquake
occurs during a 5-minute window.
Once our phase picker was trained, we applied it to

the dataset to remove examples with faulty labels. The
criteria used was that the time difference between the
dataset labels and the inferred phase picks was under 2
seconds. A large time difference between the label and
the prediction was an indication of mistimed arrivals.
Figure 5, shows data that passed this criteria and that
did not pass it. The delay between labels and predic-
tions are indicated in the bottom right, with red and
blue for P and S waves. panel A shows very good align-
ment of the triangular labels and themodel predictions,
such that they appear totally superimposed. The pre-
dicted arrival times differ by only a tenth of a second,
which is an example of what we consider good quality
data and labels. Panel B shows good agreement in the
P wave, but a delay of nearly a second and a half for the
S wave, which is still considered sufficiently good data.
Panels C and D show data that was rejected from the
dataset because either the P or S prediction differs by
more than 2 seconds from the dataset labels. For C, it is
the S label that seems to be inaccurate, whereas for D,
both the P and S labels are inaccurate, being evident for
the S wave, but it requires zooming in to see the P label
mislocation.
Figure 6 shows a variety of examples thatwereflagged

as faulty by the describedworkflow. From top to bottom
A through E. (A) Two earthquakes in one window, but
only one of them has picked arrivals. (B) At least three
uncataloged earthquakes, while only one is labeled. A
and B represent the most common way in which the la-
bels are inaccurate. (C) Correct P arrival but faulty S
arrival. Without the need for hardcoding a travel time
sanity check, our model flagged this type of error. (D)
No visible earthquake signal in the waveforms. (E) Data
gaps or outages, in this case there is a seemingly accu-
rate Pn arrival, but there is a data gap before the Sn ar-
rival.
The quality-controlled dataset contains 1,599,323 ex-

amples (nearly 50% of the initial data pool, nearly 1.1
TB), each a three component waveform sampled at 100
Hzwith at least one of P,Pg,Pn and at least one of S,Sg,Sn
arrivals. The total number of arrivals is 3,589,986. The
proportions of these arrivals are displayed in Figure 7.
For the P family there are 1,871,317 arrivals: 1,225,778
for generic P, 564,373 for Pn and 81,166 for Pg. For
the S family, there are 1,718,669 arrivals: 1,192,110 for
generic S, 446,880 for Sn, and 79,679 for Sg. The rela-
tively low number of Pg and Sg phases is a consequence
of excluding data in the 0 to 1 degree distance range.
There aremultiple existing data sets for those distances
as described above.
The resulting dataset consists of 523,294 earthquakes

that are globally distributed. The magnitude ranges
from 0 to 7.1, with very few earthquakes at either ex-
treme. Figure 8 (left) shows the magnitude-frequency
distribution of the earthquakes in CREW as solid bars.
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Figure 8 Left. Magnitude-Frequency distribution, the solid bars display the distribution of unique earthquakes in the
dataset. The empty bars display the frequency distribution if each example is treated as a separate magnitude. Middle. Dis-
tribution of source to receiver distances, which span 1 to 20 degrees. Right. Number of waveforms of examples in the dataset
per each unique origin ID, for most earthquakes there is only one or two observations, whereas having more than 5 is rather
scarce in the CREW.

The outlined bars show the distribution if each exam-
ple is treated as a different earthquake, that is count-
ing the same earthquake multiple times. Figure 8 (mid-
dle) shows the distance distribution of the examples.
Each bar represents a 1 degree distance bin. Most of
thedata is at the closest distances (distance< 4degrees).
The number of recordings decays dramaticallywith dis-
tance, due to the combined effects of amplitude decay
and recording limitations, with only larger earthquakes
visible at greater distances.
Table 1 summarizes themetadata attributes in CREW.

These can be separated into three main categories, sta-
tion information, earthquakeorigin informationandar-
rivals information. CREW is stored in hdf5 format, the
examples are stored in a group called data, where each
individual example is named a combination of the sta-
tion id and the event origin ID. Examples of these names
are shown at the top of each panel in Figure 4. For
the arrivals, the timestamps are available as well as the
sample position corresponding to the location of the ar-
rivals in the waveforms. In Figures 4 and 5 part of the
metadata is displayed in the right panels. The names of
the variables are mostly in Seisbench format (Woollam
et al., 2022), except for the channels list.
The right panel of Figure 8 shows how many exam-

ples there are that correspond to a unique earthquake.
The most common scenario is that only one record-
ing per earthquake made it through the quality control.
Nearly 230,000 earthquakes have only one example, i.e.,
at least two phase arrivals. On the other hand, 1,251,900
examples correspond to an earthquake with at least 6
phase readings, i.e. a seismic source forwhich there are
at least 3 examples in the dataset. This aspect should
be useful for machine learning implementations that
perform seismic phase picking incorporating informa-
tion from multiple stations, e.g. (Feng et al., 2022), or
formodels that perform earthquake arrival association,
e.g. (McBrearty and Beroza, 2023). The plot is clipped at
15, but the earthquake that has themost examples asso-
ciated with it has 121, which means over 242 picked ar-
rivals. CREW contains more examples with both P and

S arrival information than other datasets that cover the
same distance range.
We reviewed the data and metadata in CREW, which

is global in coverage, containingwaveforms from earth-
quakes from all longitudes, latitudes and depths. CREW
includes events up tomagnitude 7. Moreover it provides
data and labels useful at the single station level as well
as the network level, with themajority of the data corre-
sponding to earthquakes with at least 6 arrivals, which
should be enough to produce a location.

4 Conclusions and Future Directions
We introduce CREW as a large, high-quality labeled
data set for simultaneous regional seismic P and S
phasewaveforms recordedon seismometers around the
world. CREW is the first benchmark data set that fo-
cuses on regional phases, rather than phases from local
earthquake recordings or teleseismic recordings. Mon-
itoring using regional phases is essential for large parts
of the Earth where local monitoring is logistically im-
practical or is not a high priority due to relatively low
seismic hazard. It should also prove useful for the im-
portant case of nuclear test ban treaty monitoring. We
hope that its availability will enable progress in ma-
chine learning for regional earthquake monitoring and
structural imaging.
Most machine learning research on seismology has

focused on supervised learning (Mousavi and Beroza,
2023), especially for earthquakemonitoring, and CREW
contributes to this paradigm by curating data with the
best available labels for regional first and secondary ar-
rivals. The combination of algorithmic advances and
data advances will contribute to multiscale earthquake
monitoring.
Future research directions include working on sec-

ondary arrivals, such as reflected e.g. PmP, PP or con-
vertedwaves e.g. SP, PS, that even thoughnot oftenused
for earthquake location, are nevertheless very sensitive
to Earth structure and provide insight into the deep in-
terior of the planet. These secondary arrivals are also
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Station information Event Information Arrivals Information
network_station_code source_id {P,Pg,Pn}_arrival_time
station_code source_origin_time {P,Pg,Pn}_arrival_sample
channels source_latitude_deg {S,Sg,Sn}_arrival_time
station_latitude_deg source_longitude_deg {S,Sg,Sn}_arrival_sample
station_longitude_deg source_depth_km trace_start_time
station_elevation_m source_magnitude

path_ep_distance_deg

Table 1 Metadata attributes in CREW. Most ot these attributes are in seisbench convention.

a challenge for machine learning due to the relative
scarcity of labeled examples. For these phases, archi-
tectures that rely less heavily on labeled data, such as
semi-supervised and self-supervised learning that can
learn from incomplete labels or partial datamight prove
successful (Assran et al., 2023). Also, future imple-
mentations that aim to characterize the full wavefield
by picking all types of seismic phases present should
provide improved capabilities for both monitoring and
studies of the deep Earth.

Data and Code Availability

CREW is hosted in Stanford University DataFarm: https:
//redivis.com/datasets/1z6w-e1w70hpmt (https://doi.org/
10.57761/60b3-cv76). All codes used to generate and
process the dataset are available at https://github.com/
albertleonardo/CREW, as well as example data and note-
books. CREW will be made accessible via SeisBench
Woollam et al. (2022).
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Table 2 Seismological Networks used in CREW

4T Texas Seismological Network, Alexandros Savvaidis (2018)
6H Mozambique Rift Tomography et al. (2011)
7D Wenyuan Fan et al. (2018)
7F Central Arkansas Induced Eathquakes 2010-2011
8A Andy Nyblade (2015)
8G Anne Meltzer and Susan Beck (2016)
AC Institute of GeoSciences (IGEO), Polytechnic University of Tirana (PUT) (2002)
AE Arizona Geological Survey (2007)
AG Arkansas Seismic Network
AF Penn State University (2004a)
AI Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (1992)
AK Alaska Earthquake Center, Univ. of Alaska Fairbanks (1987)
AR Northern Arizona Network
AT NOAA National Oceanic and Atmospheric Administration (USA) (1967)
AU Geoscience Australia (2021)
AV Alaska Volcano Observatory/USGS (1988)
AY Haitian Seismic Network
AZ Frank Vernon (1982)
BC Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada (1980)
BE Royal Observatory of Belgium (1985)
BK Northern California Earthquake Data Center (2014)
BL Brazilian Lithospheric Seismic Project
BX Botswana Geoscience Institute (2001)
C Chilean National Seismic Network
C0 Colorado Geological Survey (2016)
C1 Universidad de Chile (2012)
C8 Canadian Seismic Research Network
CA Institut Cartogràfic i Geològic de Catalunya (1984)
CB Institute of Geophysics China Earthquake Administration (IGPCEA) (2000)
CC Cascades Volcano Observatory/USGS (2001)
CD Albuquerque Seismological Laboratory (ASL)/USGS (1986)
CH Swiss Seismological Service (SED) At ETH Zurich (1983)
CI California Institute of Technology and United States Geological Survey Pasadena (1926)
CK CAREMON Central Asian Cross-border network
CM Servicio Geológico Colombiano (1993)
CN Natural Resources Canada (1975)
CO University of South Carolina (1987)
CS Caucusus Array (CS)
CW National Centre for Seismological Research (CENAIS Cuba) (1998)
CY Cayman Islands Seismic Network
CZ Charles University in Prague (Czech) et al. (1973)
DK Danish Seismological Network
DR National Seismological Centre (1998)
EC Ecuador Seismic Network
EI Dublin Institute for Advanced Studies (1993)
ET CERI Southern Appalachian Seismic Network
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Table 2 continued: Seismological Networks used in CREW

G Institut de physique du globe de Paris (IPGP) and École et Observatoire des Sciences de la Terre de Strasbourg
(EOST) (1982)

GB British Geological Survey (1970)
GE GEOFON Data Centre (1993)
GI Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH) (1976)
GO National Seismic Network of Georgia
GR Federal Institute for Geosciences and Natural Resources (1976)
GS Albuquerque Seismological Laboratory (ASL)/USGS (1980)
GT Albuquerque Seismological Laboratory (ASL)/USGS (1993)
HK Hong Kong Seismograph Network
HL National Observatory of Athens, Institute of Geodynamics, Athens (1975)
HT Aristotle University of Thessaloniki (1981)
HV USGS Hawaiian Volcano Observatory (HVO) (1956)
IC Albuquerque Seismological Laboratory (ASL)/USGS (1992)
IE Idaho National Laboratory (1972)
II Scripps Institution of Oceanography (1986)
IM Various Institutions (1965)
IN National Seismic Network of India
IO Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (2014)
IU Albuquerque Seismological Laboratory/USGS (2014)
IW Albuquerque Seismological Laboratory (ASL)/USGS (2003)
JP Japan Meteorological Agency Seismic Network
KC Central Asian Institute for Applied Geosciences (2008)
KG Korean Seismic Network - KIGAM
KN Kyrgyz Institute of Seismology, IVTAN/KIS and University of California, San Diego (1991)
KO Kandilli Observatory And Earthquake Research Institute, Boğaziçi University (1971)
KP Won Sang Lee and Yongcheol Park (2013)
KR Kyrgyz Institute of Seismology, KIS (2007)
KS Korea National Seismography Network (KNSN-KMA) (KNSN)
KY Kentucky Geological Survey/Univ. of Kentucky (1982)
KZ KNDC/Institute of Geophysical Research (Kazakhstan) (1994)
LB Leo Brady Network (LB)
LD Lamont Doherty Earth Observatory (LDEO), Columbia University (1970)
LO Instituto Politecnico Loyola (2012)
LX Instituto Dom Luiz - Faculdade de Ciências da Universidade de Lisboa (2003)
MB Montana Bureau of Mines and Geology/Montana Tech (MBMG, MT USA) (1982)
MG Centro de Geociencias, UNAM (2003)
MI USGS Alaska Anchorage (2000)
MN MedNet Project Partner Institutions (1990)
MP Seismological Laboratory of University of Basrah (2014)
MX Universidad Nacional Autónoma de México (UNAM) (1970)
MY Malaysian National Seismic Network
N4 Albuquerque Seismological Laboratory/USGS (2013)
NE Albuquerque Seismological Laboratory (ASL)/USGS (1994)
NI OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) and University of Trieste (2002)
NK National Seismological Centre (1978)
NL KNMI (1993)
NM Cooperative New Madrid Seismic Network
NN University of Nevada, Reno (1971)
NO Norsar (1971)
NR Utrecht University (UU Netherlands) (1983)
NU Instituto Nicaraguense de Estudios Territoriales (INETER) (1975)
NV Ocean Networks Canada (2009)
NY University of Ottawa (uOttawa Canada) (2013)
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Table 2 continued: Seismological Networks used in CREW

NZ GNS Science (2021)
O2 Oklahoma Geological Survey (2018)
OC Observatorio Sismológico CIGEOBIO CONICET (OSCO)
OE ZAMG - Zentralanstalt für Meterologie und Geodynamik (1987)
OH Ohio Geological Survey (1999)
OK Oklahoma Geological Survey (1978)
ON Observatório Nacional, Rio de Janeiro, RJ (2011)
OV Obsercatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (1984)
OX Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS (2016)
PA Red Sismica Volcan Baru (2000)
PE Penn State University (2004b)
PL Polish Seismological Network
PM Instituto Português do Mar e da Atmosfera, I.P. (2006)
PO Portable Observatories for Lithospheric Analysis and Research Investigating Seismicity (POLARIS)
PQ Geological Survey of Canada (2013)
PR University of Puerto Rico (1986)
PS Pacific21 (ERI/STA)
PT Pacific Tsunami Warning Center (1965)

QZ LTD Seismological Experience and Methodology Expedition of the Committee of Science of the Ministry of Edu-
cation and Science of the Republic of Kazakhstan (2003)

RM Regional Integrated Multi-Hazard Early Warning System (RIMES Thailand) (2008)
RV Alberta Geological Survey / Alberta Energy Regulator (2013)
S1 Australian National University (ANU, Australia) (2011)
SB UC Santa Barbara (1989)
SC New Mexico Tech Seismic Network
SE Southeastern Appalachian Cooperative Seismic Network
SS Incorporated Research Institutions For Seismology (1970)
SV Servicio Nacional de Estudios Territoriales (SNET), El Salvador (SNET-BB)
TA IRIS Transportable Array (2003)
TC Universidad de Costa Rica (2016)
TJ Geophysical Survey of the National Academy of sciences of Tajikistan (2009)
TM Thai Seismic Monitoring Network (TM)
TR Eastern Caribbean Seismograph Network
TT Seismic Network of Tunisia
TW Institute of Earth Sciences, Academia Sinica, Taiwan (1996)
TX Bureau of Economic Geology, The University of Texas at Austin (2016)
UO University of Oregon (1990)
US Albuquerque Seismological Laboratory (ASL)/USGS (1990)
UU University of Utah (1962)
UW University of Washington (1963)
WA West Central Argentina Network
WI Institut De Physique Du Globe De Paris (IPGP) (2008)
WM San Fernando Royal Naval Observatory (ROA) et al. (1996)
WU The Southern Ontario Seismic Network (SOSN)
WY University of Utah (1983)
XA Paul Silver (1997), Kate Miller (2002)
XB Douglas Wiens (1993)
XE Douglas Christensen et al. (1999)
XF Douglas Wiens (2012)
XI Frank Vernon (1995)
XJ Cynthia Ebinger (2013)
XR Jim Ni et al. (1997)
XS Stephane Rondenay (2006)
XW Sylvie Leroy et al. (2009)
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Table 2 continued: Seismological Networks used in CREW

XY Susan Schwartz (1999),Steve Roecker and Ray Russo (2010)
XZ Roger Hansen and Gary Pavlis (2005)
YC Susan Beck et al. (2000),Anne Meltzer (2011)
YG Carpathian Basins Project Regional Array (CBPRA)
YH DANA (2012)
YI Vadim Levin (2003)
YJ Ethiopia-Afar Geoscientific Lithospheric Experiment (EAGLE)
YK Coordinated Seismic Experiment in the Azores (COSEA)
YL Anne Sheehan et al. (2001)
YO Geoffrey A. Abers and Karen M. Fischer (2003)
YQ Jim Gaherty et al. (2013)
YV North East Atlantic Tomography (NEAT)
ZA Michael West (2006)
ZC Jay Pulliam (2013)
ZE Cindy Ebinger (2007)
ZF Afar Consortium Network (AFAR)
ZP Andy Nyblade (2007)
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