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Empirical Cumulative Density Function 

The main strategy used in this study to illustrate the magnitude clustering observed in event 

pair comparisons is via an empirical cumulative density function (ECDF) of the earthquake 

magnitudes (Xiong et al., 2023). The ECDF is a commonly used non-parametric statistical method 

for visualizing the distribution of a dataset. This distribution doesn’t make any prior assumptions 

about the probability distribution of the data, but rather simply relies on the organization of the dataset 

from the smallest to the largest value in order to visualize distribution trends.  

To examine the ECDF of our earthquake catalog data, we began by sorting the event 

magnitudes from smallest to largest and marking where the event falls within the cumulative 

distribution of magnitude. We then re-sorted the catalog by time in order to compare the cumulative 

magnitude positions of subsequent events in the time-ordered catalog. The resulting plot organizes 

each earthquake magnitude 𝑚𝑖 along the x-axis, and compares it to the magnitude of the subsequent 

event 𝑚𝑖+1 in a time-ordered catalog on the y-axis. Plotting this comparison for all event pairs in the 

large dataset (hundreds of thousands of events in each catalog), we can then visualize trends in how 

the subsequent event magnitude is similar to the one of the event that occurred just before it. 

Because the amount of events in the dataset is so large, plotting all event comparisons as 

individual points makes it difficult to visualize the data trends due to the density of data points. For 

this reason, we created bins for each 20% range of magnitudes on each axis and calculated the number 

of event pair data points that fall into each magnitude range bin. Heatmaps are visualized by assigning 

red or blue to bins based on the catalog's real difference from the mean that would be expected for a 

bin if there were a uniform distribution of events across the magnitude range (total number of pairs 



divided by the number of bins). For comparison, randomly shuffling the time order of events before 

comparing the magnitudes should result in no significant deviation from a uniform distribution. 

This organization of magnitude range bins naturally creates a line diagonally across the 

middle of the plot where the range of the subsequent event magnitude is similar to that of the event 

before it, which is what we expect for magnitude clustering. The ECDF plots in the main text show 

that for both catalogs, there are significantly more event pairs that fall along this line of similar 

magnitudes than pairs that fall into bins where the magnitudes are significantly different from each 

other. Furthermore, the large number of event comparisons, along with a version of the plots where 

the events are randomized in time wherein these same trends are not observed, establishes a statistical 

significance to this trend. This plotting method is also useful for showing that similar magnitude 

correlations occur throughout the entire range of magnitudes in the catalog, not just for smaller events. 

In fact, the largest percent difference from the mean for similar magnitude range bins occurs in the 

largest 20% of event magnitudes.  

 

Rate-Dependent Catalog Completeness 

 

Quality determination of an earthquake catalog’s magnitude of completeness (𝑚𝑐), along with 

filtering for the effects of short-term aftershock incompleteness (STAI), is essential to this study, as 

incompleteness in the catalog could lead to spurious magnitude correlations. We have determined the 

𝑚𝑐 and filtered for STAI via multiple methods mentioned in the main text of this paper, including 

the maximum curvature (Wiemer, 2000) and b-value stability (Cao and Gao, 2002; Woessner, 2005) 

methods for determining an overall 𝑚𝑐 value, and implementing interevent time-based filters to 

account for STAI. These methods of determining the 𝑚𝑐 are based on analysis of the catalog’s 

frequency-magnitude distribution (FMD).  



 A previous study by Hainzl (2016) has sought additional ways to account for STAI in 

earthquake catalogs by developing a rate-dependent 𝑚𝑐 value that varies in time based upon the 

earthquake rate, resulting in an improved temporal resolution of the 𝑚𝑐 compared to those that are 

based mainly on the FMD. To test whether this type of approach has any significant effect on the 

amount of magnitude clustering observed, we applied the Hainzl method to our studied earthquake 

catalogs and completed our ECDF analysis on the modified catalogs.  

 The Hainzl method defines a catalog as complete for magnitudes 𝑚 ≥ 𝑚𝑐0 where the 

minimum completeness magnitude 𝑚𝑐0 is recorded with a probability 𝑝𝑐. The time-varying 𝑚𝑐 value 

then is based on a maximum earthquake rate 𝑟𝑚𝑎𝑥 related to the probability 𝑝𝑐 by the equation:  

𝑟𝑚𝑎𝑥 =
−𝑙𝑛(𝑝𝑐)

𝛥𝑡
 

where any time period with a seismicity rate 𝑟𝑚𝑎𝑥 will be incomplete. The theoretical basis for the 

completeness magnitude 𝑚𝑐is then defined by: 
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1
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where 𝐾, 𝑏, 𝑐, and 𝑝 are sequence-dependent constants. To apply this method to our catalogs, we 

explicitly followed all steps of the algorithm outlined in the “Algorithm to Estimate 𝑀𝑐 Based on 

Catalog Data” section of the Hainzl (2016) paper using the associated MATLAB code provided by 

Hainzl. 

Results of this method for the Southern California catalog are shown in Figures S2 and S3. 

Figure S2 displays how the 𝑚𝑐 varies over the entire time frame of the catalog, and Figure S3 shows 

the results of the ECDF analysis after removing from the catalog events that do not exceed the 𝑚𝑐 

value associated with the time of the event. This method of filtering results in a similar amount of 

magnitude clustering observed in both catalogs.  

 



ETAS Catalogs Artificially Adjusted to Introduce Incompleteness 

 Synthetic earthquake catalogs created using ETAS are useful for testing the effects of different 

forms of catalog incompleteness, with a variety of ways to force incompleteness into the catalog. For 

example, previous studies have accomplished this by varying the ETAS parameters that are most 

likely to be affected by incompleteness (Nandan, Ouillon and Sornette, 2019). Others have forced 

incompleteness by removing events for a blind time after an earthquake as determined by a relation 

to the event’s magnitude (Hainzl, 2021; Lippiello, 2018). As another test of whether incompleteness 

in the ETAS catalogs can give rise to artificial magnitude correlations, we created an ETAS catalog 

based on the Southern California catalog with tapered incompleteness.  The tapering occurred linearly 

over 1 magnitude unit, with 100% events being retained above the upper threshold, 0% of events 

being retained below the lower threshold, and a linearly decreasing percentage from the upper to the 

lower limit.  This was implemented with several strategies to mimic overall catalog incompleteness 

as well as STAI, with the lower limit being set at a static value for the overall catalog incompleteness, 

and the upper limit being adjusted over time based on the equation outlined in Helmstetter (2006) for 

the STAI.  We attempted these strategies with and without any of our other filtering methods for 

STAI. The results, shown in Figures S8 and S9, demonstrate that forcing catalog incompleteness 

based on either of these strategies does not give rise to artificial magnitude correlations.  

 

 

 

 

 

 



Supplementary Figures 

 

 
 

Figure S1: Frequency-magnitude distribution (FMD) of each catalog, used to determine the catalog-

specific magnitude of completeness (𝑚𝑐). The lighter vertical dotted line depicts the FMD using the 

maximum curvature method. The darker vertical dotted line depicts the FMD using the b-value 

stability method. The latter method was used for our analysis in order to provide a more 

conservative estimate of the 𝑚𝑐. Regardless of the FMD method chosen, the magnitude clustering 

signature remains prominent even after applying our filtering methods. 

 

 



 

Figure S2: Rate-dependent magnitude of completeness (𝑚𝑐) of the Southern California and 

Northern California catalogs. Processed according to Hainzl (2016).  

 

 

 

 

 
 
Figure S3: ECDF results for Southern and Northern California catalogs filtered using Hainzl (2016) 

method of rate-dependent magnitude of completeness method.  

 

  



 
 
Figure S4: A Non-cumulative distribution of difference in probability between the observed catalog 

and a randomly shuffled version, 𝛿𝑝(𝑚0) as a function of magnitude difference (𝑚0) for the 

southern California catalog. The distribution is shown at various magnitude of completeness 

thresholds (corresponding to the different colored lines). 𝑚𝑐 =  magnitude of completeness, n = 

number of events. Error bars correspond to the 1 standard deviation confidence interval. B Same as 

A but after applying filters to account for catalog incompleteness and short-term aftershock 

incompleteness (STAI). C Comparison of the cumulative distribution plots of both the Northern and 

Southern California study areas at the respective magnitudes of completeness of each catalog. D 

same as C but after applying filters for incompleteness/STAI.  

 



 
 

Figure S5: A Cumulative distribution of difference in probability between the observed catalog and 

a randomly shuffled version, 𝛿𝑝(𝑚0) as a function of magnitude difference (𝑚0) with a 3σ standard 

deviation for the Northern California catalog. 𝑚𝑐 =  magnitude of completeness, n = number of 

events. Error bars correspond to the 1 standard deviation confidence interval. B Same as A but after 

applying filters to account for catalog incompleteness and short-term aftershock incompleteness 

(STAI).  

 

 

 

 

 

 

 

 

 

 

 

 



 
  

Figure S6: Rescaled time decay curves using min-max normalization for the ECDF (blue) and 

Autocorrelation (orange) methods in both the Southern California A and Northern California B 

catalogs.  

 

 

 

 

 



 
 

 
Figure S7: Empirical cumulative distribution function (ECDF) comparisons for synthetic ETAS 

catalogs fit to the Southern California catalog A, and the Northern California catalog B. 



 
 

 

Figure S8: Empirical cumulative distribution function (ECDF) comparisons for synthetic ETAS 

catalogs fit to the Southern California catalog with incompleteness artificially added by 

progressively removing smaller events from the catalog.  

 

 



 
 

Figure S9: Empirical cumulative distribution function (ECDF) (A. and B.) and cumulative 

distribution function (C.)  comparisons for synthetic ETAS catalogs fit to the Southern California 

catalog with incompleteness artificially added by tapering that removes events starting at the 

calculated Helmsetter incompleteness magnitude with 100% removed at 1 magnitude unit below it.  

 

 



Supplementary Tables 

 
Table S1: Regression Statistics of ECDF Decay Plots 

 

 Northern California Southern California 
 Linear Logarithmic Power-law Linear Logarithmic Power-law 

 Interevent Number Decay Interevent Number Decay 

P-value 8.19x10-15 5.73x10-16 2.00x10-16 1.16x10-8 1.18x10-7 3.52x10-11 

F-Statistic 83.84 93.87 148.2 38.84 32.66 55.66 

R-squared 0.4611 0.4892 0.602 0.2838 0.25 0.3622 

 

 Time Decay Time Decay 

P-value 1.82x10-6 1.11x10-16 2.40x10-14 2.44x10-13 1.05x10-13 8.57x10-11 

F-Statistic 29.51 90.65 48.9 55.56 60.33 29.52 

R-squared 0.551 0.921 0.927 0.846 0.885 0.885 

 

 Distance Decay Distance Decay 

P-value 2.33x10-8 8.02x10-8 2.56x10-6 9.95x10-10 2.32x10-8 1.49x10-6 

F-Statistic 82.88 46.29 23.80 122.61 54.45 25.76 

R-squared 0.897 0.939 0.944 0.928 0.948 0.948 

 

 

 

 

Table S2: ETAS Parameters  

 

Parameter Significance Value 
𝑚𝑐 Magnitude of completeness 2.0 (S. Cal), 1.4 (N. Cal.) 

𝑙𝑜𝑔10(𝜇) Background seismicity rate -5.97 

𝑙𝑜𝑔10(𝑘0) Governs the expected number of aftershocks 

per event 

-2.63 

α Effect of an earthquake’s magnitude on its 

expected number of aftershocks 

1.87 

𝑙𝑜𝑔10(𝑐) Parameter governing aftershock rate -2.52 

ω Spatial parameter of aftershocks -0.02 

𝑙𝑜𝑔10(𝑑) Spatial equivalent to c -0.86 

𝑙𝑜𝑔10(𝜏) Smoothness parameter 3.57 

γ Defines the spatial kernel 1.35 

ρ Describes the decay rate of aftershocks 0.67 
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