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1. Calculation of CoCo values 
Values of the Coefficient of Complexity (CoCo) for the Haiyuan, Altyn Tagh and Kunlun faults were 
calculated using the Himalayan fault system database from Mohadjer et al. (2016).  

The CoCo value for the Denali fault was calculated thanks to the use of the Alaskan fault system database 
(Koehler et al., 2011). 

Our CoCo calculation follows the one detailed in Gauriau and Dolan (2021). One slight change has been 
brought: Instead of using slip-rate bins up to 20 mm/yr, we further slice the possible ranges into the 
following ones, for slip rates that are faster than 20 mm/yr: [15 – 20[; [20 – 25[, [25 – 30[ and >30, for 
which we assign a median value for the CoCo calculation: 17, 22, 27, and 35 mm/yr respectively (see 
Gauriau and Dolan (2021) for complete methodology). This only aims at assigning values to fast-slipping 
sections that are closer to the actual slip rate, which applies to the CoCo calculation of the sites located 
on the Calico the Garlock and the San Jacinto faults only. 

2. Remarks on the behavior of faults with intermediate CoCo values 
Some faults are neither truly low-Coco nor high-CoCo, but rather fall into an intermediate area among the 
whole range of CoCo values. For example, the Central Denali (16) and the Altyn Tagh (18) faults exhibit 
intermediate CoCo values that help us define an approximate boundary low- and high-CoCo faults. As 
noted by Dolan & Meade (2017), the central Denali fault’s long-term/large-displacement  slip rate, 12.1 ± 
1.7 mm/yr, averaged over 12 ky and 144 m (Matmon et al., 2006) is faster than its geodetic slip-deficit 
rate of 7.0 ± 0.3 mm/yr inferred from block model analysis (Elliott and Freymueller, 2020) (Table 1). The 
Denali fault, according to its relatively low CoCo value, would be thought to behave in a relatively constant 
manner, since the only major faults it might interact with are the Totschunda-Duke River fault (slipping at 
~ 6 mm/yr during the Holocene, Matmon et al., 2006) and the Susitna Glacier fault (a slow-slipping thrust 
fault). Elsewhere along the Denali fault, the geodetic rates fall within a range of 6 to 8 mm/yr. Other slip-
rate sites located more to the west exhibit slower geologic slip rate values, such as 9.4 ± 1.6 mm/yr (data 
point 17 in Figure 2; Matmon et al., 2006), which still is faster than the elastic strain accumulation rate, 
which at that location is 7.8 ± 0.3 mm/yr (Elliott and Freymueller, 2020).  This geologic/geodetic rate ratio 
<1 for a low-CoCo fault might be explained by possible long-term post-seismic effects of the 1964 Mw 9.2 
Alaska earthquake, which might add up to the ones of the 2002 Denali earthquake. Alternatively, given 
that the Aleutian megathrust is characterized by a flat and shallow slab (Jadamec et al., 2013), and that it 
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might be located less than 100 km below the Denali fault (Martin-Short et al., 2018), the interaction 
between the slab and the Denali fault would need to be accounted for in the CoCo calculation. This, 
however, is speculative since it would require three-dimensional considerations, whereas the CoCo 
analysis, as initially designed and used here, considers the 2D (ground surface) relationships among fault 
systems. 

On the other hand, the Altyn Tagh fault exhibits a geologic slip rate behavior that is constant, with a slip 
rate of 9.4 mm/yr averaged both over 54 m and 156 m displacements (Cowgill, 2007; Cowgill et al., 2009), 
very close to the collocated slip-deficit geodetic rate of 9 ± 4 mm/yr (Bendick et al., 2000). Several active 
reverse faults parallel to the Altyn Tagh fault (Yun et al., 2020) participate in the CoCo value, which places 
the Altyn Tagh fault’s behavior between the CoCo values of the central Denali fault (16) and the Kunlun 
fault (19). 

3. Comparison of geodetic rates with geologic rates 
Figure S1 displays the slope of each geodetic rate/geologic rate comparison, with geologic rates 
differentiated by the displacement over which they are averaged. 

As mentioned in the main text, assuming a linear relationship between geologic slip rates and geodetic 
rates going through the origin, we find a scaling line with best-fit slope and 1σ confidence of 0.945 ± 0.028 
for low-CoCo faults using the large-displacement geologic rates, and a scaling line with best-fit slope of 
1.103 ± 0.050 for the small-displacement average geologic rates. 

For the high-CoCo faults, we find a scaling line with best-fit slope of 0.696 ± 0.140 using the large-
displacement geologic rates and a scaling line with best-fit slope of 0.751 ± 0.162 using the small-
displacement geologic rates. 
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Figure S1: Geodetic rate and geological slip rate comparisons for selected strike-slip faults. (a) and (b) for low-CoCo faults, (c) and 
(d) for high-CoCo faults. The dark line and the two faded lines show the linear fits with 67% confidence intervals with slopes 
indicated on each plot. 

4. Most recent events and recurrence intervals 
The following table summarizes the available information on the studied strike-slip faults regarding their 
most recent event and average recurrence interval. 
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Table S1: Date of most recent earthquakes that occurred on the studied strike-slip faults 

Fault Fault section MRE References for MRE Cluster of events? 

Mean 
recurrence 

interval 
(years) 

References for 
recurrence interval 

Elapsed time 
since MRE 

(years) 

Garlock central 1545 C.E. Dawson et al. (2003) yes (500 yrs rec) 1000  478 
San Andreas Mojave 1857 C.E.   ~100 Scharer et al. (2017) 166 
San Andreas Carrizo plain 1858 C.E.   88 ± 41 Akçiz et al. (2010) 166 

San Jacinto Claremont 1744-1850 C.E. Onderdonk et al. (2015) 

most recent cluster 
occurring between 
A.D. 1400 and A.D. 

1850 

156-195 
(~164) 

Onderdonk et al. 
(2015) 226 

Owens Valley northern 1872 C.E. Beanland and Clark (1993)  3000-4100 Lee et al. (2001) 151 
Calico fault northern 0.6-2.0 ka* Ganev et al. (2010)   ~1500-2000 Ganev et al. (2010) ~600-2000 

Hope Taramakau 1800-1840 C.E. Vermeer et al. (2022)       203 
Hope Conway ~1840 C.E. Hatem et al. (2019)  ~291 Hatem et al. (2019) 183 
Hope Hurunui 1888 C.E. Khajavi et al. (2016)  298±88 Khajavi et al. (2016) 135 

Wairau  268-1048 C.E. Nicol and Van Dissen (2018) 

onshore section 
could have 

experienced a period 
of increased 

earthquake frequency 
since 5600 yr BP 

~1000  1365 

Clarence  110-310 C.E. Van Dissen and Nicol (2009)  ~1700  1813 
Awatere  1848 C.E. Mason et al. (2006)  820–950 Mason et al. (2006) 175 

Alpine   1717 C.E. Berryman et al. (2012); De 
Pascale and Langridge (2012)   329   306 

 

 

 

 

 



5 
 

Table S1 – continued 

Fault Fault section MRE References for MRE Cluster of events? 

Mean 
recurrence 

interval 
(years) 

References for 
recurrence interval 

Elapsed 
time since 

MRE 
(years) 

Dead Sea Wadi Araba 1458 C.E. Klinger et al. (2015) seismic lull ~280 Marco et al. (1996) 565 
Dead Sea Beteiha 1202 C.E. Wechsler et al. (2018) past 1200 years=lull 190 Wechsler et al. (2018) 264 

Yammouneh Lebanese restraining 
bend 1202 C.E. Daëron et al. (2007)  1127±13

5 Daëron et al. (2007) 821 

Yammouneh Missyaf (Syria) 1170 C.E. Meghraoui et al. (2003)  550 Meghraoui et al. 
(2003) 853 

Rachaiya-Sergaya  ~1759 C.E. Nemer et al. (2008)  1300 Gomez et al. (2003) 264 

Roum  84-239 C.E. Nemer and Meghraoui, 
(2006)    1861.5 

Fairweather   1958 C.E. Witter et al. (2021)       65 
Queen Charlotte  2013 C.E. Brothers et al. (2020)    10 

Denali Central 2002 C.E. Matmon et al. (2006)    21 
Denali Western             

Altyn Tagh Pingding (Xorxol) 1491–1741 C.E. Yuan et al. (2018)  620±410 Yuan et al. (2018) 407 
Kunlun west 2001 C.E. Klinger et al. (2015)  300±50 Li et al. (2005) 22 

Haiyuan Lenglongling 1540 C.E. Jolivet et al. (2012)   1430±14
0 Jiang et al. (2017) 483 

North Anatolian Erzincan (east) 1939 C.E. Kozacı et al. (2011)   685 Hartleb et al. (2006) 84 
North Anatolian Gerede (Demir Tepe) 1944 C.E. Hubert-Ferrari et al. (2002)  250-300 Kondo et al. (2010) 79 

North Anatolian Tahtaköprü 1943 C.E. Kozaci et al. (2011)  250-623 Okomura et al. (2003); 
Kondo et al. (2004) 80 

North Anatolian Ganos 
(Güzelköy+Cinerçik) 1912 C.E. Meghraoui et al. (2012)   323±142 Meghraoui et al. 

(2012) 111 

East Anatolian Pazarcık 2023 C.E. Barbot et al. (2023)  ~772 Güvercin et al. (2022) 0.8 
* a small segment of the northern section of the Calico fault ruptured in an aftershock (magnitude 5) of the Landers 
earthquake in 1995    
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5. Choice of geodetic rates 
For all geodetic slip-deficit rates used in this study, we used published values collocated with geological 
slip-rate data. 

For the North Anatolian fault, we use DeVries et al. (2017) and choose the results from their viscoelastic 
model by averaging the values given by the model with ηM = 1019.0 Pa·s, ηK = 1019.0 Pa·s on the one hand, 
and ηM = 1018.6 Pa·s, ηK = 1018.0 Pa·s on the other hand. Only the first model is given for the Ganos segment 
(Meghraoui et al., 2012), so we use this one only for this site. 

6. Measure of the dispersion in Figure 3b 
We measure the dispersion of the data points in order to illustrate the difference between data plotting 
in the low-CoCo region and the data plotting in the high-CoCo region in Figure 3b of the main text. 

This measure accounts for the distance between each plotted datum (the ratio between the geodetic slip-
deficit rate to the geologic slip rate) and the 1:1 relationship line. We want to consider a ratio a/b (where 
a and b are real numbers) equally as we would consider ratio b/a. To do this, we take the inverse of all 
ratios that are less than 1 (case A in Figure S2) 

We then take the distance of each point to the 1:1 ratio line. Since it is a vertical distance, it simply is the 
subtraction of 1 to the ratio (Euclidian distance). 

This measurement accounts for the two data points for a single fault when there are two geologic slip-
rate estimates (i.e., one averaged over a small displacement, and one averaged over a large 
displacement). In these cases, the plotted distance on Figure 3b is the sum of the two calculated distances 
(case B in Figure S2) 

To account for a potential lack of one of the geologic slip-rate estimates (i.e., whether the small-
displacement geologic slip rate or the large-displacement geologic slip rate is missing), we multiply the 
available single distance by two (case C in Figure S2). 



7 
 

 

Figure S2: Illustration of the measurement of data dispersion shown in Figure 3b (main text). 

7. Dispersion of data points in Figure 2c 
For each high-CoCo fault plotted in Figure 2c, we measured a distance from the respective data point (x = 
geodetic slip-deficit rate; y = small-displacement slip rate values) to the 1:1 line, which is the shortest 
distance from the point to the 1:1 line. 

We defined fast-slipping faults as those characterized by a small-displacement slip rate that is at least 8 
mm/yr, and slow-slipping faults as these characterized by a small-displacement slip rate that is less than 
8 mm/yr. Using this rule, we have the following faults that fall in the fast-slipping category: the Garlock 
fault (1), the Mojave section of the San Andreas fault (2), the San Jacinto fault (4), the Hope fault (7) and 
the northern North Anatolian fault (23). 

We found that for all high-CoCo faults, the average distance from the data points to the 1:1 line is 3.65 
(arbitrary units). The average distance for fast-slipping high-CoCo faults only is 6.14, whereas the average 
distance for slow-slipping high-CoCo faults is 1.87.  
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