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Abstract Teleseismic shear-wave splitting analyses are often performed by reversing the splitting pro-
cess through the application of frequency- or time-domain operations aimed at minimizing the transverse-
component energy of waveforms. These operations yield two splitting parameters, φ (fast-axis orientation)
and δt (delay time). In this study, we investigate the applicability of a baseline recurrent neural network, SWS-
Net, for determining the splitting parameters from pre-selected waveform windows. Due to the scarcity of
sufficiently labelled realwaveformdata, we generate our own synthetic dataset to train themodel. Themodel
is capable of determiningφ and δtwith a rootmean squared error (RMSE) of 9.7◦ and 0.14 s on noisy synthetic
test data. The application to real data involves a deconvolution step to homogenize thewaveforms. When ap-
plied to data from the USArray dataset, the results exhibit similar patterns to those found in previous studies
with mean absolute differences of 9.6◦ and 0.16 s in the calculation of φ and δt, respectively.

1 Introduction
The analysis of seismic anisotropy serves as a unique
tool for investigating the elusive dynamic processes
occurring within the Earth’s mantle. Inferring verti-
cally and laterally varying anisotropic structures from
surface-recorded seismic waveforms can provide vital
constraints for geodynamic models of mantle deforma-
tion and flow. The study of teleseismic shear-wave split-
ting (SWS), a technique in use for over three decades,
provides key insights about seismic anisotropy, aiding
in the analysis of the dynamic processes within Earth’s
interior (Long and Silver, 2009; Reiss and Rümpker,
2017; Savage, 1999; Silver and Chan, 1991).
Two primary mechanisms contribute to the devel-

opment of seismic anisotropy in the Earth’s mantle:
strain-induced lattice preferred orientation (LPO) of up-
per mantle minerals such as olivine (resulting from dif-
ferential motion between the lithosphere and astheno-
sphere, and mantle flow) (Silver and Chan, 1991) and
shape preferred orientation due to the presence of ver-
tically aligned fluid-filled fractures, cracks, andmicroc-
racks (Holtzman and Kendall, 2010).

∗Corresponding author: rumpker@geophysik.uni-frankfurt.de

When a shear wave enters an anisotropic medium,
it is split into two orthogonally polarized components
that propagate at different speeds. This phenomenon
can be described by two splitting parameters: the fast
axis orientation (the polarization direction of the faster
wave) φ, and the time delay between the two com-
ponents δt. While φ represents the orientation of
the anisotropic materials, δt measures the strength of
anisotropy and the extent of the anisotropic material.
Teleseismicphases are typically employed to investigate
the anisotropic properties of the Earth. The most fre-
quently used phases include SKS, SKKS, and PKS, and
are collectively referred to as XKS phases. The con-
version of these waves at the core-mantle boundary re-
sults in polarization in the direction of the back-azimuth
(Jia et al., 2021; Liu and Gao, 2013; Reiss and Rümpker,
2017).

Several software codes have been developed to de-
termine the splitting parameters φ and δt through grid
search or correlation approaches. Examples of such
codes can be found in the works of Silver and Chan
(1991) such as Liu and Gao (2013); Savage et al. (2010);
Teanby et al. (2004); Wüstefeld et al. (2008); Wuestefeld
et al. (2010); Hudson et al. (2023).(Semi-)automatic ap-

1 SEISMICA | ISSN 2816-9387 | volume 3.1 | 2024

https://doi.org/10.26443/seismica.v3i1.1124
https://orcid.org/0000-0001-7319-6137
https://orcid.org/0000-0002-5348-9888
https://orcid.org/0000-0003-1637-1386
https://orcid.org/0000-0003-1639-0093
https://orcid.org/0000-0003-0328-0311


SEISMICA | RESEARCH ARTICLE | Shear Wave Splitting Analysis with SWSNet

proaches were recently suggested by Reiss and Rümp-
ker (2017) and Link et al. (2022).
In this paper, we present a baseline model that

demonstrates the potential of Deep Learning for the
analysis of shear-wave splitting. In a recent study,
Zhang and Gao (2022) utilized a Convolutional Neural
Network (CNN) for waveform classification to automat-
ically select reliable SWS measurements. However, to
the best of our knowledge, a comprehensive analysis to
infer anisotropic splitting parameters using deep learn-
ing has not yet been presented. Here, we introduce a
deep learning model called SWSNet (Shear-Wave Split-
ting Network) to determine the splitting parameters
from pre-selected waveform windows which are used
by Link et al. (2022) for their analysis. Due to the lack
of sufficient labelled data, the model is trained on syn-
thetic data, simulated under the assumption of a single
anisotropic layer (as is the case with traditional meth-
ods). A series of deconvolution and reconvolution steps
are applied to both the real data and the synthetic data
to ensuremaximumresemblance. Wedemonstrate that
SWSNet can produce results comparable to those of pre-
vious studies such as Liu et al. (2014) when applied to
real data from the USArray and obtain mean absolute
differences of 9.6◦ and 0.16 s in the calculation of φ and
δt, respectively.
The major contributions of this paper can be sum-

marised as follows: (i) to the best of our knowledge
this is the first work to explore the applicability of
deep learning in determining splitting parameters from
waveforms; (ii) as we do not have sufficient labelled real
data, we use synthetic data to train our model; (iii) a
novel deconvolution and reconvolution approach is ap-
plied to remove the source and path effects from the
real data to bridge the gapbetween ideal syntheticwave-
forms and real waveforms.

2 Methods and Results
For our study we use a supervised learning approach,
which is a machine learning paradigm that relies on la-
belled data for training a model. The Deep Learning
model we use learns to map the waveforms to the cor-
responding labels (in our case φ and δt) by minimising
the difference between the true and predicted labels de-
fined by the loss function.
In principle, labelledwaveformdata from shear-wave

splitting analyses is available from publications and
data archives (see e.g., Barruol et al., 2009). However,
for our purposes, the amount of available data is lim-
ited, and the labelling may not be as uniform as would
be required for efficient training. In order to overcome
this limitation, we will use synthetic data as an alter-
native. Ideally, the generated synthetic waveforms will
mimic the properties and characteristics of real data.

2.1 Modeling shear-wave splitting
In our approach, we consider waveform effects due to
a single anisotropic layer, which is characterized by a
horizontal symmetry axis (referred to as the “fast axis”
and oriented at an angle φ measured clockwise from

North). A vertically incident shear wave splits into hori-
zontally polarized fast and slow components, where the
fast component aligns parallel to the symmetry axis,
while the slow component is oriented perpendicular to
it. Generally, these two quasi-shear waves propagate at
different speeds, resulting in a separation by the delay
time, δt, as they travel through the layer. A graphical
representation of the coordinate systems used is given
in Figure S1.
The equations to describe shear-wave splitting in

layered structures have recently been summarized by
Rümpker et al. (2023). In the frequency domain, the
radial and transverse displacement components, after
passing through the layer, can be expressed as(

u
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1

u
(t)
1
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(
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where θ = ωδt/2, α = β − φ is the angular dif-
ference between back-azimuth and fast axis, and in-
dex 0 denotes waveforms before passing through the
anisotropic layer. For XKS phases in a radially symmet-
ric Earth, we can assume that u

(t)
0 = 0 upon entering

the (first) anisotropic layer on the receiver-side leg of
the ray path, such that
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where the factor iω yields a derivative of the radial-
component waveform and the amplitude is modulated
by sin 2α. We will use this formulation in the develop-
ment of our deconvolution approach, to be discussed in
subsequent sections.

2.2 Deep Learning Analysis - Synthetic Data
Weuse synthetic data to train ourmodel. The radial and
transverse waveforms are generated with a sampling
frequency of 50 Hz for back-azimuths between 0 − 360◦

and fast axis φ ranging between 0 − 180◦. Consequently
α can vary between 0 − 180◦, since φ and φ + 180◦ rep-
resent the same fast axis orientation. We allow for pos-
sible values of δt between 0.2-2.0 seconds. Note that δt
characterizes the anisotropy within the layer and is not
equal to an “apparent” delay time which could be much
larger (e.g. Silver and Savage, 1994). A total of 106 wave-
forms are used for the training process; this dataset is
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Figure 1 The architecture of SWSNet. Themodel takes as input the (deconvolved) transverse component and comprises of
two blocks of 1D convolution and Maxpooling operations seperated by a Dropout layer with drop rate 30%, and followed by
a bi-directional LSTM layers. The final outputs are the normalised values of α (αnorm) and δt (δtnorm) and the probability of
the measurement being non-null.

split in a ratio of 80:20 for training and validation pur-
poses.
Combinations of δt and φ are chosen from uniform

random distributions for the ranges described above.
We experiment with Convolutional layers (Kiranyaz
et al., 2015), Bi-directional Long Short-Term Memory
(Bi-LSTM) (Hochreiter and Schmidhuber, 1997) layers
and a combination of both. Convolutional layers have
been established to be effective at feature-extraction,
while Bi-LSTMs are known for their ability to detect
temporal dependence between these features. The
model hyperparameters (such as the number of layers,
the kernel size of filters in the convolutional layers, the
dimensionality of the LSTM layers, the activation func-
tions to be used etc.) are chosen by experimenting to
maximise the model performance on validation data.
Each 1D convolutional layer used has a Rectified Lin-
ear Unit (ReLU) activation function (Agarap, 2018). The
model outputs three values corresponding to the prob-
ability of the measurement being non-null and the nor-
malised predictions for δt and φ. The normalization
of the target variables ensures that the mean squared
error loss calculated for them are of the same order;
this helps in the convergence of the loss function during
backpropagation. Here, any measurement with α < 2,
88 < α < 92, and α > 178 is considered a null measure-
ment. Since it is impossible for the model to discrimi-
nate between α = 0◦, α = 90◦ and α = 180◦, the trans-
verse component energy for all these cases being zero,
we find that defining a non-null class helps the model
learn to estimate α. A rectified linear-unit (ReLU) acti-
vation function (Agarap, 2018) is used for layers predict-
ing α and δt while a sigmoid function is used to output
the probability corresponding the measurement being
non-null. A schematic example of such an architecture
is shown in Figure 1 (note that Figure 1 shows the final
architecture of SWSNet described is section 2.4); amore

detailed diagram is provided in the Supplementary in-
formation (Figure S7).
The model is trained using the Adam Optimiser

(Kingma andBa, 2014). Weuse a batch size of 256. Mean
squared error and binary cross-entropy are used as loss
functions for regression and classification respectively.
Apart from using Maxpooling (Nagi et al., 2011) and
Dropout (Srivastava et al., 2014) layers in the model ar-
chitecture, early stopping (Prechelt, 2012) is used to fur-
ther prevent overfitting, whereby training stops if vali-
dation loss does not decrease for 8 consecutive epochs.
With this condition the model trains for 35 epochs.

2.2.1 Results - Synthetic Data

We train the Neural Network on a dataset with noise ap-
plied independently to the fast and slow components.
Two types of noise are experimented with– random and
Gaussian. The noise level is chosen from a random nor-
mal distribution withmean 30% and standard deviation
10%. Some examples for these datasets can be found
in Figures S2 and S3 in the Supplementary Materials.
Figure 2 (a) and (b) show the results when the model
trained on synthetic datawith randomnoise is tested on
an independent test dataset also with random noise. As
can be seen from Figure 2, the deep learningmodel has
RMSE 5.9◦ and 0.12 s in the predictions of α and δt re-
spectively. The corresponding figure (S4) for data with
Gaussian noise is provided as Supplementary informa-
tion.

2.3 Application to real data fromUSArray
Weapply ourmodel to pre-selectedwaveforms from the
USArray dataset and compare our results with Liu et al.
(2014) and those calculated by the automatic Splitracer
toolbox proposed by Link et al. (2022). To make sure
that only meaningful results are used in the calculation
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Figure2 The relationbetweenground truthandpredictions for (a)αand (b) δtwhen themodel trainedonsynthetic training
data contaminated with random noise is tested on synthetic test data contaminated by random noise; comparison between
station-wise averages of (c) α and (d) δt calculated using the deep learning model and those given by Liu et al. (2014). (The
corresponding figure for data contaminated with Gaussian noise can be found in the Supplementary Materials.)

of station averages, we perform a quality check on the
estimationsmade by the neural network on givenwave-
forms. We perform splitting inversion using the split-
ting parameters predicted by the neural network and
check the percentage reduction in the transverse com-
ponent energy (sumof squaredamplitudes) as proposed
by Silver and Chan (1991). An experimentally chosen
threshold of 60% reduction in transverse component of
energy is used to select thewaveforms to be used for cal-
culating station-wise averages for splitting parameters.

2.3.1 Direct application of the Model

When the model trained on the synthetic data is di-
rectly applied to the real data (radial and transverse
components), the station-wise averages obtained for the
splitting parameters differ significantly from those pre-
sented by Liu et al. (2014), as shown in Figure 2(c) and
(d) (and also, S4 (c) and (d)). This happens as real wave-
forms look significantly different from the synthetic
data. Thus a direct application of the trained model
to the real waveforms renders unusable results. This
necessitates an intermediate step to bridge the gap be-
tween the synthetic and real waveforms.

2.4 Deconvolution approach

Observed real waveforms are not only affected by
anisotropic layering but may vary significantly due to
different source mechanisms (and path effects). This
poses a challenge to the training of the deep learn-
ing model, as it is not computationally feasible to
include all waveform variations that may arise from
different source mechanisms and complexities of the
medium. Here, we choose a deconvolution approach
to mitigate source effects and “homogenize” the wave-
forms. This method is similar to the one utilized
in receiver-function processing, for instance Langston
(1979); Owens et al. (1984); Ammon (1991).

We deconvolve both the radial and transverse com-
ponents by the radial component. In the frequency-
domain, in view of eq. (5), the procedure applied to real
data can be described as follows:

(6)u
(r)
∗ = u

(r)
1 /u

(r)
1

= 1

4 SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Shear Wave Splitting Analysis with SWSNet
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2 sin 2α u
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0 /u
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1

' iω
δt

2 sin 2α

Note that we assumed u
(r)
0 /u

(r)
1 ' 1 in the derivation

of eq. (7). This implies that the radial-component
waveform is a sufficient representation of the incoming
waveform (before it enters the anisotropic layer), which
further limits the applicability to waveforms with peri-
odsmuch longer than δt (T � δt). The value of 1 for the
radial component in the frequencydomain corresponds
to a δ-function in the time domain. For the transverse
component, the factor iω causes a time-domain deriva-
tive (of the unsplit waveform) with amplitude modu-
lated by sin 2α. In a second step, the deconvolved com-
ponents can now be convolved with a reference wave-
form, such as the normalised derivative of an exponen-
tial function (Figure S5, also shown in the radial compo-
nent of Figure 6 described in Section 2.5), to yield a uni-
form radial component, and standard transverse com-
ponent that depends on the two splitting parameters.
Figure S6 shows the appearance of the transverse com-
ponent for different α and δt pairs.
For real data, first the waveforms within the selected

timewindows are resampled at 50Hz and then themean
is removed. For both the real and synthetic data the fol-
lowing steps are applied:

• AHanningwindow is applied to smoothen the tran-
sition to zero amplitude at the boundaries of the
time window.

• The data is zero-padded to have a uniform total of
2000 time samples corresponding to a 40 s timewin-
dow.

• A butterworth lowpass filter with corner frequency
of 1 Hz is applied to suppress higher-frequency
noise.

• The radial component is deconvolved from both
the radial and transverse components as per equa-
tions 6 and 7.

• The clean waveform shown in Figure S6 (also
shown in the radial component of Figure 6 de-
scribed in Section 2.5) is convolved with both
the deconvolved waveforms (radial and transverse
components).

• A Hanning window is applied to reduce the effect
of possible sinusoidal “ringing” on the transverse
component of the reconvolved data.

• The waveform is cropped to the central 10 seconds.

• Another Hanning window is applied followed by
the normalisation of the data such that the absolute
maximum amplitude in the transverse component
is 1.

Figure 3 demonstrates the effectiveness of this
method in uniforming the waveforms: while the two

waveformswith very close splitting parameters look sig-
nificantly different due to different source mechanism
and path effects, upon applying the deconvolution and
reconvolution method described above, they look al-
most the same.
With this approach it is only the transverse com-

ponent that carries meaningful information about the
splitting parameters. Therefore we retrain our model
on the transverse component of the de/reconvolved syn-
thetic waveforms. Once again we experiment with dif-
ferent model architectures and hyperparameters; we
find the best performing model to be the one shown
in Figure 1. This model will henceforth be called the
SWSNet (shear-wave splitting network). A detailed de-
scription of the hyperparameters used can be seen in
Figure S7. As the input data structure is relatively sim-
ple a deeper network does not improve the results and a
simple network is sufficient. Please note that the labels
corresponding to α and δt are always scaled to be in the
range 0-1 as this is known to benefit learning. A train-
ing data size of 106 waveforms is experimentally found
to be optimum (Figure S8).
Once again, we experiment with both random and

Gaussiannoise. Theperformanceof SWSNet on the syn-
thetic dataset can be seen in Figure 4, and the corre-
sponding figure for the Gaussian noise case is shown in
Supplementary Materials (Figure S9). It can be noted
here that the performance on the synthetic data wors-
ens in comparison to Figure 2. This is because a major
difference in the deconvolution approach, as compared
to the method discussed in Section 2.2, is that when
we train the model on the deconvolved data, only the
transverse component carries the relevant information.
Hence, the model is trained only on this component, as
opposed to the previous method where both the radial
and transverse components were used. Using two com-
ponents might help the model learn the noise charac-
teristics in the data, resulting in a smaller spread in the
predicted parameters. However, despite this deteriora-
tion in performance on the synthetic test data, the use
of the deconvolution method leads to much better gen-
eralizability when applied to real-world data, as will be
seen in the subsequent discussion and in Figure 7.

2.5 Application to USArray

We apply our final SWSNet to the real data from USAr-
ray. The method used to find the station-wise averages
is the same as described in Section 2.3; we experiment
with the threshold for energy reduction once again, to
choose the optimum threshold for our calculations. A
threshold of 60% is determined to be optimum based
on our observation in Figure 5 as it results in relatively
lower mean absolute differences in the station-wise av-
erages of both splitting parameters, while still retaining
a good number of stations.
This leaves us with 8699 acceptable waveforms out of

a total of 106323 (' 8.2%). This number is very similar to
the 7.6% waveforms marked as ‘good’ category by Link
et al. (2022). Some examples of SWSNet’s performance
on individual waveforms can be seen in Figure 6 and the
corresponding splitting parameters are summarised in
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Figure 3 Two example waveforms with splitting parameters calculated by Link et al. (2022) very close to each other (top
panels). The bottom panels show the corresponding waveforms after undergoing the deconvolution and reconvolution pro-
cess described in Section 2.4. While the waveforms in their original form look significantly different due to their respective
source mechanism, deconvolution makes them look almost the same, thereby eliminating the source and path effects.

Figure 4 The performance of SWSNet on the synthetic test dataset when including the deconvolution approach. Both the
training and test datasets are contaminated by random noise, with noise level chosen from a random normal distribution
with mean 30% and standard deviation 10%.

Table 1. One can see the similarity between parameters
calculated by SplitRacer, used in Link et al. (2022), and
those calculated by SWSNet. A more detailed compari-
son with grid search results is included in table S1.
Figure 7 shows a visual representation of the station-

averages of the splitting parameters calculated by SWS-
Net and Liu et al. (2014). Unlike Link et al. (2022), Liu
et al. (2014) does not employ a joint splitting analysis, al-
lowing for amoredirect comparisonwith our approach,
as it is also based on averaging results from individ-
ual split phases at a given station. Please note that this
model is trained on data with random noise. The re-
sults for a model trained on Gaussian noise can be seen
in Figure S10. While the performance of the models
trained on random and Gaussian noise have compara-
ble performance on the corresponding synthetic test

dataset, we observe throughout our experiments that
the models trained on data with random noise fit the
real data better. We suspect that this is because it is eas-
ier for the model to overfit the data with Gaussian noise
during training as compared to when the noise is com-
pletely random. We also show the comparison between
SWSNet and Link et al. (2022) in Figure S11.

3 Discussion
We apply the transverse energy reduction thresholds to
SWSNet calculations when calculating station averages.
This results in different sets of waveforms being used
by this study and by Liu et al. (2014) for these calcula-
tions. However, in cases ofmulti-layer anisotropy, there
is a strong dependence of splitting parameters on back-
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Figure 5 The effect of using different thresholds for energy reduction in the transverse component energy on the final cal-
culation of the station averages. Based on these observations, a threshold of 60% is determined to be optimum. It results
in relatively lower mean absolute differences in the station-wise averages of both splitting parameters, while still retaining a
good number of stations.

Table 1 A comparison between splitting parameters for individual waveforms shown in Figure 6, calculated by Link et al.
(2022) and SWSNet. A detailed comparison between grid search results, results from Link et al. (2022) and SWSNet can be
found in table S1 in the Supplementary Information.

Event ID φ(◦) φ(◦) δt (s) δt (s)
(Link et al., 2022) (SWSNet) (Link et al., 2022) (SWSNet)

Y13A2008-05-09T22:15:04SKS 45 49.1 1.33 1.11
P59A2014-08-18T02:55:43SKS 86 88.4 0.82 0.80
121A2018-07-13T10:10:08SKS 9 12.7 1.02 1.03
D25K2017-07-15T12:35:42SKKS 66 71.5 1.44 1.50

azimuth, observed at many locations in the Western/-
Central U.S, which could significantly affect the split-
ting analysis if the events included are not identical.. As
such, efforts were made to keep our method free of any
requirements of prior knowledge; hence, the threshold
was applied for the selection of waveforms irrespective
of whether they were used in the calculations by Liu
et al. (2014). To understand what the comparison would
look like when using the samewaveforms in both calcu-
lations, we examined a subset of waveforms included in
both the station-average calculations by Liu et al. (2014)
and in the data used for SWSNet calculations. We re-
calculated the station averages using just this data and
conducted a comparison similar to Figure 5. This fig-
ure has been added to the supplementary materials as
Figure S12. As expected, we found a closer alignment
of the station averages in this case. Furthermore, we
compared the splitting parameters calculated by SWS-
Net and those published by Liu et al. (2014) for individ-
ual waveforms, finding that the mean absolute differ-
ence for φ and δt are 11.08◦ and 0.239 s respectively.
As a further step to evaluate SWSNet’s performance in

a multi-layer anisotropy case, we tested it on synthetic
waveform data generated by considering two layers of
anisotropy with the following two sets of splitting pa-
rameters:

1. φ1 = 20◦, δt1 = 1.0 s and φ2 = 70◦, δt2 = 1.0 s

2. φ1 = 20◦, δt1 = 1.5 s and φ2 = 110◦, δt2 = 0.5 s

where φ1 and δt1 represent the fast-axis orientation and
time-delay in the first (lower) anisotropic layer, respec-
tively, and φ2 and δt2 represent the fast-axis orienta-
tion and time-delay in the second (upper) anisotropic
layer, respectively. Note that in the second case, the fast
axes are perpendicular, such that the model effectively
corresponds to a model with a single anisotropic layer.
The resulting effective delay time is given by the differ-
ence between the delay times in each layer. We com-
pare the variation of the splitting parameters with back-
azimuth to the theoretical curves calculated as per Sil-
ver and Savage (1994) (Figure 8). We find a good agree-
ment between the expected apparent splitting param-
eters and those predicted by SWSNet, except when the
resulting transverse components are very small. These
small components correspond to null measurements
(indicated by the gray patches in Figure 8) and are at-
tributed by SWSNet to small (case 1) or variable (case
2) delay times. It is further interesting to note that the
largest delay times predicted by SWSNet (2 s) agree with
maximumdelay times used in the training data for a sin-
gle layer.

We further explore the different factors that affect the
station-averaged results, and find the predominant fac-
tor to be the number of acceptable measurements for a
given station, whereby the difference between the sta-
tion averaged splitting parameters calculated by SWS-
Net and those from Liu et al. (2014) diminishes with an
increased number of acceptable measurements corre-
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Figure 6 Examples of applying SWSNet to deconvolved real waveforms from the USArray Dataset. The left panel displays
the original radial and transverse waveforms. The right panel shows a comparison between the deconvolved real waveforms
and the synthetic counterparts, which are generated using the splitting parameters as predicted by SWSNet. The compari-
son reveals that the radial components are identical, as expected, while the transverse components exhibit a high degree of
similarity. The corresponding splitting parameters can be found in Table 1.

sponding to a station (Figure S13).

We also compare our method against a simple grid
search algorithm that, like previous studies, finds the
splitting parameters for which (upon waveform inver-
sion) the energy in the transverse component is the low-
est. The grid search is done between 0.2-2 seconds for
δt and 0-180◦ forα, with a grid spacing of 0.1 second and
1◦, respectively. Weplot the energy distributions for dif-
ferent combinations of α and δt for five randomly cho-
sen events from five different stations, and find the pa-
rameters calculated by SWSNet to be quite close to those
foundby grid search andwhat is calculated byLink et al.
(2022) (Figure S14). We further observe that grid search
on average takes 3-6 times the amount of time taken
by SWSNet to calculate splitting parameters for a single
waveform.

4 Conclusion

In this study we introduce a baseline deep learning
model SWSNet that has the potential to replace grid
search methods used by previous studies to find split-
ting parameters for a waveform. Due to the dearth
of labelled real data we train the model on synthetic
data. We demonstrate that a direct application ofmodel
trained on the synthetic waveforms to real waveforms
does not work well, the real waveform being affected by
source mechanisms and path effects. This is resolved
by using a deconvolution approach to minimise the dif-
ference between real and synthetic data. We retrain the
model on transverse components of deconvolved syn-
thetic waveforms contaminated by random noise, and
show that the model learns to perform reasonably well
in identifying the splitting parameters for such wave-
forms. We then apply our model to pre-selected wave-
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Figure 7 (a) Splitting parameters calculated by SWSNet (b) Splitting parameters calculated by Liu et al. (2014). The ori-
entation of the straight lines is representative of the fast axis orientation while the length represents delay time. A similar
general pattern is observed in both cases. (c) Station-wise comparison between φ calculated by SWSNet and Liu et al. (2014)
(d) Station-wise comparison between δt calculated by SWSNet and Liu et al. (2014)

forms from the USArray dataset and show that the sta-
tion averages calculated using SWSNet follow the same
general trends as previous studies. We observe that the
robustness of the proposed method increases with in-
creased number of measurements for a given station.

The current version of the model is trained entirely
on synthetic data, but in future versions real data can
be added to the training set for improved representa-
tion. We would like to reiterate that the approach pre-
sented in this work is a baseline method to establish
deep learning as a potential candidate for shear wave
splitting studies. There are several avenues to further
improve the results that would be explored in the future
such as using a deeper model or using more complex
data, for example, by considering multiple anisotropic
layers insteadof one. Onemajor drawbackof basic neu-
ral networks is their inability to provide uncertainty es-
timates Gawlikowski et al. (2023); therefore, providing
uncertainty estimates would be another important av-
enue to explore in the future.
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