
Dear Stephen,

I hereby submit a revised version of my manuscript “PyOcto: A high-throughput seismic 
phase associator” to Seismica. Thank you for the handling of the manuscript and for 
keeping me updated throughout the process.

In my revision, I considered all the helpful and constructive points raised by the reviewers. 
Please find attached a point-by-point response (written in blue) to the comments of the 
reviewers (written in black) with the revised article in two versions, one with changes 
tracked and one without. The line numbers in the response letter refer to the version with 
highlighted changes.

I thank the editor and the two reviewers for pointing out typos and recommending 
improvements to formulations. I have implemented these changes but omit them from the 
responses below to keep the response letter more compact.

I hope the manuscript now meets the high standards associated with Seismica.

Best regards,

Jannes Münchmeyer

Editor comments

I feel that the Introduction would read more coherently if you merged the “Background” 
section into the Introduction. I think discussing these existing associator approaches 
would then allow the motivations for designing PyOcto and the paper’s objectives to be 
more coherently defined. Also, can you comment on the various pros and cons of the 
various existing methods?

Thank you for the suggestion. Upon reading the sections another time, I’ve decided to 
keep the sections separate but rename the “Background” to “Related work”. When 
including the “Related work” in the introduction, the section feels somewhat bloated to 
me. Closely linked, I refrain from describing the pros and cons of the different methods 
in the “Related work” section because there is not much literature on the topic. The 
main statements I can make about pros and cons are derived from my benchmark later 
on, which feels inappropriate for a background section. At the same time, this makes it 
difficult motivating PyOcto through the disadvantages of other methods. Instead, I 
opted for more broad statements in the introduction, a brief description of the 
algorithms in the “related work”, and lastly a more in-depth analysis in the results part of
the manuscript.

L164: can you clarify what is meant by “greedy”?

I’ve added a short explanation of the term “greedy algorithm” to the manuscript. (L165-
167)
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L175: Maybe change “PyOcto implements two velocity models” to “PyOcto can implement 
two types of velocity models”.

It’s a bit of a nuance but I decided to keep the formulation unchanged. The first 
formulation is meant to suggest that these are implemented, i.e., readily available. The 
second formulation suggests that no further velocity models could be implemented. 
While I’m not planning to do that for now, there is no principled reason not to do so.

L195: Maybe (re-)cite some of the DL-based associators being referred to.

I’ve added relevant citations here. (L205)

L180: Maybe I missed the context, but what is the symbol used here?

It’s Landau notation, i.e., asymptotic complexity of algorithms 
(https://en.wikipedia.org/wiki/Big_O_notation). Note that the typesetting in Latex differs
a bit from the one on Wikipedia. For simplicity and to avoid confusion, I’ve exchanged 
the symbol with “constant time”. (L188)

L244 & L253: Is it worth stating the default values for association_cutoff_distance and 
min_pick_fraction?

I’ve added the default values to the text. (L266-267 / L275-276)

L283-284: Maybe add “(see Data and Code availability for details)”.

I’ve included this cross-reference now. (L305)

L405-407: in my opinion, I don’t think these two sentences need to be said. Feel free to 
delete it if you agree.

These sentences mostly serve as a warning. From my experience supporting issues for 
SeisBench, some users need to be made aware that simplistic demo workflows are not 
necessarily appropriate for application in research without further refinement.

L422-423: I feel that this comparison/fit with Omori decay needs to be quantified or at 
least shown in a Supplementary figure. Maybe the deviation from Omori is a real feature in 
the hours-days after a large earthquake?

I have exchanged the argument for a more simple justification of short term 
incompleteness: the number of events stays constant within the first 4 days, which is 
very unlikely in an aftershock sequence. Whiles it might indeed be interesting to study 
deviations from Omori’s law, this would be out of scope for this study. (L467-469)

L390 onwards: I may have missed it, but I didn’t say where the a priori homogenous and 1-
D velocity models were defined or cited.

Thanks for pointing this out. The velocity model and hyperparameters have been added 
now. (L440-441)

L426: I’m not sure what “0.6 S picks” means. Is this a fraction? If so, is the word “times” 
missing? Maybe better to express it as a percentage?
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It’s referring the the number of picks, i.e., the number of S picks is on average 0.6 higher 
for REAL than PyOcto. As this is pointed out in the first part of the sentence, I decided to
leave the formulation unchanged.

Figure 2: the red star isn’t overly obvious. Could you please try a white or black outline on 
it?

I’ve added an outline and increased the marker size to improve visibility.

Figure 5: I was wondering if it is helpful to include the stations used on one of these maps?

I’ve added a supplementary figure showing the station configuration (Figure S1). I 
avoided adding the stations on one of the plots in Figure 5 to avoid visual bias between 
the different experiments.

Reviewer A:

This paper presents a new seismic phase association method, which is the task of 
grouping seismic picks (or phases) across stations into individual earthquakes. This is a 
fundamental task in building earthquake catalogs and is often the most computationally 
expensive and challenging step of an earthquake detection pipeline. This problem has 
received significant attention in recent years, since deep learning models provide high pick
rates which increases the challenge of associating phases and identifying individual 
events.

PyOcto is based on using an OctTree-like partitioning in space and time to rapidly narrow 
in on promising candidate source regions. The paper shows this technique is very 
computationally efficient compared to several alternative (and recently proposed) 
associators, and is generally at least as accurate, if not more accurate, than the others. 
The paper is well written and the method is clearly explained. Synthetic tests of both 
shallow (crustal) seismicity, and subduction zone settings reveal various insights into the 
strengths/weaknesses of PyOcto and the other associators tested (GaMMA and REAL). A 
real test case on the 2014 Iquique earthquake sequence also shows a promising finding of
many well located and detected events before and during the aftershock sequence.

Overall this is a strong manuscript, and the algorithm presented appears promising. The 
paper is clear enough to give readers insight into how the method works and may even 
inspire readers to make new algorithms for handling the association problem, as the paper
illuminates several of the nuances of this challenge. I have several minor comments on 
some aspects of the synthetic data that I feel are too “simple”, which the author might 
consider changing, or adding an additional synthetic test to test the models under these 
conditions. I have a few other minor comments on clarification. I expand on these below.

I thank the reviewer for their positive assessment of our work and for highlighting its 
context and relevance. I’m grateful for the collection of thoughtful remarks provided by 
the reviewer. Among their comments, the reviewer has proposed several extensions to 
the benchmark and to PyOcto. While without question interesting question were raised, I
refrained from implementing several of these. Regarding the benchmark, I perceive this 
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study as a brief analysis of the different associators rather than a fully comprehensive 
benchmark. Such a benchmark, would need to take substantially more questions into 
account, for example, the tuning of the model parameters. Regarding PyOcto, in my 
experience the simplistic assumptions, for example, on uncertainties or topography 
corrections, perform rather well in a wide range of cases. These assumptions are also 
commonly used in other association algorithms. However, I’ve added an explanation on 
extending PyOcto, highlighting that if required these extensions could be added in the 
future. Please find a point by point response below.

Comments:

1). In the uncertainty term in equation (1), it is not stated how this value should be set in 
general. Most importantly, it is not stated whether this is a fixed tolerance for all picks, or a
tolerance that is proportional to the travel time. Most naturally, it seems it should be 
chosen per source-receiver pair as some fraction of the travel time (e.g., 1 – 5%). I would 
clarify this point.

PyOcto uses a constant uncertainty that is set in the velocity model. This is now 
clarified in the manuscript. While I agree that there are different ways to set 
uncertainties (absolute, relative to travel time, individual for each pick, …), for now I 
opted for the easiest option. This is similar to other associators, e.g., REAL and GaMMA,
and gives good performance. However, I’ve also added an explanation on extending 
PyOcto, highlighting that the modular structure allows to quickly implement such 
extensions if required. (L109 & L306-307)

2). In lines 186 – 189, you refer to “local extrema”. It is not clear to me what is meant by 
local extrema in this context.

I’ve added an explanation for the term and clarified that I mean local minima/maxima 
along the depth axis. (L195-197)

3). Line 190 – Using vertical incidence assumption for the elevation correction will indeed 
be quite inaccurate for the station elevation correction. Most eikonal solvers can provide 
incidence angles. Accurate station corrections can easily be obtained using trigonometric 
relationships and the true incidence angle at the reference surface elevation. This might be
worth correcting if it is an easy fix, as this might introduce an unnecessary level of error 
(~1 s error for high elevation stations and grazing incidence angles).

Thank you for pointing this out. I checked and the eikonal solver I used does not return 
incidence angles. I’m also not sure how easy the correction term would be, as a grazing 
incidence angle would also change the pierce point of the zero-surface. For the 
scenarios I tested so far, the correction were sufficiently accurate. An alternative option 
would also be to run the eikonal solver independently for each station, allowing to 
incorporate the station height correctly upfront. For now, I refrain from these options, 
but I’d like to point at the option to extend PyOcto with such functionality if required in 
the future. (L305-307)
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4). In line 215, you describe including all picks in a buffer window before each disjoint 
segment. It would help to explain why this is done, since it seems more natural to include 
picks in a buffer after each disjoint segment (to allow an origin anywhere inside the 
volume to have access to any picks that are produced by it, up until the max moveout 
time?).

Thank you for pointing this out. The description in the manuscript was indeed incorrect 
(while the implementation was correct). I’ve updated the description to actually match 
the implementation. (L223-228)

5). In line 218, you say you de-duplicate the event catalogs. This is indeed very important. 
However, how is it done in practice? As I imagine some duplicates that occur might not be 
“exactly” the same origin time/location/set of picks, but only very close to within some 
tolerance. Have you accounted for this?

Indeed, inaccurate origin times or locations might be detrimental to a deduplication. 
Therefore, the deduplication of PyOcto relies exclusively on the overlap between the 
sets of picks of two events and is tolerant to partial overlaps. I’ve added an explanation 
of the deduplication strategy to the manuscript. (L230-234)

6). For the optimizations of computational cost, in lines 226 – 227, you say that once a 
pick has been assigned to an individual event, it is no longer considered anymore. This 
seems like a greedy assignment, and it could have negative down-stream consequences? 
For instance, it would cause two “duplicate” events, if they did occur, to not have the exact 
same set of picks, and hence possibly be hard to identify. Also, what if the first event that’s
nucleated and established is actually false (and sub-optimal) compared to another true 
event, yet now the more optimal event has lost picks to this first source?

As the reviewer correctly points out, this is a greedy assignment. However, a key point is
that we traverse cells from many to few picks, i.e., a pick would always first be assigned
to an event with many picks before it would get assigned to an event with few picks. 
Nonetheless, this might lead to incorrect assignments if events are extremely closely 
spaced. On the other hand, this optimisation is absolutely indispensable. If the picks 
would not be remove, they’d create many duplicate detections for the same event 
around, leading to an explosion in run time.

7). In lines 231 – 234, you describe the caching strategy of avoiding groups of picks that 
you have not been able to locate. However, what is the criteria for determining a “non-
locatable” event? This doesn’t seem to be explained anywhere, and is non-trivial, as there is
no hard-and-fast rule for what determines a “non-locatable” event based on the picks. 
There is of course degrees of misfit/fit, and it seems a more explicit rule for determining 
this and a per-application tolerance level would have to be determined.

An event is non-locatable if the determined origin does not correspond to sufficiently 
many picks. This condition depends on the tolerance for matching picks to events and 
the required number of picks. I’ve added an additional explanation here to clarify this. 
(L248-250)
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8). In lines 238 – 248 you describe the strategy for avoiding spurious alignments of picks 
on distant stations. This is of course a very serious problem when it comes to associators 
based on only matching travel time alignment of picks. This approach seems sensible, but 
you might also consider remarking in the discussion that one of the main (conjectured) 
advantages of deep learning associators is that they can more naturally find the patterns 
of stations that make sense for a given event. It is primarily this issue that sets deep 
learning associators apart from non-deep learning associators.

Thanks for pointing this out. I’ve added this (conjectured) advantage of deep learning 
associators to the background section now. (L90-93)

9). In line 301, you state that the random error added to travel times is drawn from a 
Gaussian with standard deviation 1% the travel time. This is actually a very small level of 
error and is not very realistic. I would recommend using 3%-5% for a more realistic test 
case (note that, it is not uncommon on reasonably large regional scales to have up to 10% 
error for some source-receiver paths). It in fact would be very interesting to see the results 
for both the 1% and 3 (or 5%) case. Perhaps it could be added as an additional 
supplemental figure.

The Gaussian error used has a standard deviation of 1 % of the travel time, but at least 
0.4 s. This means that the error condition of 1 % travel time only plays a role for travel 
times above 40 s. At these distance ranges, the 1D approximation should usually be 
good enough for such low errors. Two further observations justify this selection. First, 
PyOcto supports station residuals, i.e., errors from near-station effects can easily be 
mitigated. Second, systematic errors from inaccurate velocity models are correlated 
between stations with a similar azimuth from the event. This means that even for higher
errors, events might be mislocated but will usually not be missed. However, there are 
other scenarios where larger deviations are clearly relevant, e.g., for volcanos or other 
regions with highly heterogeneous structure. I’d leave these experiments to future, more
comprehensive benchmarks. To emphasize the the standard deviation of 0.4 s is the 
more relevant condition, I’ve reformulated the statement in the manuscript. (L325-326)

10). In the section of synthetic data generation (lines 295 – 305), you describe using the 
magnitude of each event to guide the probability of which stations observe a pick. 
However, it’s not clear how this is done? More importantly, though, I am curious how many 
missing picks various stations have in general. One of the hardest parts of association is 
that some events will only produce arrivals on ~several stations, and some will produce 
arrivals on ~hundreds, yet the associator must handle both cases. Based on the current 
writing/tests, this aspect of the problem is not clearly addressed. In general, it would be 
good to test the models ability to detect events that are only recorded on very few stations 
and events recorded on many stations.

This was indeed not specified in the original manuscript. I’ve now added a 
supplementary text providing the details on how the pick probabilities were determined. 
In addition, I’d like to refer to the implementation of the benchmark that is publicly 
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available. Regarding the range of picks, the benchmark covers a wide range: from 10 
picks up too almost 200 picks in the shallow seismicity scenario. (Text S1)

11). In line 311, it is stated that at least 10 picks are required to declare an event detection.
This is a fairly high number, and in practice will lead to many lost events. In general, the 
number should ideally be ~5 – 7. It might be worth running an additional test where you 
lower this number and analyze the associator performances (perhaps as an additional 
supplemental figure).

The number of picks to require for an event is a difficult questions. Personally, I do not 
perceive 10 picks as a particularly conservative threshold. Deep learning pickers are 
highly sensitive but at the same time, will also produce false detections. Unfortunately, 
they also have a tendency to create correlated false P and S detections. Nonetheless, 
from my personal experience, the optimal strategy for applying these models is to use a
very low picking threshold, such as 0.05, i.e., risking high numbers of false picks, and 
then running an association step afterwards with a higher requirement in terms of the 
number of picks. Regarding the total number of picks, 5 is definitely a lower bound, 
given that 4 picks are already required to locate an event. From my experience with 
larger deployments, even requiring 7 picks often leads to false positives. Nonetheless,  I
agree that this question deserves further study. As suggested in my introduction of this 
response, I believe that this is out of the scope for this manuscript and should rather 
happen within a larger, more comprehensive benchmark.

Please see my response to question 16 too, where I’ve analysed the Iquique data while 
requiring fewer picks.

12). As a side note, by ensuring that all events in the synthetic catalogs have at least 10 
picks (as stated in line 313), you are only trying to detect events that are “fairly easy”, since
there are so many picks available for each. A more realistic and challenging test would be 
to try and detect events with as few as five picks.

As mentioned above, the question of the number of picks is non-trivial. I personally 
perceive the case of the benchmark as realistic and would like to point out that the 
benchmark rather targets scenarios with very high seismicity rates than with very small 
seismicity. In the latter case, I agree that a different threshold might be appropriate.

13). In line 334, and elsewhere, it is made clear that GaMMA has run-time issues and does 
not converge. However I was under the impression that GaMMA uses DBSCAN to break up
picks into groups before applying the actual EM algorithm to determine the association 
solution. Are you sure that you have run GaMMA with both DBSCAN + GaMMA, as it is 
used in practice? If not, that explains why it was never able to converge for large numbers 
of events, as the GaMMA algorithm really does need DBSCAN first (for better or worse). If 
DBSCAN wasn’t used in these tests, I am not sure it’s accurate to claim that it wasn’t able 
to converge, since then it is not being used in the way intended.

I run GaMMA with both DBSCAN and the core GaMMA algorithm. However, at large 
number of picks, the algorithm fails to break up the picks into sufficiently small clusters.
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Larger clusters take substantially longer to associate or don’t converge at all. I’ve added
this observation to the manuscript. (L421-L425)

14). I believe GaMMA does have an implementation of 1D velocity models online now. The 
author might consider using this version of GaMMA with 1D, for a more consistent 
comparison of the associators.

Thanks for pointing this out. I’ve now added GaMMA with a 1D model to the benchmark.
For the Iquique sequence, GaMMA with a 1D model failed to converge for about 30 % of 
the days. Therefore, I have not added these results to the main text. Instead, the results 
are available in the supplement. (No line numbers as this concerns several changes)

15). In line 376, is it clear to you why GaMMA is performing so poorly in the subduction 
zone setting at >100 events? It also is somewhat confusing, since in the real application 
on Iquique, the performance of GaMMA seems reasonable and more comparable to the 
others than this result indicates (other than the possibly spurious shallow events far to the 
east).

I’ve added an explanation how the optimisation procedure of GaMMA likely leads to this
result. The results from the Iquique sequence are actually consistent with the most 
similar scenarios in the benchmark (subduction, 500 events, 0.3 to 1.0 noise). Smaller 
differences could, e.g., be related to the different distribution of seismicity in the 
aftershock sequence compared to the longer term catalog. (L403-407)

16). Similar to an earlier comment, I am curious how the real data catalogs would appear if
the minimum number of required picks was < 10 (as stated on line 404). Would there be 
many false and scattered events? This could be an interesting supplemental figure to 
include.

I’ve added an experiment with a reduced number of required picks (7 picks per event). 
The experiment is documented in the main text and in three associated supplementary 
figures. While the overall number of events grows with the lower threshold, the scatter 
of seismicity also grows substantially. It is unclear to what degree this is related to false
detections and to which degrees to less accurate locations. However, from other 
experiments where I’ve relocated the events using NonLinLoc, I strongly suspect that 
many of the scattered events are false detections. This is part of my reasoning for 
choosing the higher pick threshold at 10 picks per event. (L505-512)

18). Line 418, it is stated that the catalogs developed with homogenous velocity models 
are slightly larger than 1D velocity models. This is a somewhat surprising finding, isn’t it? 
Does it suggest that more false (or maybe split) events are being created with the 
homogenous velocity models?

This observation is most likely related to the different tolerance values for travel time 
residuals. The homogeneous models use a higher tolerance to account for the less 
accurate travel time calculation. This might lead to more false associations, but it’s hard
to identify these automatically. I’ve added a short remark to the manuscript. (L472-476)
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19). The catalogs obtained in Fig. 5 are fairly impressive in terms of having little scatter 
and accurately resolved depths.

I thoroughly enjoyed reading this manuscript, and I think readers can learn a lot about the 
earthquake detection problem from this paper.

Thank you once again for the positive feedback and the thoughtful recommendations.

Reviewer B - Sacha Lapins:

This manuscript presents a new seismic phase association method based on efficient 
octree partitioning of the space/time search space used to identify and associate true 
seismic phase detections with a common source/origin. This approach and other 
algorithmic choices made by the author (e.g., use of EDT loss) seem to be inspired by the 
very popular and extremely well-tested NonLinLoc earthquake location package, often 
chosen for its robustness in the face of outliers and its computational efficiency. The 
proposed method appears to benefit from the same robustness and efficiency, which is 
clearly and fairly demonstrated by the author using synthetic and real-world case studies. 
Method limitations and parameter choices are also fairly presented and well explained. As 
such, this will likely be an incredibly useful publication and tool for the wider seismological 
community. Given its timely contribution, I am happy to recommend this manuscript for 
publication with only minor comments/edits (mostly typos).

I thank the reviewer for his positive assessment. Indeed, NonLinLoc was a useful 
inspiration, even though the idea of using space-time partitioning occurred to me in a 
completely different context. Thank you also for the recommendations regarding typos 
and formulation. I’ve implemented these. For brevity, I omit them from the response 
letter.

Minor comments / suggestions:

1. Line 218 – I may have missed it, but how are duplicated events identified and 
removed? Are there ever occasions where duplicated events might only have 
subsets of picks in common and, therefore, slightly different origins/locations? Or 
do they always contain the exact same picks (in which case I can see they would be
easy to identify and remove)? 

Please see the answer to point 5 of reviewer A.

2. Lines 425-432 / Figure 6 – You mention that REAL finds more S picks per event than
PyOcto. To my eye, REAL also appears to consistently associate more P picks. 
Other than pointing out the higher number of S picks, you don’t really mention why 
this might be in terms of the algorithmic choices between PyOcto and REAL, or 
relate this observation to your findings from the synthetic cases. Are REAL’s 
additional picks likely to be errors? Or is PyOcto perhaps more conservative? I felt 
like there was a little bit more to unpack here. 

Regarding the different number of picks, this is most likely related to the different 
tolerance criteria for matching picks to origins. While I’ve tried using consistent values 
across the different associators, the available criteria are defined slightly differently. I’ve
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added a paragraph discussing this. Regarding the higher number of P picks, I didn’t 
perceive this as a consistent feature, so I was not comfortable pointing it out. (L472-
476)
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