
Production Editor:
Gareth Funning
Handling Editor:
Stephen Hicks

Copy & Layout Editor:
Théa Ragon

Signed reviewer(s):
Sacha Lapins

Received:
October 17, 2023

Accepted:
January 19, 2024

Published:
January 29, 2024

doi:10.26443/seismica.v3i1.1130

PyOcto: A high-throughput seismic phase associator

Jannes Münchmeyer � ∗ 1

1Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, Grenoble, France

Abstract Seismic phase association is an essential task for characterising seismicity: given a collection
of phase picks, identify all seismic events in the data. In recent years, machine learning pickers have lead
to a rapid growth in the number of seismic phase picks. Even though new associators have been suggested,
these suffer from long runtimes and sensitivity issues when faced with dense seismic sequences. Here we
introduce PyOcto, a novel phase associator tackling these issues. PyOcto uses 4D space-time partitioning and
can employ homogeneous and 1D velocity models. We benchmark PyOcto against popular state of the art
associators on two synthetic scenarios and a real, dense aftershock sequence. PyOcto consistently achieves
detection sensitivities on par or above current algorithms. Furthermore, its runtime is consistently at least
10 times lower, with many scenarios reaching speedup factors above 50. On the challenging 2014 Iquique
earthquake sequence, PyOcto achieves excellent detection capability while maintaining a speedup factor of
at least 70 against the other models. PyOcto is available as an open source tool for Python on Github and
through PyPI.

1 Introduction
One of the fundamental tasks in seismology is creat-
ing detailed seismicity catalogs. Highly complete cat-
alogs can reveal, for example, spatial migrations, lock-
ing patterns, or changes in seismicity rate (González-
Vidal et al., 2023; Moutote et al., 2023; Tan et al., 2021).
The standard workflow for event detection consists of
two steps: phase picking and phase association. The
phasepicking step identifies the times of seismic phases
arrivals in continuous waveforms. The phase associa-
tion step aims to find consistent sets of picks that can
be associated to a seismic source, called an event. This
grouping enables downstream analysis steps requiring
multi-station data, for example, location or magnitude
estimation. In addition, phase association helps to
identify and discard spurious picks.
Traditional phase association algorithms often rely

on greedy, combinatorial strategies (Johnson et al.,
1995). However, these approaches scale poorly with an
increasing number of picks. While this has already be-
come a challenge due to the growing number of seis-
mic stations in large-scale deployments, the problem
has been supercharged with the advent of highly sensi-
tive, deep-learning-based seismic phase pickers. Deep-
learning-based pickers employ neural network models
and are trained onmillions ofmanually labeled seismic
phase picks. They outperform traditional picking mod-
els substantially in terms of sensitivity and pick preci-
sion (ZhuandBeroza, 2019;Mousavi et al., 2020;Münch-
meyer et al., 2022).
To deal with this flood of phase picks, in recent years,

a wave of new phase association algorithms have been
published. These approaches range from improved

∗Corresponding author: munchmej@univ-grenoble-alpes.fr

grid-search strategies to complex deep learning archi-
tectures. We review the main contributions in the sub-
sequent background section. However, we first discuss
the main challenges and performance indicators for
seismic phase associators.
The key metric for seismic phase associators is the

quality at which they recover seismic events. This in-
cludes two aspects: the fraction of events being recov-
ered, i.e. true positive rate or recall, and the fraction of
identified events being incorrect, i.e. false positive rate.
Usually a tuning parameter can be used to trade-off be-
tween thosemetrics: either a higher recallwith a higher
rate of false positives or a lower recall with lower false
positive rate. The second metric concerns the same
questions on pick level: howmany picks have been cor-
rectly associated and how many picks have incorrectly
been associated. Similar trade-offs to the event metrics
exist. As ground-truth catalogs for seismicity are not
available, seismic phase associators are usually evalu-
ated on synthetic data, i.e., phase picks predicted using
travel time calculation and random noise picks. In ad-
dition, models are tested qualitatively on real-world ex-
ample scenarios without ground-truth.
A metric often disregarded is the run time of the al-

gorithms. However, given the ever-growing number of
picks, we consider this metric essential to understand
the scalability of current algorithms and their applica-
bility to large scale deployments. Run time issues make
some of the current associators non-applicable to such
deployments, as we show in our examples where some
associators did not complete associating a single day of
phase picks within 48 hours.
While the recently published associators improve on

all of these metrics when faced with large collections
of seismic picks, our experiments show that associators

1 SEISMICA | ISSN 2816-9387 | volume 3.1 | 2024

https://doi.org/10.26443/seismica.v3i1.1130
https://orcid.org/0000-0002-4006-9673

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

are still a limiting factor when building seismicity cat-
alogs. This refers to both the precision and recall of
events and picks, and the run times, with several asso-
ciators requiring much more time for association than
the phase pickers for picking. For this reasons, we pro-
pose PyOcto, a novel Python-based associator inspired
by the Octotree data structure. PyOcto is based on the
idea of dividing space-time into potential origins. It
achieves fast run times by only exploring promising ori-
gin regions, making it a high-throughout phase associ-
ator. PyOcto is available as an open source code with a
range of different input and output interfaces for easy
use.

2 Related work
Before describing the PyOcto architecture, we intro-
duce the most popular novel seismic phase association
methods published within the last years. All described
algorithms rely on first arriving P and S phase picks
without taking into account later phases. REAL (Zhang
et al., 2019) is an optimized grid-search algorithm. In-
stead of searching a full space-time grid, REAL is based
on the assumption that a station close to the event will
record the first P pick. Starting with one P pick, a grid
search is performed in a volume around the picking sta-
tions. This reduces the search space from the whole
study area to a smaller volume. In addition, it removes
the timedimension from the search, as the approximate
origin time for each potential origin can be inferred
from the starting pick. REAL can use homogeneous and
1D velocity models.
HEX (Woollam et al., 2020) is a hyperbolic phase as-

sociator. Assuming a homogeneous velocity model, it
postulates that the picks of one event need to occur on
a hyperbola. HEX uses the probabilistic RANSAC algo-
rithm to fit such hyperbolas to the picks. In this algo-
rithm, random candidate sets of picks are drawn and a
hyperbola is fit. If the hyperbola contains sufficiently
many picks, an event is declared.
GaMMA (Zhu et al., 2022) is based on a similar as-

sumption of a hyperbolic moveout but uses a differ-
ent optimisation scheme. The method interprets the
picks as a Gaussian mixture with each event a differ-
ent mixture component. GaMMA uses an expectation-
maximization (EM) algorithm for optimizing the clus-
ters. As run times for the EM algorithm grow substan-
tially superlinearly with the number of picks, GaMMA
uses DBSCAN (Ester et al., 1996) to group picks before
applying the EM algorithm to each cluster. GaMMA
was originally published with a homogeneous velocity
model but has later been extended to support 1D mod-
els too. Ross et al. (2023) proposed Neuma, a general-
isation of GaMMA using an Eikonet (Smith et al., 2020)
to enable arbitrary 3D velocitymodels instead of the ho-
mogeneous velocity model.
In addition to these optimization based algorithms,

several deep learning models have been proposed for
phase association. PhaseLink (Ross et al., 2019) uses a
recurrent neural network applied to pick times, phase
type and station locations to identify pairwise associ-
ations between picks. It then employs an aggregation

step to infer consensus sets of matching phases that
correspond to event detections. GENIE (McBrearty and
Beroza, 2023) uses a Graph Neural Network. Similar to
PhaseLink, GENIE uses the arrival time, phase type and
station location as inputs. In contrast to PhaseLink, GE-
NIE treats all picks jointly and outputs the full associa-
tion result from the neural network. Both GENIE and
PhaseLink are trained on synthetic data generated us-
ing 1D velocity models. The training step needs to be
conducted once for each target region, afterwards the
models can be applied to arbitrary amounts of data.
Deep learning methods differ fundamentally from clas-
sical approaches as their actual application relies on de-
tecting patterns rather than applying some travel time
based approach. While these patterns are clearly based
on travel times, this can make the models harder to de-
bug and interpret. On the other hand, it brings advan-
tages such as the ability to identify which collections of
picking/non-picking stations might be reasonable.

3 Methods

Figure 1 Schematic view of the full PyOcto pipeline. The
picks are split by time into base nodes. For each base node,
the grey box is executed. Several of these boxes can be ex-
ecuted in parallel. Within each box, the space partitioning
algorithm (see Figure 2) and the localisation/pick matching
steps are conducted. Events are output and finally dedupli-
cated.

In the following sections we present the PyOcto asso-
ciator. We start with the core algorithms and then dis-
cuss details, optimisations and implementation details.
A schematic overview of the full associator is provided
in Figure 1. Throughout the description we add the pa-
rameter names used in the implementation in italics in
brackets to allow easier cross-referencing.

3.1 Core algorithm
PyOcto is based on partitioning space-time into cells.
The key idea is to mimic a grid-search associator while
only looking at “useful” grid cells. We achieve this by us-
ing a data structure inspired by anoctotreewith an addi-
tional time axis. The data structure consists of a collec-
tion of 4D volumes (3D in space, 1D in time), that wewill

2 SEISMICA | volume 3.1 | 2024

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

Figure 2 Schematic view of the gridding scheme with only one spatial dimension and the time dimension. Picks are indi-
cated by crosses, the station locations are marked on the left by black triangles. Two events are contained, marked by red
stars with P (solid) and S (dashed) moveout shown in black. The background shows the gridding with each cells shading
corresponding to the number of picks per area . Only cells with at least 6 matching P picks and 6 matching S picks were ex-
plored. For each area, only the smallest cell explored is shown, i.e., all larger cells explored before in the same region are not
visualised.

call nodes in the following to highlight the resemblance
of a tree data structure. We show a simplified version
of this with only one space axis in Figure 2. Each vol-
ume/node V is associated to the list of picks picks(V)
that could have originated from the node. More for-
mally, let V be a node and (s, t) a pick at station s at time
t.1 We write

(s, t) ∈ picks(V) ⇔ ∃(x0, t0) ∈ V : t0 + tt(x0, s) = t + ε
(1)

with tt(x0, s) the travel time from the originx0 to the sta-
tion s. We include an ε to indicate that the equation only
needs to hold up to a given uncertainty (tolerance). This
uncertainty takes into account inaccuracies in the ve-
locity model and the pick times. For simplicity, PyOcto
uses a fixed tolerance threshold that is identical for all
picks.
There are two crucial insights about the definition of

picks belonging to a node. First, while for each pick
there exists a location/time in the node where it could
have originated, this location/time might be different
for each pick. Therefore, a set of picks originating from
a node is not a sufficient condition for associating these
picks into an event. This becomes obvious when look-
ing at very large nodes. On the other hand, it is a nec-
essary condition, i.e., if there is an event with suffi-
ciently many picks in the dataset, there must be a node
that contains all these picks. Second, the assignment of
picks to nodes is not unique. A pick might be contained
inmultiple nodes, even if thesenodes are disjoint. How-
ever, only few nodes will contain enough picks to pro-

1For simplicity we omit the phase of the pick here. The inclusion of phase
type is natural and only involves taking different travel time models for P and
S waves.

duce an event. The key idea of PyOcto is to cleverly iden-
tify these nodes.
PyOcto starts with a large node spanning the whole

study area and a long time. All picks recorded during
this time (with adjustments for boundary effects) can be
assigned to the node. We initialize a list of active nodes
with this node. The association then repeatedly takes
the active node with the highest number of picks and
performs one of the following actions:

• if the node can not create an event anymore: dis-
card node

• if the node is small enough: try creating an event
• otherwise: split the node and add children to the
list of active nodes

We use a priority queue for the list of active nodes to ef-
ficiently retrieve the node with the highest number of
picks. In the following, we describe the different ac-
tions.
Splitting a node: The most common action is split-

ting a node. For this action, we split the node V into two
disjoint children V1 and V2, such that V = V1 ∪ V2. We
split V in half along the coordinate axis in which V has
the largest extent. To compare the time axis, we multi-
ply it with a constant velocity, by default 5 km/s.
We then build the sets picks(V1) and picks(V2) by it-

erating over all candidates in picks(V). This check can
easily be performed using equation (1). As noted before
a pick can be assigned to both of these sets at the same
time.
Discarding a node: Essential for the high perfor-

mance of PyOcto is to discard nodes early if they can
not produce an event anymore. For this, we use the fol-
lowing criteria:

3 SEISMICA | volume 3.1 | 2024

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

• minimum number of total picks (n_picks)
• minimum number of P picks (n_p_picks)
• minimum number of S picks (n_s_picks)
• minimum number of stations with both P and S
picks (n_p_and_s_picks)

All thresholds are configurable and should be adjusted
to the dataset. As a subvolume can never contain more
picks than the parent node, once a node violates any of
these criteria it cannot create an event anymore and can
be discarded.
Creating an event: If a cell is smaller than a prede-

fined threshold along all axes (min_node_size), PyOcto
tries to create an event. For this, we locate an event
based on all picks in a cell. The full localisation pro-
cedure is described in Section 3.2. We then identify
whether all picks fit the determined location and re-
move potential outliers. These outliers might occur as
not all picks in the node need to necessarily stem from
the same source location/time. In addition, we scan
all other picks to identify if further picks are consistent
with the list of picks. This operation can be performed
efficiently using a binary search in time. We add these
picks to the list of picks. This procedure is repeatedmul-
tiple times (refinement_iterations), by default 3, to stab-
lise the event. If at any point in this iteration the picks
do not fulfill the conditions for nodes outlined above,
the event creation is stopped as unsuccessful.
Even though the node already gives a preliminary

location and station set, the location procedure is re-
quired for multiple reasons. First, while the node
groups a candidate set of picks, there is no guarantee
that all of these can be associated to a common origin.
Second, the optimal location for a set of picks does not
necessarily need to fall within the node, in particular,
because the same set of picks can be contained in mul-
tiple nodes. This is also the reason why it might be pos-
sible to associate additional picks to the location. While
traversing the nodes by number of picks makes it likely
to select nodes already containing the majority of picks
for an event, this can not be guaranteed in face of spu-
rious picks.
In contrast to some other associators (e.g., GaMMA),

PyOcto can not use amplitude information for asso-
ciation. However, obtaining accurate amplitudes for
events at low signal-to-noise levels, as for the majority
of events detected with deep learning, is challenging.
From our anecdotal experiments on real data, we did
not see amajor advantage from the use of amplitude in-
formation.

3.2 Localisation procedure

To identify the most likely origin for a set of picks, we
use the equal differential-time (EDT) loss (Lomax et al.,
2000). Compared to an L2 loss on the travel time resid-
ual, the EDT loss has two advantages. First, it is inde-
pendent of the origin time, thereby reducing the search
space. Second, it ismore stable against outlier picks. As
we expect outliers to be contained in our pick set, this is
a useful property for our application.

To find theminimumof the EDT loss, we use a greedy
algorithm. A greedy algorithm is a heuristic mak-
ing locally optimal decisions. While such algorithms
do not necessarily find the global optimum, they usu-
ally show excellent runtimes. Starting with the whole
study volume, we split the volume in half k times (loca-
tion_split_depth) into 2k subvolumes. For each subvol-
ume, we calculate the EDT loss at the volume center.
From the volume with the lowest EDT loss, we go up l
splits (location_split_return). This volume, with a size of
1/2k−l of the original volume is used as the new start for
the search and we repeat the splitting and search pro-
cedure. We iterate this step until the volume reaches a
predefined size (min_node_size_location).
This greedy algorithm has a trade-off between accu-

racy and runtime. When splitting the volume into only
few pieces and only using a low l, this leads to low run-
time but potentially suboptimal minima. On the other
hand, too fine splitting in each step will increase run-
times at virtually no gains in location accuracy. We set
the default to k = 6 and l = 4, but make the parame-
ter individually configurable. We note that insufficient
values for k and l can lead to striping artifacts, i.e., lo-
cations at the edges of larger volumes caused by insuf-
ficient sampling.

3.3 Velocity models

At its core, PyOcto relies on travel times. These travel
times need to be obtained from seismic velocity mod-
els. Two types of queries occur in the PyOcto algo-
rithm. First and most commonly, volume queries of
type (s, t) ∈ picks(V), i.e., identifying if a pick can
originate from a volume. Second, for the localisation
algorithm, traditional travel times between the pro-
posed origin and the station are required. Both of
these querieswill be executed in very highnumbers and
therefore need to be implemented efficiently.
PyOcto implements two velocity models, a homoge-

neous model and a 1D layered model. For the homo-
geneous model, we assume constant P and S velocities.
To solve the volume query, we identify the earliest and
latest times a pick from the volume could arrive at the
station. The earliest time is achieved by the earliest ori-
gin time in the volume plus the travel time to the clos-
est point in the volume. Similarly the latest time can be
derived using the point with the highest distance to the
station. For a homogeneous velocity model, the deriva-
tion of the travel times from a fixed origin are trivial us-
ing Pythagoras theorem. Both queries run in constant
time.
For the layered velocity model, we use a precalcula-

tion step to substantially improve performance. First,
we calculate P and S arrival times on a dense grid us-
ing an eikonal solver. This step takes a few seconds but
only needs to be run once. For extracting travel times
we run 2D bilinear interpolation between the 4 closest
grid nodes. For the area queries, i.e., if a pick can re-
sult from a volume we use the observation that for a 1D
velocity model, the shortest travel time must be at the
closest epicentral distance and the longest travel time
at the furthest. However, it is not a priori clear at which

4 SEISMICA | volume 3.1 | 2024

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

depth these times occur. Potential candidates are the
shallowest and deepest points of the queried depth in-
terval, plus all local extrema within the depth interval.
Local extrema are regarded in depth direction, e.g., at
a fixed distance a depth is a local minimum if the travel
times both directly above and below it are larger. To ef-
ficiently query the local extrema, we cache all local ex-
trema at each distance. As for typical velocity models
each distance has at most a handful of local extrema,
they can simply all be checked when necessary. In ad-
dition, to correct for station elevation, we add an eleva-
tion correction based on a constant velocity and vertical
incidence. While this is an approximation, errors are
negligble for association purposes.
PyOcto does not support 3D velocity models as

performing efficient, i.e., constant run time, volume
queries as required for the splitting algorithm is non-
trivial. This is identical to most common algorithms,
that are limited to homogeneous or 1D models. In con-
trast, deep learning models are able to use arbitrar-
ily complex models (Ross et al., 2019; McBrearty and
Beroza, 2023). PyOcto supports different velocity mod-
els between the splitting and the localisation step. In
principle, it would be easy to extend at least the locali-
sation step to 3D models. However, we have not tested
this and only expect substantial improvements for re-
gions with velocity structures strongly deviating from a
layered model.
PyOcto supports station terms, i.e., constant time off-

sets for phase arrivals at a station, which can occur due
to local structure. We implement additive station terms,
i.e., the station term is added to thepredicted travel time
from the velocity model. This is the same sign conven-
tion as used by NonLinLoc (Lomax et al., 2000). Station
terms are not determined dynamically but have to be
defined before running the association. However, they
can be obtained by iteratively running PyOcto and in-
ferring station terms from the residuals of the previous
run.
For efficient calculation of distances, PyOcto relies

on local coordinate transforms. By default, we suggest
transverse Mercator projections. The transformation
from latitude and longitude values to local coordinates
needs to be performed only once before the association
step. While distance measures will become inaccurate
for very large study areas, we did not observe any issues
in our case studies with diameters up to ∼ 1500 km.

3.4 Initialisation

As described in the introduction of the algorithm, the
association starts with a node spanning the whole study
area. In principle, this node could also span the whole
study time. However, in practice this is suboptimal be-
cause it will require several costly splits along the time
axis that aremostly trivial. Instead, we do not start with
a single node but with a list of base nodes.
Each base node spans the whole study area but only a

part of the time. For this, we split the time into regularly
spaced segments, by default 20 minutes long (time_slic-
ing). The segments overlap by a short buffer time win-
dow (time_before). Each segment is then filled with all

picks that originate during the segment. With a buffer
time roughly equivalent to the maximum travel time
through the study area, this ensures that each event is
contained completely in at least one base node.
As two subsequent base nodes might both contain

most picks for one event, the early splitting might lead
to duplicate events. For this reason, we deduplicate
the events after all base nodes have been processed.
To avoid issues from inaccurate estimates of location
or origin time, we base the deduplication exclusively
on the set of picks. If two events share more than
a fixed number of picks (max_pick_overlap), the event
with fewer picks is discarded. We note that we al-
low some level of intersection to avoid discarding non-
identical events. This might lead to some picks being
assigned to multiple events, which is not possible for
events within one time slice.

3.5 Optimisations

While the splitting algorithm with early stopping is a
solid basis for an efficient algorithm, several points
need to be taken into account thatmight affect runtime.
Before going into details, we review the general run-
time principles. While a formal analysis of algorithm
complexity is difficult, we can make several observa-
tions. First, run time crucially depends on the number
of nodes processed. It is therefore essential to stop the
processing of each branch of the search tree as early
as possible. Second, location procedures are expensive
as they require many travel time queries. They should
therefore not be triggered too often. Based on these ob-
servations, we define multiple optimisations.
As a first optimisation, PyOcto keeps track of all picks

that have already been assigned to events. Once a pick
has been assigned to an event, it is not considered any-
more and removed from all nodes. Without these picks,
the adjacent nodes most likely will not fulfill the neces-
sary minimum number of picks. This step substantially
improves runtime, as events will usually produce many
adjacent nodeswithhighnumbers of pickswhichdonot
need to be processed multiple times.
The second observation treats the case of a group of

picks that can not be associated to a common origin.
This happens if the origin determined from the group
of picks does not correspond to sufficiently many picks,
i.e., depends on the tolerance for matching picks and
the required number of picks for an event. As trying
to create an event from these picks does not yield a con-
sistent origin, these picks are notmarked as used. How-
ever, oftenmany neighboring cells contain the same set
of picks, leading to repeated but useless tries of locat-
ing the same set of picks. To mitigate this situation, we
cache all sets of picks that have been processed as can-
didate sets for localisation. If a set has been processed
before, it will be skipped in the next try. Note that this
optimisation onlyworks because the location search de-
pends only on the pick set but not on the location of a
node.
The last optimisation is relevant in the case of a large

number of stations with spurious picks. With a grow-
ing number of stations, it becomes likely that a set of

5 SEISMICA | volume 3.1 | 2024

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

distant stations by chance produces picks that can be
associated. This does not only lead to false detections
but also substantially increases run time. At the same
time, these false events are easy to identify manually
because of the inconsistent pick pattern, i.e., the exis-
tence ofmanynon-picking stations between the picking
stations.
To remove this issue, we introduce two distance con-

ditions, a relative and an absolute condition. The abso-
lute condition is a simple cutoff on the maximum dis-
tance between stations and sources for the space parti-
tioning (association_cutoff_distance). This condition ex-
cludes picks too far from a given cell when checking if
the pick could have originated there. However, in the
localisation and pick matching step, all picks are taken
into account, ensuring that the output contains all as-
sociated picks even at larger distance. This condition
is most helpful in large, homogeneous networks and
in networks without large amounts of out-of-network
events. By default, no maximum distance is set to ac-
count for the different scales at which PyOcto might be
applied.
For the case of inhomogeneous networks or networks

with substantial out-of-network events, we introduce a
relative distance condition, based on the assumption
that it is unlikely for a station to detect an event if many
closer stations did not detect it. For every distance
from a volume, we can calculate the fraction of stations
within this distance that have at least one pick com-
pared to the total number of stations. We then identify
the maximum distance where this fraction is still above
a predefined threshold (min_pick_fraction). All picks
at stations above this threshold are removed. As the
nodes have a spatial extent, for each station we choose
the distance maximizing the number of retained picks.
This means that for stations with picks we use themini-
mumdistance to the nodewhile for all other stationswe
use the maximum distance. The default value for this
threshold is 0.25, i.e., allowing for many close stations
without picks.
While this optimization yields substantial runtime

improvements for datasets with high numbers of sta-
tions, it comes at a cost. To check the condition, at every
node the distance to all existing stations needs to be cal-
culated. For small deployments, associations by chance
are anyhow unlikely, rendering the additional runtime
mostly useless. The optimisation can therefore be deac-
tivated.
Lastly, PyOcto uses a memory protection strategy. As

PyOcto processes nodes ordered by their number of
picks, it needs to always hold a queue of active nodes.
This can, in the worst case, degrade into a breadth-
first search, which is very memory intensive. There-
fore, once the total number of nodes exceeds a prede-
fined threshold (queue_memory_protection_dfs_size), Py-
Octo processes the next nodes using depth-first search.
This is highly memory efficient, as only the current call
stack needs to be kept inmemory. At the same time, this
can lead to increased run times. We speed the search up
by still always traversing greedily into the larger of the
two children of a node. In our experiments, the mem-
ory protection was only required for very large sets of

picks in short times (�100,000 picks per day).

3.6 Implementation
PyOcto is implemented in Python and C++. The inter-
face of PyOcto is implemented in Python to provide an
accessible interface in a common scripting language.
Inputs and outputs are passed as Pandas data frames.
PyOcto has a slim set of dependencies. The back-
end of PyOcto is implemented in C++. The functions
are natively embedded into Python using pybind11.
The association function is parallelised using pthreads.
Parallelisation is achieved by assigning base nodes to
threads. This causes very lowsynchronisationoverhead
as only the basenode queue and the event list are shared
between threads. The list of used picks is not shared
between threads, instead events are deduplicated at the
end of the association step. By default, PyOcto uses all
available threads. However, the thread count can be set
manually (n_threads).
To allow an easy experimentation with PyOcto, the

software implements several compatibility interfaces:

• a function to read the input format from GaMMA
(Zhu et al., 2022)

• a function to read the input format from REAL
(Zhang et al., 2019)

• a function to process SeisBench picks (Woollam
et al., 2022)

• a function to use obspy Inventory objects as input
(Beyreuther et al., 2010)

• an output interface for NonLinLoc (Lomax et al.,
2000)

• an automated selection strategy for local coordi-
nate transforms

PyOcto is available as open source code under MIT
license, a permissive open-source license. Pre-built
wheels for Linux,MacOS, andWindows are available on
PyPI and can be installed using pip (see Data and Code
availability for details). The PyOcto code is modular to
allow for easy extension. Such extensions could, for ex-
ample, include pick-specific uncertainties or more ac-
curate calculation of topography corrections.

4 Benchmark on synthetic catalogs
4.1 Setup
To quantitatively assess the quality of PyOcto, we test
it on synthetic catalogs. We use two complementary
scenarios: (i) uniformly distributed seismicity in a shal-
low layer; (ii) realistic subduction zone seismicity (Fig-
ure S1). We compare the proposed PyOcto algorithm
to two established associators: GaMMA and REAL. We
choose these algorithms as they havewell-documented,
open-source implementations and have both been used
in numerous application cases already (Wilding et al.,
2023; González-Vidal et al., 2023; Tan et al., 2021; Liu
et al., 2020). We do not compare PyOcto against any
deep learning associator, as optimizing these associa-
tors requires substantially more parameter choices and

6 SEISMICA | volume 3.1 | 2024

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

Figure 3 Synthetic evaluation of the different associators in the shallow seismicity scenario. Each associator is indicated
by a color. For themissing/additional picks, missing picks are indicatedwith a bar below 0, additional picks with a bar above
0. Missing results due to exceeded runtimes are indicated by grey Xs. A result for REAL 1Dwith 100 events and 1.0 noise is not
available as themodel reproducibly crashedwith a segmentation fault. All results in numerical form are reported in Table S4.

7 SEISMICA | volume 3.1 | 2024

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

Figure 4 Synthetic evaluation of the different associators in the subduction scenario. For further details see the caption of
Figure 3. All results in numerical form are reported in Table S4.

8 SEISMICA | volume 3.1 | 2024

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

Table 1 Dataset statistics for the subduction scenario. We do not differentiate between P and S picks as both are generated
in almost equal number. The picks per station include the noise picks.

Events Noise Event picks Noise picks Total picks Avg. picks per event Avg. picks per station

100 0.3 2,241 672 2,913 22.41 145.65
100 1.0 2,331 2,331 4,662 23.31 233.10
100 3.0 2,142 6,426 8,568 21.42 428.40
500 0.3 11,414 3,424 14,838 22.83 741.90
500 1.0 11,194 11,194 22,388 22.39 1119.40
500 3.0 10,818 32,454 43,272 21.64 2163.60

2,000 0.3 45,544 13,663 59,207 22.77 2960.35
2,000 1.0 45,011 45,011 90,022 22.51 4501.10
2,000 3.0 45,213 135,639 180,852 22.61 9042.60

a fair comparison is therefore harder to guarantee. Note
that this study is not intended as a full-scale bench-
mark of seismic phase associators as this would be out
of scope for the paper. Instead, we restrict ourselves to
this smaller-scale case study.
Both scenarios use the same procedure for data gen-

eration. Each test case consists of one day of seismicity
with a predefined number of events and a predefined
noise rate. For each event, we draw a source time uni-
formly within the day and draw a location and a mag-
nitude from the distributions described below. Based
on the magnitude and hypocentral distance, we esti-
mate detection probabilities at each station. From these
probabilities we randomly select whether a station has
a P and an S arrival using correlated Bernoulli variables
with correlation 0.5 between the twophases (see supple-
ment Section S1). We predict travel-times using a 1D ve-
locity model from Graeber and Asch (1999). To each in-
dividual travel-time we add a Gaussian random normal
variable with a standard deviation of 0.4 s, but at least
1 % of the total travel time. Finally, we add noise picks
not associated to any event to the data set. The number
of noise picks is defined as the product of the number of
event picks times the user-defined noise rate. For each
pick, the phase, time and station are drawn according to
a uniform random distribution. We use event numbers
of 100, 500 and 2000, and noise rates of 0.3, 1.0 and 3.0.
We compare PyOcto to GaMMA and REAL. For each

model, we manually selected reasonable parameters.
All parameters are reported in Tables S1, S2, and S3.
For each associator, we report results for the versions
with homogeneous velocity models and 1D layered ve-
locitymodels. Weprovide the associatorswith the same
velocity model we used for data generation. We there-
fore expect slightly too optimistic performance results
for the 1D models, however, the comparison between
these models should still provide reasonable results.
For all associators we require at least 10 picks for an

event detection. We furthermore require at least 4 sta-
tions with both P and S pick for REAL and PyOcto. We
do not enforce the last condition for GaMMA as the op-
tion is not implemented. We ensure that all events in
our synthetic catalogs fulfill these conditions.
We evaluate the associators based on 6 metrics: pre-

cision, recall, F1 score, missing picks per event, incor-

rectly associated picks per event, and run time. Preci-
sion is the fraction of cataloged events among all detec-
tions. Recall is the fraction of events detected among
all cataloged events. F1 score is the harmonic mean
of precision and recall. To calculate these metrics, we
define matches between cataloged and detected events
through their picks. A cataloged event A and a detected
event B are considered a match if at least 60 % of the
picks of A are also picks of B and vice versa. We use
a pick-based matching instead of a location- and time-
based matching as it is more stable for high event den-
sities.
We execute the test on 16 virtual CPU cores with 8

physical cores and 64 GB main memory. We measure
runtimes from the invocation to the output of the mod-
els. We do not measure data-independent preprocess-
ing steps such as velocity model building as these steps
only need to be executed once in an application sce-
nario. As an exception, the times for GaMMA with 1D
velocity model includes the time for the eikonal solver
(∼3 s), as the step can not be executed separately. Exact
machine configurations can vary slightly between tests,
therefore the reported runtimes should be interpreted
rather as an indication than an exact measure. We limit
the total aggregated runtime of all tests per associator
to 48 h. All tests not finished at this point are reported
as missing.

4.2 Uniform shallow seismicity
As a first scenario, we study shallow seismicity. We
use 100 stations arranged in a 10x10 grid with a sta-
tion spacing of 0.2◦ × 0.2◦. Event locations are ran-
domly distributed within the network with a depth up
to 30 km. No out-of-network events are generated. Mag-
nitudes are generated from a Gutenberg-Richter distri-
bution with a minimum magnitude of 0.5 and b = 1.
Dataset statistics are reported in Table 2.
Figure 3 shows the performance metrics for the shal-

low scenario. Full results in numerical form can be
found in Table S4. PyOcto and REAL obtained results
for all cases with both the homogeneous and the 1D ve-
locity model. GaMMA did not provide solutions for the
cases after 500 events and a noise factor of 1.0 as the
computation did not finish within the 48 h time limit.
In all cases, PyOcto achieves the highest F1 score

9 SEISMICA | volume 3.1 | 2024

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

Table 2 Dataset statistics for the shallow seismicity scenario. We do not differentiate between P and S picks as both are
generated in almost equal number. The picks per station include the noise picks.

Events Noise Event picks Noise picks Total picks Avg. picks per event Avg. picks per station

100 0.3 4,047 1,214 5,261 40.47 52.61
100 1.0 4,894 4,894 9,788 48.94 97.88
100 3.0 5,257 15,771 21,028 52.57 210.28
500 0.3 25,658 7,697 33,355 51.32 333.55
500 1.0 24,525 24,525 49,050 49.05 490.50
500 3.0 23,646 70,938 94,584 47.29 945.84

2,000 0.3 101,614 30,484 132,098 50.81 1320.98
2,000 1.0 98,680 98,680 197,360 49.34 1973.60
2,000 3.0 94,710 284,130 378,840 47.35 3788.40

or a result within 0.01 F1 score of the best model.
The 1D model slightly outperforms the homogeneous
model. REAL with a homogeneous model achieved a
slightly worse performance, followed by REAL with a
1D model. GaMMA shows a clear degradation in F1
score with growing number of event or noise picks
but still achieves good performance (F1 ≥ 0.89) for all
cases where solutions were obtained. For the case with
2000 events and a noise factor of 3.0, REAL (homoge-
neous, 0.84) performs best, closely followed by PyOcto
(1D, 0.83), REAL (1D, 0.74), and PyOcto (homogeneous,
0.67). We suspect that REAL shows slightly better per-
formance here because the actual grid search is less
affected by noise picks than the approximation using
space partitioning used in PyOcto. We note that this
case is extremely challenging with each station report-
ing on average one pick every 23 s.
Up to 500 events and a noise rate of 1.0, PyOcto (1D

andhomogeneous) andGaMMA (1Dandhomogeneous)
are very exact in terms of picks with few additional or
missed picks. In contrast, REAL (homogeneous) misses
roughly 3 picks per event, REAL (1D) between 5 and 10.
While we are not fully certain about the missed picks,
we assume it is because REAL discards picks based on
the ratio between station residuals and event residuals,
i.e., a low average pick residual for an event will lead to
discarding picks with higher residuals even if their ab-
solute value is not excessively high. We note that the
number of missed picks for REAL could likely be re-
duced through targeted parameter tuning. For config-
urations with high numbers of events, in particular, in
conjunction with high noise, REAL and PyOcto both in-
clude false picks with the events. PyOcto includesmore
false picks than REAL, again likely related to selection
criteria. The homogeneous version of PyOcto produces
about 1.5 times as many false picks as the 1D variant,
likely because of the overall higher tolerance value nec-
essary to mitigate the less accurate velocity model.
In terms of run time, PyOcto substantially outper-

forms GaMMA and REAL in all cases. The run time
factor between PyOcto and the next-fastest methods ex-
ceeds 10 in almost all cases, often even reaching factors
of 20 and above. Run times for the homogeneous and
the 1D velocitymodel for PyOcto are almost identical in
all cases. We suspect that while the travel time lookup

for the 1Dvelocitymodel is slightlymore expensive than
for the homogeneousmodel, this effect is offset bymore
focused origins from the better travel times, leading to
fewer nodes that need to be explored. Probably owing
to the same better focus, for GaMMA the 1D model is
usually faster than the homogeneous model by a factor
of 3 to 10.

4.3 Subduction zone
For the subduction zone scenario, we base our cata-
log on the IPOC network (GFZ German Research Centre
For Geosciences and Institut Des SciencesDe L’Univers-
CentreNationalDeLaRechercheCNRS-INSU, 2006) and
the catalog by Sippl et al. (2018). We chose the deploy-
ment and the catalog as a typical example of a well-
instrumented, highly active subduction zone with di-
verse seismicity. We draw event locations and event
magnitudes independently from the catalog. Weuse the
IPOC stations, in total 20 stations. The study area covers
approximately 5◦ North-South and 3◦ East-West up to a
depth of 200 km. Out-of-network seismicity is located
up to 1◦ from the network. This is a typical challenge for
associators in subduction zones where offshore events
will occur substantially outside the network. Dataset
statistic are reported in Table 1.
The results in the subduction scenario largely mirror

the ones from the shallow scenario but with nuanced
differences that we point out in the following (Figure 4,
Table S4). First, the difference between 1D and homo-
geneous models is more pronounced with 1D models
clearly outperforming homogeneous models in terms
of F1 score. Furthermore, the homogeneous models
(GaMMA, REAL, and PyOcto) consistently miss around
2.5 picks per event. This highlights that the assumption
of a homogeneous velocitymodel is insufficient for sub-
duction zones. Nonetheless, PyOcto and REAL with ho-
mogeneous velocity model still achieve F1 scores con-
sistently above 0.93 for cases with up to 500 events. In
contrast, GaMMAperforms clearlyworse than the other
models already at 100 events per day and it substantially
degrades further above. This happens for GaMMAwith
ahomogeneous velocitymodel andwith a 1Dmodel. We
suspect that the degradation forGaMMA is related to the
optimisation strategy that is susceptible to local min-
ima. At high numbers of picks, the loss landscape will

10 SEISMICA | volume 3.1 | 2024

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

look very rough, leading to unfavourable convergence
properties. This ismore pronounced for the subduction
scenario than the shallow scenario, as local minima are
particularly likely among the depth axis.
Second, among the 1D models, PyOcto outperforms

REAL and GaMMA more clearly than in the shallow
case. It consistently exhibits a higher F1 score and
lower numbers of missed and false picks. Even at 2000
events with a noise rate of 3.0 (with a pick per station on
average every 9.5 s), PyOcto still achieves an F1 score of
0.57.
Third, run time differences are even more pro-

nounced with PyOcto outperforming REAL often by a
factor of 1000. This is caused by the larger search grid
required by REAL to handle the depth and the out-of-
network events. We note that we already reduce the im-
pact of the larger grid size for REAL by using a larger
grid spacing for the subduction scenario. In contrast,
PyOcto can easily handle large search domains due to
its splitting approach that scales logarithmically with
volume. For the subduction scenario, PyOcto with a
1D model in most cases only needs about half the time
of PyOcto with a homogeneous velocity model. This
suggests that the more accurate velocity model leads to
fewer nodes needing to be explored. GaMMA with a
homogeneous velocity structure shows competitive run
times compared to PyOcto and REAL for cases with 100
events but run times substantially exceed the ones of
REAL (and thus even more PyOcto) at 500 events and
above. With a 1D velocity model, GaMMA runtimes
are close to the ones of PyOcto as well for 500 events
with noise levels of 0.3 or 1.0, however, at the cost of
lower F1 scores. No solutions for 2000 events and noise
rates of 1.0 and 3.0 could be obtained with the homo-
geneous version of GaMMA. The 1D model provides a
solution for 1.0 noise, however with low F1 score and
a runtime above one day. We suspect that a key limita-
tion for GaMMA is the DBSCAN algorithm that is used to
group the picks before the expectationmaximization al-
gorithm. For very dense sequences, this algorithm fails
to break up the picks into small enough clusters, and
larger clusters take substantially longer to associate.

5 Application to the 2014 Iquique se-
quence

In addition to the synthetic tests, we evaluate the dif-
ferent associators on a real scenario. For this, we study
the 2014 Iquique sequence. Starting with an 8 month
long slow slip transient, the 2014 Iquique sequence con-
tained amagnitude 6.6 foreshock on 16thMarch and the
mainshock on the evening of 1st April (Socquet et al.,
2017; Soto et al., 2019). We look at the time between 15th
March 2014 and 15thApril 2014. This time span includes
the largest foreshock, the mainshock, and the phase of
most intensive aftershock activity. For this study, we
use data from the 20 stations in the CX network. We
note that generally more stations from other networks
are available in the area. However, as we do not aim to
produce a comprehensive catalog but rather to test the
associators, we restrict ourselves to the high-quality CX
stations.

Using the CX data, we build a small earthquake detec-
tion workflow. First, we pick P and S arrivals in the con-
tinuous waveforms using PhaseNet (Zhu and Beroza,
2019) trained on INSTANCE (Michelini et al., 2021) using
SeisBench (Woollam et al., 2022). We use a pick thresh-
old of 0.05 for both P and S waves, i.e., every pick that
has a confidence value above 0.05 assigned to it by the
deep learning picker is treated as an arrival. This is in-
tentionally a very low threshold to further stress test
the associators. Second, we pass the picks to each as-
sociator to obtain catalogs. For the homogeneous ve-
locity model, we use 7.0 km/h (P) and 4.0 km/h (S), for
the 1D model the one from Graeber and Asch (1999).
All remaining parameters are provides in Tables S1, S2
and S3. For each associator, we provide picks in daily
chunks. As in our benchmark, we require at least 10
picks and 4 stations with both P and S pick. We note that
this is an extremely simplistic catalog generation work-
flow that misses essential postprocessing steps, such as
absolute and relative relocation or magnitude estima-
tion. However, it is sufficient to investigate the differ-
ence between the associators.
For this analysis, we compare PyOcto (1D and homo-

geneous model), REAL (1D and homogeneous model),
and GaMMA (homogeneous model). We exclude
GaMMA with a 1D model, as the model failed to con-
verge for ∼30% of the days given 24 h compute time
per day. We reproduced this behaviour multiple times
to rule out stochastic artifacts. No configurations have
been changed between GaMMA with a homogeneous
model and the 1D model except for the velocity model.
A visualisation of the partial catalog obtained using
GaMMA with a 1D model is available in Figure S2.
Figure 5 shows the seismicity in the IPOC area, in-

cluding Northern Chile, as determined with the differ-
ent associators. All catalogs clearly show the main fea-
tures of the seismicity: an intense cluster of events
around the Iquiquemainshock in the North-West, mod-
erate seismicity along the subducting slab, and a strong
band of deeper seismicity. Table 3 shows statistics for
the number of events per catalog, the number of asso-
ciated picks and the fraction of total picks associated.
Overall, the PyOcto and REAL catalogs are largest, with
the catalogs fromREALcontaining slightlymore events.
For both PyOcto and REAL, the catalogs with homoge-
neous velocity models are slightly larger. This is most
likely related to the different choice in travel time tol-
erances. The catalog from GaMMA is about a quarter
smaller. Overall, PyOcto and REAL associated between
43 % and 46 % of all picks while GaMMA associated
34 %. We note that this does not imply that all remain-
ing picks are incorrect, asmanymight stem fromevents
that have not been recorded at sufficiently many sta-
tions to meet the quality control criteria or even be as-
sociated.
Figure 6 shows the daily number of events and the av-

erage number of P and S picks per event per day. Across
all days, the number of events is very similar between
all variants of REAL and PyOcto, with PyOcto always de-
tecting slightlymore events thanREAL in the early parts
of the aftershock sequence. GaMMA consistently finds
fewer events, with the absolute and relative difference

11 SEISMICA | volume 3.1 | 2024

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

Figure 5 Catalogs generated for the Iquique sequence (15th March 2014 to 15th April 2014) using different phase asso-
ciators. We visualize the output locations as provided by the associators. Please note that in a comprehensive workflow,
absolute and relative relocation techniques should be used as a refinement step. Cross section plots are shown in Figure S3.
The station configuration is shown in Figure S1.

becoming particularly large on days with high seismic-
ity rate. This indicates that GaMMA is less able to deal
with high rates of seismicity. Notably, for all models
the number of detected events stays almost constant for
four days after themainshock. As typically a clear decay
in the number of aftershocks in this time frame would
be expected, this suggests that all models miss events
during these days. Our results can not distinguish if this

is a limitation of the picking model or the association
models.
Looking at the average number of picks per event, the

only noticeable difference between the associators is
that REAL consistently finds about 0.6 S picks more per
event than PyOcto (Figure 6). Differences in the num-
ber of picks are related to the tolerance criteria applied
for matching the picks to origins. As the different asso-

12 SEISMICA | volume 3.1 | 2024

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

Table 3 Catalog statistics for the Iquique sequence catalog with different associators. The table shows the number of
events, picks per event, the fraction of associated picks among all picks, and the total number of picks. We abbreviate picks
per event as ppe. Times refer to average run times per day of data.

Associator Events Ppe P ppe S ppe Associated P associated S associated Total picks Time [s]

GaMMA 12,718 16.92 9.90 7.02 0.34 0.31 0.39 634,647 1021
PyOcto 16,660 16.77 9.62 7.15 0.44 0.39 0.52 634,647 12
PyOcto1D 16,362 16.56 9.49 7.06 0.43 0.39 0.50 634,647 15
REAL 16,747 17.35 9.66 7.69 0.46 0.40 0.56 634,647 1487
REAL1D 16,489 17.51 9.78 7.73 0.46 0.40 0.55 634,647 1557

Figure 6 Daily earthquake rates, daily number of associ-
ated P picks per event, and daily number of associated S
picks for the catalogs generated using the different associ-
ators. Vertical black lines indicate the times of the largest
foreshock and the mainshock.

ciators use slightly different criteria, it is hard to achieve
identical settings. Therefore, the difference in number
of picks is likely related to the choice of tolerance pa-
rameters. It is difficult to quantify how many of the ad-
ditional picks are correct or false picks.
An interesting aspect is the temporal development of

picks per event. Overall, the number of P picks per
event seems to correlate slightly positivelywith the total

number of events. For the S picks, the rate of associa-
tion also follows systematic patterns across all associa-
tors, but a correlation with the number of events is not
as apparent. We suggest that the shifts in the number of
associated picks are related to the picker performance
over time,which is in turn affectedby the event distribu-
tion. More large events will cause more impulsive, i.e.,
easier to detect arrivals. At the same time, a higher seis-
micity rate will also cause higher noise levels, making
phase detection and picking overall more challenging.
While this study does not focus on the location accu-

racy of different associators, as we do not perceive this
as themain output of the phase associators, we still pro-
vide a brief analysis of our findings in the Iquique se-
quence. Each method produces a distinct signature of
location artifacts (Figures 5 and S3). GaMMA features
a substantial number of shallow detections not present
in the other catalogs. These are primarily misloca-
tions, likely caused by the initialisation of the sources
for the expectation-maximization algorithm at the sur-
face. They occur primarily outside the network. REAL
shows clear gridding artifacts caused by the discretisa-
tion of the search grid. Finer search-grids would reduce
this effect, but come at a substantial compute cost, with
halving the grid-space leading to roughly 8 times longer
run time. PyOcto shows line-shaped artifacts, however,
these are particularly visible with regard to event depth.
These stripes are caused by failures in the minimiza-
tion of the EDT loss in the localization procedure. The
artifact is more pronounced for the homogeneous ve-
locity model than the 1D velocity model, likely because
the EDT loss is more focused for the 1D model. Stripes
could be reduced or eliminated by increasing the sam-
pling depth in the octotree search for localization. How-
ever, this would lead to increased runtime. In conclu-
sion, while all associators give a good overview of the
general spatial patterns of the seismicity, the locations
should only be treated as preliminary estimates. For
accurate location, absolute or relative relocation tools,
e.g., NonLinLoc (Lomax et al., 2000) or HypoDD (Wald-
hauser, 2001), should be employed.
We measured average runtimes per day for each as-

sociator. As in the synthetic benchmark, PyOcto was
by far the fastest, taking 12 s (homogeneous) / 15 s
(1D model). Gamma took about 17 minutes per day,
REAL took 25 minutes (homogeneous) / 26 minutes (1D
model). Thismeans a speed-up factor of 70 to 130 for Py-
Octo compared to the baselines. As a reference, loading
the waveform data from disk and picking it took around

13 SEISMICA | volume 3.1 | 2024

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

60 to 90 s per day. This means that in this scenario, run
times forPyOcto association areoneorder ofmagnitude
below the times for picking, while for the other associa-
tors the association largely dominates the total run time.
To analyse the influence of the minimum required

number of picks on the catalog, we conducted addi-
tional tests requiring only 7 (instead of 10) total picks
per event and only 3 (instead of 4) stations with both P
and S pick. The results are shown in Figures S4, S5 and
S6. Overall, the results show the same trends as with
the more strict requirements. The number of events
increases by around 15 % to 30 %, depending on the
associator. In this configuration, PyOcto consistently
finds more events than both GaMMA and REAL. On the
other hand, the seismicity now also appears substan-
tially more scattered for all associators. It is unclear,
to which degree this is caused by incorrect associations
or by less accurate locations from the lower number of
picks. The runtimes of the three associators stay largely
unaffected by the change in pick requirements.

6 Conclusion

In this paper, we introduced PyOcto, a novel seismic
phase associator based on space-time partitioning. We
tested PyOcto in two distinct synthetic earthquake sce-
narios with different numbers of events and different
noise levels. PyOcto consistenly showed detection per-
formance on par or even superior to the state of the art
approaches GaMMA and REAL. At the same time, Py-
Octo achieves substantial speedups, often with factors
above 50. We furthermore compared the algorithms
on the challenging 2014 Iquique sequence. Here too,
PyOcto produces a very complete seismicity catalog.
Similar to the synthetic cases, PyOcto again achieves
a speedup of above 70 compared to the other associa-
tors, with phase association taking substantially shorter
time than the phase picking. This makes the algorithm
future-proof in face of ever-growing seismic networks
and potentially more sensisitive, future phase pickers.
PyOcto is available as an open-source tool.

Acknowledgements

This work has been partially supported by
MIAI@Grenoble Alpes (ANR-19-P3IA-0003). This
work has been partially funded by the European Union
under the grant agreement n°101104996 (“DECODE”).
Views and opinions expressed are however those of the
author only and do not necessarily reflect those of the
European Union or REA. Neither the European Union
nor the granting authority can be held responsible for
them. I thank Frederik Tilmann and Marius Isken for
insightful discussions that helped improve the algo-
rithm design. I thank Sophie Giffard-Roisin, Stephen
Hicks, Sacha Lapins, and an anonymous reviewer for
their comments that helped improve the manuscript.

Data and code availability

PyOcto is available at https://github.com/yetinam/pyocto
and at https://doi.org/10.5281/zenodo.10016665. The
code for the benchmark is available in the same repos-
itory. PyOcto can be installed from PyPI using pip.
Waveform data for the CX network (https://doi.org/
10.14470/PK615318) was obtained through the GEOFON
FDSN webservice.

Competing interests

The author has no competing interests.

References
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y.,

and Wassermann, J. ObsPy: A Python toolbox for seismol-
ogy. Seismological Research Letters, 81(3):530–533, 2010. doi:
10.1785/gssrl.81.3.530.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In kdd, volume 96, pages 226–231, 1996. doi:
10.5555/3001460.3001507.

GFZ German Research Centre For Geosciences and Institut Des
Sciences De L’Univers-Centre National De La Recherche CNRS-
INSU. IPOC Seismic Network, 2006. doi: 10.14470/PK615318.

González-Vidal, D., Moreno, M., Sippl, C., Baez, J. C., Ortega-
Culaciati, F., Lange, D., Tilmann, F., Socquet, A., Bolte, J., Hor-
mazabal, J., et al. Relation between oceanic plate structure,
patterns of interplate locking and microseismicity in the 1922
Atacama seismic gap. Geophysical Research Letters, 50(15):
e2023GL103565, 2023. doi: 10.1029/2023GL103565.

Graeber, F. M. and Asch, G. Three-dimensional models of P wave
velocity and P-to-S velocity ratio in the southern central Andes
by simultaneous inversion of local earthquake data. Journal of
Geophysical Research: Solid Earth, 104(B9):20237–20256, 1999.
doi: 10.1029/1999JB900037.

Johnson, C. E., Bittenbinder, A., Bogaert, B., Dietz, L., and Kohler,
W. Earthworm: A flexible approach to seismic network process-
ing. Iris newsletter, 14(2):1–4, 1995.

Liu, M., Zhang, M., Zhu, W., Ellsworth, W. L., and Li, H. Rapid char-
acterization of the July 2019 Ridgecrest, California, earthquake
sequence from raw seismic data using machine-learning phase
picker. Geophysical Research Letters, 47(4):e2019GL086189,
2020. doi: 10.1029/2019GL086189.

Lomax, A., Virieux, J., Volant, P., and Berge-Thierry, C. Probabilis-
tic earthquake location in 3D and layeredmodels: Introduction
of a Metropolis-Gibbsmethod and comparisonwith linear loca-
tions. Advances in seismic event location, pages 101–134, 2000.
doi: 10.1007/978-94-015-9536-0_5.

McBrearty, I. W. and Beroza, G. C. Earthquake phase association
withgraphneuralnetworks. Bulletinof theSeismological Society
of America, 113(2):524–547, 2023. doi: 10.1785/0120220182.

Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D.,
and Lauciani, V. INSTANCE–the Italian seismic dataset for ma-
chine learning. Earth System Science Data, 13(12):5509–5544,
2021. doi: 10.5194/essd-13-5509-2021.

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., and
Beroza, G. C. Earthquake transformer—an attentive deep-
learning model for simultaneous earthquake detection and
phase picking. Nature communications, 11(1):3952, 2020. doi:
10.1038/s41467-020-17591-w.

14 SEISMICA | volume 3.1 | 2024

https://github.com/yetinam/pyocto
https://doi.org/10.5281/zenodo.10016665
https://doi.org/10.14470/PK615318
https://doi.org/10.14470/PK615318
http://doi.org/10.1785/gssrl.81.3.530
http://doi.org/10.5555/3001460.3001507
http://doi.org/10.14470/PK615318
http://doi.org/10.1029/2023GL103565
http://doi.org/10.1029/1999JB900037
http://doi.org/10.1029/2019GL086189
http://doi.org/10.1007/978-94-015-9536-0_5
http://doi.org/10.1785/0120220182
http://doi.org/10.5194/essd-13-5509-2021
http://doi.org/10.1038/s41467-020-17591-w

SEISMICA | RESEARCH ARTICLE | PyOcto: A high-throughput seismic phase associator

Moutote, L., Itoh, Y., Lengliné, O., Duputel, Z., and Socquet, A. Ev-
idence of a transient aseismic slip driving the 2017 Valparaiso
earthquake sequence, from foreshocks to aftershocks. Jour-
nal of Geophysical Research: Solid Earth, page e2023JB026603,
2023. doi: 10.1029/2023JB026603.

Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange,
D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović,
D., et al. Which picker fits my data? A quantitative evaluation
of deep learning based seismic pickers. Journal of Geophys-
ical Research: Solid Earth, 127(1):e2021JB023499, 2022. doi:
10.1029/2021JB023499.

Ross, Z. E., Yue, Y., Meier, M.-A., Hauksson, E., and Heaton, T. H.
PhaseLink: A deep learning approach to seismic phase asso-
ciation. Journal of Geophysical Research: Solid Earth, 124(1):
856–869, 2019. doi: 10.1029/2018JB016674.

Ross, Z. E., Zhu, W., and Azizzadenesheli, K. Neural mixture model
association of seismic phases. arXiv preprint arXiv:2301.02597,
2023. doi: 10.48550/arXiv.2301.02597.

Sippl, C., Schurr, B., Asch, G., and Kummerow, J. Seis-
micity structure of the northern Chile forearc from> 100,000
double-difference relocated hypocenters. Journal of Geo-
physical Research: Solid Earth, 123(5):4063–4087, 2018. doi:
10.1002/2017JB015384.

Smith, J. D., Azizzadenesheli, K., and Ross, Z. E. Eikonet: Solving
the eikonal equation with deep neural networks. IEEE Transac-
tions on Geoscience and Remote Sensing, 59(12):10685–10696,
2020. doi: 10.1109/TGRS.2020.3039165.

Socquet, A., Valdes, J. P., Jara, J., Cotton, F., Walpersdorf, A., Cotte,
N., Specht, S., Ortega-Culaciati, F., Carrizo, D., and Norabuena,
E. An 8month slow slip event triggers progressive nucleation of
the 2014 Chile megathrust. Geophysical Research Letters, 44(9):
4046–4053, 2017. doi: 10.1002/2017GL073023.

Soto, H., Sippl, C., Schurr, B., Kummerow, J., Asch, G., Tilmann, F.,
Comte, D., Ruiz, S., and Oncken, O. Probing the northern Chile
megathrust with seismicity: The 2014M8. 1 Iquique earthquake
sequence. Journal ofGeophysical Research: Solid Earth, 124(12):
12935–12954, 2019. doi: 10.1029/2019JB017794.

Tan, Y. J., Waldhauser, F., Ellsworth, W. L., Zhang, M., Zhu,
W., Michele, M., Chiaraluce, L., Beroza, G. C., and Segou, M.
Machine-learning-basedhigh-resolutionearthquakecatalog re-
veals how complex fault structures were activated during the
2016–2017 Central Italy sequence. The Seismic Record, 1(1):
11–19, 2021. doi: 10.1785/0320210001.

Waldhauser, F. hypoDD–A program to compute double-difference
hypocenter locations. 2001. doi: 10.7916/D8SN072H.

Wilding, J. D., Zhu,W., Ross, Z. E., and Jackson, J.M. Themagmatic
web beneath Hawai ‘i. Science, 379(6631):462–468, 2023. doi:
10.1126/science.ade5755.

Woollam, J., Rietbrock, A., Leitloff, J., andHinz, S. Hex: Hyperbolic
eventextractor, a seismicphaseassociator forhighlyactive seis-
mic regions. Seismological Research Letters, 91(5):2769–2778,
2020. doi: 10.1785/0220200037.

Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D.,
Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D.,
et al. SeisBench—A toolbox for machine learning in seismol-
ogy. Seismological Research Letters, 93(3):1695–1709, 2022. doi:
10.1785/0220210324.

Zhang, M., Ellsworth, W. L., and Beroza, G. C. Rapid earthquake
association and location. Seismological Research Letters, 90(6):
2276–2284, 2019. doi: 10.1785/0220190052.

Zhu,W. andBeroza, G. C. PhaseNet: A deep-neural-network-based
seismic arrival-time pickingmethod. Geophysical Journal Inter-
national, 216(1):261–273, 2019. doi: 10.1093/gji/ggy423.

Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L.,
and Beroza, G. C. Earthquake phase association using a
Bayesian Gaussian mixture model. Journal of Geophysical
Research: Solid Earth, 127(5):e2021JB023249, 2022. doi:
10.1029/2021JB023249.

The article PyOcto: A high-throughput seismic phase associ-
ator©2024by JannesMünchmeyer is licensedunder CCBY
4.0.

15 SEISMICA | volume 3.1 | 2024

http://doi.org/10.1029/2023JB026603
http://doi.org/10.1029/2021JB023499
http://doi.org/10.1029/2018JB016674
http://doi.org/10.48550/arXiv.2301.02597
http://doi.org/10.1002/2017JB015384
http://doi.org/10.1109/TGRS.2020.3039165
http://doi.org/10.1002/2017GL073023
http://doi.org/10.1029/2019JB017794
http://doi.org/10.1785/0320210001
http://doi.org/10.7916/D8SN072H
http://doi.org/10.1126/science.ade5755
http://doi.org/10.1785/0220200037
http://doi.org/10.1785/0220210324
http://doi.org/10.1785/0220190052
http://doi.org/10.1093/gji/ggy423
http://doi.org/10.1029/2021JB023249
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related work
	Methods
	Core algorithm
	Localisation procedure
	Velocity models
	Initialisation
	Optimisations
	Implementation

	Benchmark on synthetic catalogs
	Setup
	Uniform shallow seismicity
	Subduction zone

	Application to the 2014 Iquique sequence
	Conclusion

