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Abstract Bayesian inference has become an important methodology to solve inverse problems and
to quantify uncertainties in their solutions. Variational inference is a method that provides probabilistic,
Bayesian solutions efficiently by using optimisation. In this study we present a Python Variational Inversion
Package (VIP), to solve inverse problems using variational inference methods. The package includes auto-
matic differential variational inference (ADVI), Stein variational gradient descent (SVGD) and stochastic SVGD
(sSVGD), and provides implementations of 2D travel time tomography and 2D full waveform inversion includ-
ing test examples and solutions. Users can solve their own problems by supplying an appropriate forward
function and a gradient calculation code. In addition, the package provides a scalable implementation which
canbedeployedeasily on adesktopmachineor usingmodernhighperformance computational facilities. The
examples demonstrate that VIP is an efficient, scalable, extensible and user-friendly package, and canbe used
to solve a wide range of low or high dimensional inverse problems in practice.

1 Introduction
In a variety of academic and practical applications that
concern the Earth’s subsurface we wish to find answers
to specific scientific questions. In the geosciences this is
often achieved by imaging subsurface properties using
data recorded on the surface, and by interpreting those
images to address questions of interest. The subsur-
face is usually parameterised in some way, and a physi-
cal relationship is defined that predicts data that would
be recorded for any particular set of model parameters,
while the inverse relationship can not be determined
uniquely. Once real data have been observed, the imag-
ing problem is thus established as an inverse problem
(Tarantola, 2005).
Because of non-linearity in the physical relationship,

insufficient data coverage and noise in the data, in-
verse problems almost always have non-unique solu-
tions: many sets of parameter values can fit the data
to within their uncertainty. It is therefore important to
characterize the family of possible solutions (in other
words, the solutionuncertainty) in order to interpret the
results with the correct level of confidence, and to pro-
vide well-justified and robust answers to the scientific
questions (Arnold and Curtis, 2018).
Solutions to an inverse problem are often found by

seeking an optimal set of parameter values that min-
imizes the difference or misfit between observed data
and model-predicted data to within the data noise.
Since most inverse problems have non-unique solu-
tions, some form of regularization is often imposed on
the parameters in order to make the computational so-
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lution unique (Aki and Lee, 1976; Tarantola, 2005; Aster
et al., 2018). Many codes have been developed using
this class of methods (Rawlinson, 2005; Rücker et al.,
2017; Afanasiev et al., 2019; Wathelet et al., 2020; Ko-
matitsch et al., 2023). However, since regularization is
often chosen using ad-hoc criteria, these methods pro-
duce deliberately biased results, and valuable informa-
tion can be concealed in the process (Zhdanov, 2002).
Moreover, no such optimisation method can provide
accurate estimates of uncertainty. To overcome these
issues, the SOLA-Backus-Gilbert inversion method has
recently been applied to large scale linearised tomo-
graphic problems. This method evaluates the weighted
average of the true model parameters and provides
both resolution and uncertainty estimates (Zaroli, 2016;
Zaroli et al., 2017). In addition, the method does
not require regularization and can be conducted in a
parameter-freewaywhich avoids bias caused by param-
eterisation (Zaroli, 2019). Unfortunately, the method is
only developed for linear problems; since most Geo-
physical problems are significantly nonlinear, our goal
is to providemethods that estimate solutions anduncer-
tainties for that class of problems.
Bayesian inference solves both linear and nonlinear

inverse problems by updating a prior probability den-
sity function (pdf) with new information contained in
the data to produce a posterior pdf which describes the
full state of information about the parameters post in-
version (Tarantola, 2005). If we define the prior pdf as
p(m), the posterior pdf p(m|dobs) can be computed us-
ing Bayes’ theorem:

p(m|dobs) = p(dobs|m)p(m)
p(dobs)

(1)
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where p(dobs|m) is the likelihood function which de-
scribes the probability of observing the recorded data
dobs if model parameters took the values in m, and
p(dobs) is a normalization factor called the evidence.
This posterior pdf describes the full uncertainty in pa-
rameter values by combining the prior information and
the uncertainty contained in the data.
Markov chainMonte Carlo (McMC) is one commonly-

used method to solve Bayesian inference problems and
has been used widely in many fields. The method
constructs a set (chain) of successive samples that are
distributed according to the posterior pdf by perform-
ing a structured randomwalk through parameter space
(Brooks et al., 2011); thereafter, these samples can be
used to estimate statistical information about param-
eters in the posterior pdf (Mosegaard and Tarantola,
1995; Tarantola, 2005) and to find answers to specific
scientific questions (Arnold and Curtis, 2018; Siahkoohi
et al., 2022b; Zhang and Curtis, 2022; Zhao et al., 2022b;
McKean et al., 2023). The Metropolis-Hastings algo-
rithm is one such method that originates from physics
(Metropolis and Ulam, 1949; Hastings, 1970), and has
been applied to a range of geophysical inverse prob-
lems (Mosegaard andTarantola, 1995;Malinverno et al.,
2000; Andersen et al., 2001; Mosegaard and Sambridge,
2002; Sambridge and Mosegaard, 2002; Ramirez et al.,
2005; Gallagher et al., 2009). However, the algorithmbe-
comes inefficient in high dimensional space because of
poor scaling due to its random walk behaviour.
In order to solve Bayesian inference problems more

efficiently, a variety of more advanced methods have
been introduced to geophysics, such as reversible-jump
McMC (Green, 1995; Malinverno, 2002; Bodin and Sam-
bridge, 2009; Galetti et al., 2015; Zhang et al., 2018b),
Hamiltonian Monte Carlo (Duane et al., 1987; Sen and
Biswas, 2017; Fichtner et al., 2018; Gebraad et al., 2020),
Langevin Monte Carlo (Roberts et al., 1996; Siahkoohi
et al., 2020), stochastic Newton McMC (Martin et al.,
2012; Zhao and Sen, 2019), and parallel tempering
(Hukushima and Nemoto, 1996; Dosso et al., 2012; Sam-
bridge, 2013). Gaussian process models have also been
used to solve linearised probabilistic problems (Valen-
tine and Sambridge, 2020). Based on these studies a
range of methods and codes have been developed to
solve geophysical inverse problems usingMcMC (Bodin
and Sambridge, 2009; Shen et al., 2012; Hawkins and
Sambridge, 2015; Zhang et al., 2018b; Zunino et al.,
2023). Nevertheless, these papers mainly address 1D,
2D or sparsely-parametrised 3D spatial imaging prob-
lems; Bayesian solutions to large scale problems (e.g.,
those involving thousands of parameters to be esti-
mated) remain intractable because of their unafford-
able computational cost due to the curse of dimension-
ality (Curtis and Lomax, 2001).
In an attempt to improve the efficiency of Bayesian

inference for certain types of problems, variational in-
ference has been introduced to geophysics as an alter-
native to McMC. In variational inference one seeks a
best approximation to the posterior pdf within a pre-
defined family of (simplified) probability distributions
by minimizing the difference between the approximat-
ing pdf and the posterior pdf (Bishop, 2006; Blei et al.,

2017). One commonly-used measure of the difference
between the pdfs is the Kullback-Leibler (KL) diver-
gence (Kullback and Leibler, 1951) as it is easier to esti-
mate computationally than othermeasures. Variational
inference therefore solves Bayesian inference problems
by minimizing the KL divergence, which is an optimi-
sation rather than a stochastic sampling problem. The
method has been demonstrated to be computationally
more efficient andmore scalable to high dimensionality
in some classes of problems (Bishop, 2006; Zhang et al.,
2018a). Themethod can also be applied to large datasets
by dividing the data set into random minibatches and
using stochastic and distributed optimisation (Robbins
and Monro, 1951; Kubrusly and Gravier, 1973). By con-
trast, the same strategy cannot easily be used forMcMC
because it breaks the detailed balance condition re-
quired by most McMC methods (O’Hagan and Forster,
2004). In addition, variational inference methods can
usually be parallelized at the individual sample level,
whereas in McMC this cannot be achieved because of
dependence between successive samples.
Variational inference has been applied to a range of

geophysical inverse problems. Nawaz and Curtis (2018)
used mean-field variational inference to invert for sub-
surface geological facies distributions and petrophysi-
cal properties using seismic data, with further devel-
opments by Nawaz and Curtis (2019) and Nawaz et al.
(2020). Although thesemethods are computationally ef-
ficient, the mean-field approximation ignores correla-
tions between parameters, and the methods of Nawaz
and Curtis involved the development of bespokemathe-
matical derivations and implementations for each class
of problem. While these developments result in excep-
tional speed of calculation, this approach restricts the
method to a small range of problems for which corre-
lations are not important and the derivations can be
performed (Parisi, 1988; Bishop, 2006; Blei et al., 2017).
To extend variational inference to general inverse prob-
lems, Kucukelbir et al. (2017) used a Gaussian family
in variational inference to create a method called au-
tomatic differential variational inference (ADVI), which
has been applied to travel time tomography (Zhang
and Curtis, 2020a) and earthquake slip inversion (Zhang
and Chen, 2022), and extended to the family of sums
(mixtures) of multiple Gaussians by Zhao and Curtis
(2024). By using a sequence of invertible and differ-
ential transforms (called normalizing flows), Rezende
and Mohamed (2015) proposed normalizing flow vari-
ational inference in which flows (functions, or simply,
relationships) are designed which convert a simple ini-
tial distribution to an arbitrarily complex distribution
that approximates the posterior pdf. In geophysics and
related fields the method has been applied to travel
time tomography (Zhao et al., 2022a), seismic imaging
(Siahkoohi et al., 2020, 2022a), seismic data interpola-
tion (Kumar et al., 2021), transcranial ultrasound to-
mography (Orozco et al., 2023) and cascading hazards
estimation (Li et al., 2023).
By using a set of samples of parameter values (called

particles) to represent the density of an approximating
pdf, Liu and Wang (2016) introduced a method called
Stein variational gradent descent (SVGD), which itera-
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tively updates those particles by minimizing the KL di-
vergence so that the final particle density provides an
approximation to the posterior pdf. SVGD has been
demonstrated to be an efficient method in a range of
geophysical applications, such as travel time tomog-
raphy (Zhang and Curtis, 2020a), full waveform inver-
sion (FWI) (Zhang and Curtis, 2020b, 2021; Lomas et al.,
2023; Wang et al., 2023), earthquake source inversion
(Smith et al., 2022), hydrogeological inversion (Ram-
graber et al., 2021), post-stack seismic inversion (Izzat-
ullah et al., 2023) and neural network based seismic to-
mography (Agata et al., 2023). However the method be-
comes inefficient and inaccurate in high dimensional
problems because of the finite number of particles and
the practical limitation of computational cost (Ba et al.,
2022). To reduce this issue, Gallego and Insua (2018) in-
troduced the stochastic SVGD (sSVGD) method by com-
bining SVGD and McMC: the efficiency of this method
has recently been demonstrated when it was used to es-
timate the first Bayesian solution for a fully nonlinear,
3D FWI problem (Zhang et al., 2023).
Despite these theoretical and practical advances,

variational inference has not been widely used in geo-
physics. This is partly because the method is not easily
accessible to non-specialists, and also because there is
no common code framework to performgeophysical in-
versions using the method. In this study we therefore
present a Python variational inversion package (VIP),
which includes ADVI, SVGD and sSVGD, tomake itmore
straightforward to solve geophysical inverse problems
using variational inference methods. The package pro-
vides complete implementations of 2D travel time to-
mography and 2D fullwaveform inversion problems, in-
cluding test results for users to check that their imple-
mentation is correct. Users can also solve other inverse
problems by supplying their own forward functions and
gradient calculation codes. In addition, to solve large
inverse problems the package is designed in a scalable
way such that it can be deployed on a desktop computer
as well as in modern high performance computational
(HPC) facilities.
In the following section we describe the concept of

variational inference, and algorithmic details of ADVI,
SVGD and sSVGD. In section 3 we provide an overview
of theVIP package, and in section 4we demonstrateVIP
using examples of 2D travel time tomography and 2D
full waveform inversion. We thus show that VIP is an
efficient, scalable, extensible and user-friendly package
that will enable users to solve geophysical inverse prob-
lems using variationalmethods. Making thesemethods
more tractable for practitioners should allow them to be
tested on a wide range of problems.

2 Theoretical background

2.1 Variational inference
Variational inference solves Bayesian inference prob-
lems using optimisation. To achieve this, we first de-
fine a simplified family of pdf’s Q = {q(m)}, for ex-
ample, the family of all Gaussian distributions. The
method then seeks an optimal approximation q∗(m) to

the posterior probability distribution p(m|dobs) within
this family by minimizing the KL divergence between
q(m) and p(m|dobs):

q∗(m) = arg min
q∈Q

KL[q(m)||p(m|dobs)] (2)

The KL divergence measures the difference between
two probability distributions:

KL[q(m)||p(m|dobs)] = Eq[logq(m)] − Eq[logp(m|dobs)]
= Eq[logq(m)] − Eq[logp(m, dobs)]
+ logp(dobs)

(3)
where logp(m, dobs) is the joint distribution of model m
and data dobs. The expectations are calculated with re-
spect to the known pdf q, and we have used Bayes’ the-
orem to expand the posterior pdf p(m|dobs) in the sec-
ond line of equation (3). It can be shown that the KL
divergence is non-negative and only equals zero when
q(m) = p(m|dobs) (Kullback and Leibler, 1951). Be-
cause the evidence term logp(dobs) is computationally
intractable, the KL divergence cannot be calculated di-
rectly. We therefore rearrange the above equation by
moving the evidence term and the KL divergence onto
the same side:

logp(dobs) − KL[q(m)||p(m|dobs)]
= Eq[logp(m, dobs)] − Eq[logq(m)]

(4)

Given that the KL divergence is non-negative, the left-
hand side defines a lower bound on the evidence, which
is therefore called the evidence lower bound (ELBO):

ELBO[q] = logp(dobs) − KL[q(m)||p(m|dobs)]
= Eq[logp(m, dobs)] − Eq[logq(m)]

(5)

The latter epxression can be estimated in practice using
numerical methods because it does not involve the in-
tractable evidence term. Since the evidence logp(dobs)
is a constant for a specific problem, minimizing the KL-
divergence is equivalent to maximizing the ELBO. Vari-
ational inference in equation (2) can therefore be ex-
pressed as:

q∗(m) = arg max
q∈Q

ELBO[q(m)] (6)

In variational inference, the choice of the variational
familyQ is important because it determines both the ac-
curacy of the approximation and the complexity of the
optimisation problem. A good choice should be a fam-
ily which is rich enough to approximate the posterior
pdf accurately or at least provides the information that
we seek, but simple enough such that the optimisation
problem is tractable. Different choices of family may
also allow different types of algorithm to be developed.
In the VIP package we implement three different algo-
rithms, ADVI, SVGD and sSVGD to solve inverse prob-
lems.

2.2 Automatic differential variational infer-
ence (ADVI)

ADVI uses the family of (transformed) Gaussians to
solve variational inference problems (Kucukelbir et al.,
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2017). The transform arises because physical model
parameters describe quantities that often have hard
bounds, while Gaussian variables have infinite support.
We therefore first transform the physical parameters
into an unconstrained space using an invertible trans-
form T : θ = T (m). In this unconstrained space the
joint distribution p(m, dobs) becomes:

p(θ, dobs) = p(m, dobs)|detJT −1(θ)| (7)

where JT −1(θ) is the Jacobian matrix of the inverse of
T which accounts for the effects of changes in hyper-
volume between the unconstrained and constrained pa-
rameter spaces. In this unconstrained space define a
Gaussian variational family

q(θ; ζ) = N (θ|µ, Σ) (8)

where ζ represents variational parameters, that is, the
mean vector µ and the covariance matrix Σ. To ensure
that the covariance matrix Σ is positive semi-definite,
we use a Cholesky factorization Σ = LLT where L is a
lower triangular matrix, to reparameterise Σ.
With the above definition, the variational problem in

equation (6) becomes:

ζ∗ = arg max
ζ

ELBO[q(θ; ζ)]

= arg max
ζ

Eq[logp(θ, dobs)] − Eq[logq(θ; ζ)]

= arg max
ζ

Eq[logp
(
T −1(θ), dobs

)
+ log|detJT −1(θ)|]

− Eq[logq(θ; ζ)]
(9)

This optimisation problem can be solved by using
a gradient ascent algorithm. As shown in Kucukelbir
et al. (2017), the gradients of the ELBO with respect to
variational parameters µ andL can be calculated using:

∇µELBO = EN(η|0,I)
[
∇mlogp(m, dobs)∇θT −1(θ)

+ ∇θlog|detJT −1(θ)|
]

(10)
∇LELBO = EN(η|0,I)

[(
∇mlogp(m, dobs)∇θT −1(θ)

+ ∇θlog|detJT −1(θ)|
)
ηT]

+ (L−1)T

(11)
where η is a random variable distributed according to
the standard normal distribution N(η|0, I). The expec-
tations can be estimated using Monte Carlo (MC) in-
tegration, which in practice only requires a low num-
ber of samples because the optimisation is performed
over many iterations so that statistically the gradients
will lead to convergence towards the correct solution
(Kucukelbir et al., 2017). The variational problem in
equation (9) can now be solved by using gradient ascent
methods. In the VIP package we implement four opti-
misation algorithms: stochastic gradient descent (SGD),
ADAGRAD (Duchi et al., 2011), ADADELTA (Zeiler, 2012)
andADAM (Kingma andBa, 2014). The final approxima-
tion to the Bayesian solution can be obtained by trans-
forming q(θ; ζ∗) back to the original space.
For transformT we implement a commonly-used log-

arithmic transform (Teamet al., 2016; Zhang andCurtis,

2020a)

θi = T (mi) = log(mi − ai) − log(bi − mi)

mi = T −1(θi) = ai + (bi − ai)
1 + exp(−θi)

(12)

where mi and θi represent the ith parameter in the
original and transformed space respectively, and ai and
bi are the lower and upper bound on mi. The final
approximation obtained using ADVI is therefore lim-
ited in complexity by the Gaussian distribution q(θ; ζ∗)
and the transform T . Note that if no transform is per-
formed, the method approximates the posterior pdf us-
ing a Gaussian distribution directly.

2.3 Steinvariationalgradientdescent (SVGD)
Instead of using a specific form of pdf (for example, the
Gaussian distribution in ADVI) in variational inference,
it is also possible to use the density of a set of samples
to represent the approximatingprobability distribution.
SVGD is one such method in which the set of samples
are called particles. In SVGD those particles are itera-
tively updated by minimizing the KL divergence so that
the density of the final set of particles is distributed ac-
cording to the posterior probability distribution. If we
define the set of particles as {mi}, SVGD updates each
particle using a smooth transform:

T (mi) = mi + εφ(mi) (13)

where mi is the ith particle, φ(mi) is a smooth vector
function which describes the perturbation direction,
and ε is the magnitude of the perturbation. When ε is
sufficiently small, the transform is invertible since the
Jacobian of the transform is close to an identity matrix.
Denote q(m) as the pdf represented by the set of parti-
cles, and qT (m) as the transformed probability distribu-
tion of q(m) using equation (13). In order to reduce the
KL divergence between qT (m) and p(m|dobs), we first
calculate the gradient of the KL divergence with respect
to ε, which is found to be (Liu andWang, 2016):

∇εKL[qT ||p] |ε=0 = −Eq [trace (Apφ(m))] (14)

where Ap is the Stein operator defined as Apφ(m) =
∇mlogp(m|dobs)φ(m)T + ∇mφ(m). This equation im-
plies that one can obtain the steepest descent direc-
tion of the KL-divergence bymaximizing the right-hand
expectation Eq [trace (Apφ(m))], and consequently the
KL divergence can be reduced by stepping a small dis-
tance in that direction. Iteratively re-calculating equa-
tion (14) and stepping in each revised direction locates
a minimum in the KL divergence.
The optimal directionφ∗ thatmaximizes the expecta-

tion Eq [trace (Apφ(m))] in equation (14) can be found
using kernels. Assume x, y ∈ X and define a mapping
φ from X to a space where an inner product 〈, 〉 is de-
fined (called a Hilbert space); a kernel is a function that
satisfies k(x, y) = 〈φ(x), φ(y)〉. Given a kernel function
k(m′, m), the optimal φ∗ can be calculated using (see
details in Liu andWang, 2016):

φ∗ ∝ E{m′∼q}[Apk(m′, m)] (15)
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In the VIP package, we implement a commonly-used
kernel function, the radial basis function (RBF):

k(m, m′) = exp[−‖m − m′‖2

2h2 ] (16)

where h is a scale factor that controls the magnitude of
similarity between the two particles based on their dis-
tance apart. Given equations (14) and (15), the KL di-
vergence can be minimized by iteratively applying the
transform in equation (13) with the optimal φ∗ to a set
of initial particles:

ml+1
i = T (ml

i) = ml
i + εlφ∗

l (ml
i) (17)

where l represents the lth iteration. Note that the expec-
tation in equation (15) can be estimated using the parti-
cles’ mean value, so we can computeφ∗

l using:

φ∗
l (m) = 1

n

n∑
j=1

[
Apk(ml

j , m)
]

= 1
n

n∑
j=1

[
k(ml

j , m)∇ml
j
logp(ml

j |dobs)

+ ∇ml
j
k(ml

j , m)
]

(18)

where n is the number of particles. For sufficiently
small {εl} the transform is invertible, and the process
converges to the posterior distribution asymptotically
as n → ∞ (Liu andWang, 2016). Note that even though
the posterior distribution p(ml

j |dobs) is unknown in
practice, we can always calculate its value up to an un-
known constant for a specificmodel. As a result, its gra-
dient∇ml

j
logp(ml

j |dobs) can be obtained, and hence the
φ∗

l .
The first term in equation (15) is the kernel weighted

average of gradients of the posterior pdf from all par-
ticles, and drives particles toward high probability ar-
eas. For the RBF kernel the second term becomes∑

j
m−mj

σ2 k(mj , m) which move particles away from its
neighbouring particles. This term therefore acts as a re-
pulsive force that prevents particles from collapsing to
a single mode. SVGD balances the drive towards high
probabilities and the repulsive force such that the den-
sity of particles moves towards the posterior pdf.
Note that the scale factor h in the RBF kernel controls

the weighting value of particles. As suggested in several
studies (Liu and Wang, 2016; Zhang and Curtis, 2020a),
we take h as d̃/

√
2lognwhere d̃ is themedian of pairwise

distancesbetweenall particles. This choice enables that
for particlemi the contribution form its own gradient is
balanced from all other particles as

∑
j 6=i k(mi, mj) ≈

nexp(− 1
2h2 d̃2) = 1. If h → 0, the method reduces to

independent gradient ascent for each particle.
In SVGD the accuracy of estimation increases with

the number of particles. For one single particle the
method becomes a standard gradient ascentmethod to-
ward the model with maximum a posterior (MAP) pdf
value. This implies that even for a small number of par-
ticles SVGD can still produce an accurate parameter es-
timate as MAP estimation has been demonstrated to be
an effective method in practice. Thus, in practice, one

can start from a small number of particles and gradu-
ally increase the particles to produce more accurate es-
timates of the uncertainty.

2.4 Stochastic SVGD
Although SVGD has been applied in many fields (Gong
et al., 2019; Zhang and Curtis, 2020a; Pinder et al., 2020;
Ramgraber et al., 2021; Ahmed et al., 2022), the method
can produce biased results in high dimensional prob-
lems because of the finite number of particles and the
limitation of computational cost in practice (Ba et al.,
2022). In order to further improve accuracy of the
method, Gallego and Insua (2018) proposed a variant of
SVGD, called stochastic SVGD (sSVGD), which combines
SVGD and McMC by adding a Gaussian noise term to
the dynamics of SVGD. By doing this sSVGD becomes
an McMC method with multiple interacting Markov
chains, and since every set of particle values can be re-
garded as a sample of the posterior pdf, themethod can
generate many samples that are distributed according
to the posterior pdf. Under certain conditions (see be-
low), sSVGD guarantees asymptotic convergence to the
posterior pdf as the number of iterations tends to infin-
ity, which standard SVGD with a finite number of par-
ticles cannot achieve. As a result sSVGD can produce
more accurate results than the SVGDmethod, provided
that the number of iterations is sufficient to remove ef-
fects of the distribution of samples near the start of the
chain (the so-called burn-in period) (Gallego and Insua,
2018; Zhang et al., 2023).
To introduce sSVGD, we start from a stochastic differ-

ential equation (SDE). For a random variable z, the SDE
is defined as:

dz = f(z)dt +
√

2D(z)dW(t) (19)

where f(z) is called the drift, W(t) is a Wiener pro-
cess, and D(z) represents a positive semidefinite diffu-
sion matrix. All continuous Markov process can be ex-
pressed as an SDE, and consequently one can construct
a Markov chain by simulating the SDE (Oksendal, 2013).
Assume p(z) as the posterior distribution, an SDE that
converges to the p(z) can be constructed as (Ma et al.,
2015):

f(z) = [D(z) + Q(z)] ∇logp(z) + Γ(z) (20)

where Q(z) is a skew-symmetric curl matrix, and
Γi(z) =

∑d
j=1

∂
∂zj

(Dij(z) + Qij(z)). To simulate this
process, we can discretize the above equation using the
Euler-Maruyama discretization:

zt+1 = zt + εt [(D (zt) + Q(zt)) ∇logp(zt) + Γ(zt)]
+ N (0, 2εtD(zt))

(21)
where N (0, 2εtD(zt)) represents a Gaussian distribu-
tion with covariance 2εtD(zt). The gradient ∇logp(zt)
can be computed using the full data set, or using uni-
formly randomly selectedminibatchdata subsetswhich
results in a stochastic gradient approximation. In either
case the above process converges to the posterior distri-
bution asymptotically as εt → 0 and t → ∞ (Ma et al.,
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2015). MatricesD(z) andQ(z) can be adjusted to obtain
faster convergence to the posterior distribution. For ex-
ample, if we set D = I and Q = 0, one obtains stochas-
tic gradient Langevin dynamics (Welling andTeh, 2011).
If we construct an augmented space z = (z, x) by con-
catenating amoment term x to the state space z, and set

D = 0 and Q =
(

0 −I
I 0

)
then the stochastic Hamil-

tonianMonte Carlo method can be derived (Chen et al.,
2014).
In sSVGD we define an augmented space z =

(m1, m2, ..., mn) by concatenating the set of particles
{mi}, and use equation (21) to generate samples from
the posterior distribution p(z) =

∏n
i=1 p(mi|dobs). De-

fine a matrix K

K = 1
n

k(m1, m1)Id×d . . . k(m1, mn)Id×d

...
. . .

...
k(mn, m1)Id×d . . . k(mn, mn)Id×d

 (22)

where k(mi, mj) is a kernel function defined in equa-
tion (16) and Id×d is an identitymatrix. According to the
definition of kernel functions, the matrix K is positive
definite (Gallego and Insua, 2018). By setting Q(zt) = 0
and D(zt) = K, we obtain the stochastic SVGD algo-
rithm:

zt+1 = zt + εt[K∇logp(zt) + ∇ · K] + N (0, 2εtK) (23)

Note that without the noise term N (0, 2εtK), the above
equation becomes the standard SVGD method – com-
pare equations (23) with equation (18), repeated here:

zt+1 = zt + εt[K∇logp(zt) + ∇ · K] (24)

sSVGD is therefore anMcMCmethod that uses the gradi-
ents fromSVGD to produce successive samples. Accord-
ing to equation (20), this process converges to p(z) =∏n

i=1 p(mi|dobs) asymptotically. Note thatwhenn is suf-
ficiently large, the noise term N (0, 2εtK) becomes ar-
bitrarily small. In such cases sSVGD and SVGD produce
the same results.
Theprocess defined in equation (23) requires samples

to be generated from the distributionN (0, 2εtK). In or-
der to perform this efficiently, we first define a matrix
DK

DK = 1
n

 K
. . .

K

 (25)

where K is an n × n matrix with Kij = k(mi, mj).
The matrix DK can be constructed from K using DK =
PKPT where P is a permutation matrix

P =



1
1

. . .
1

1
1

. . .
1

. . . . . . . . . . . .
1

1
. . .

1


(26)

The action of this permutationmatrix on a vector z rear-
ranges the order of the vector from the basis where the
particles are listed sequentially to that where the first
coordinates of all particles are listed, then the second,
etc. With these definitions, a random sample η can be
generated efficiently using

η ∼ N (0, 2εtK)
∼

√
2εtPTPN (0, K)

∼
√

2εtPTN (0, DK)
∼

√
2εtPTLDKN (0, I)

(27)

where LDK is the lower triangular Cholesky decompo-
sition of matrix DK. Taking into account the fact that
DK is a block-diagonal matrix, LDK can be computed
easily as only the lower triangular Cholesky decompo-
sition of matrix K is required. In practice this calcula-
tion is computationally negligible because the number
of particles n is usually modest (< 1000). One can now
use equation (23) to generate samples from the poste-
rior distribution.

3 Code overview
The VIP package implements the suite of variational
methods to solve geophysical inverse problems using
the Python programming language. The package in-
cludes a set of specific forward and inverse problems
such as 2D travel time tomography and 2D fullwaveform
inversion, and also allows users to provide their own
forward functions. In variational inference one needs
to compute the gradient of the posterior pdf with re-
spect to model parameters. We use the adjoint method
to calculate the gradient in the case of seismic full wave-
form inversion (Lions, 1971; Tarantola, 1984; Tromp
et al., 2005; Fichtner et al., 2006; Plessix, 2006), and
the ray tracing method in the case of travel time to-
mography (Rawlinson and Sambridge, 2004). For user-
specified forward problems it is required that users im-
plement their own function that computes gradients.
The prior pdf is important in Bayesian inference as

it provides information about model parameters inde-
pendent of the data. The VIP package provides two
commonly-used prior distributions: UniformandGaus-
sian pdf’s (note that these are only used as prior pdf’s,
and do not place any additional constraints on the varia-
tional families described above). To implement theUni-
form distribution we employ two strategies. In the first
strategy we impose hard constraints on model param-
eters, that is, for any parameter that assumes a value
outside the distribution we reset the value to be the
closest limit. Note that a similar strategy cannot be
used in ADVI as the method assumes a Gaussian vari-
ational family which cannot be defined in a constrained
space. The second strategy involves using equation (12)
to transform model parameters into an unconstrained
space and perform variational inversion in that space,
which provides a more flexible way to employ a vari-
ety of variational families. In addition, users can pro-
vide their own prior distributions by implementing an
appropriate pdf function (see details in the code docu-
mentation).
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Figure 1 Code structure of VIP. Each rectangle represents a folder or file in the package. Users can implement their own
forward functions similarly to the way this is implemented in examples tomo and fwi2d.

Python is a popular high-level interpreted program-
ming language which suffers from slow execution for
computationally intensive numerical simulations. We
therefore implement time-consuming components of
the code (e.g., the forward modelling functions) using
Fortran and produce compiled C extensions for these
codes using the Cython framework (Behnel et al., 2010).
By doing this the code achieves C-like speeds. To fur-
ther improve efficiency of the code, we use a Python
library called Dask, which is designed for parallel and
distributed computing, to parallelize the forward com-
putation at the sample (particle) level (Rocklin et al.,
2015). The package therefore provides an efficient, scal-
able and user-friendly implementation which can be
deployed on a desktop as well as modern high perfor-
mance computation facilities. Our aim is to implement
a framework which can be used to solve various inverse
problems, ranging from educational examples to com-
plex, realistic studies.

Figure 1 shows the structure of VIP. The inversion
code (vip in Figure 1) is implemented separately from
forwardmodelling codes (forward in Figure 1), and only
requires an interface of forward functions that returns
logarithmic posterior pdf values and gradients (details
can be found in the code documentation and in two ex-
amples tomo and fwi2d). Thus, users can easily combine
their own forward functionswith thepackage. In the vip
code the prior distributions, kernel functions and vari-
ational algorithms are implemented in three different
directories (prior, kernel and pyvi in Figure 1) so that the
code can easily be extended to other prior pdfs, kernel
functions and variational methods. For example, users
can implement their own prior pdfs by adding a proper
pdf function in the pdf code in the prior directory. Note
that both SVGDand sSVGDmethods are implemented in
the svgd code.

4 Applications

4.1 Travel time tomography

As a first example we use the VIP package to solve a
2D tomographic problem. Specifically, we create Love
wave group velocity maps of the British Isles using
ambient seismic noise data recorded by 61 seismome-
ters (blue triangles in Figure 2a). The geological set-
ting and the main terrain boundaries of the British
Isles are shown in Figure 2b. The ambient noise data
were recorded in 2001-2003, 2006-2007 and in 2010 us-
ing three different subarrays. The two horizontal com-
ponents of the data (N and E) were first rotated to the
transverse and radial directions, and the obtained trans-
verse data were cross correlated to produce Love waves
between different station pairs. Travel times associated
with group velocity at different periods between differ-
ent station pairs are then estimated from those love
waves. Details of the data processing procedures can be
found in (Galetti et al., 2017). In this study we use a total
number of 401 travel timemeasurements at 10 s period.
We parameterise the study region using a regular grid

of 37 × 40 cells with a spacing of 0.33◦in both longitude
and latitude directions. The prior pdf for group velocity
in each cell is set to be a Uniform distribution between
1.56 km/s to 4.8 km/s, of which the lower and upper
bound were chosen to exceed the range of group veloci-
ties between all station pairs when assuming a great cir-
cle ray path (Zhao et al., 2022a). The likelihood function
is chosen to be a Gaussian distribution to represent the
data noise, which is estimated from independent travel
timemeasurements by stacking randomly selected sub-
sets of daily cross correlations (Galetti et al., 2017). In
the inversion the predicted travel times are calculated
using the fast marching method (Rawlinson and Sam-
bridge, 2004).
We apply the above suite of methods to solve this

tomographic problem, and compare the results with
those obtained using the Metropolis-Hastings McMC

7
SEISMICA | volume 3.1 | 2024



SEISMICA | SOFTWARE REPORT | Variational Inversion Package

Figure 2 (a) Locations of seismometers (blue triangles) around British Isles used in this study. (b) Terrane boundaries in
the British Isles from Galetti et al. (2017). Abbreviations are as follows: OIT, Outer Isles Thrust; GGF, Great Glen Fault; HBF,
Highland Boundary Fault; SUF, Southern Uplands Fault; WBF, Welsh Borderland Fault System.

(MH-McMC) method (Zhao et al., 2022a). The Uni-
form prior distribution is implemented using the sec-
ond strategy that transforms variables into an uncon-
strained space in variational inversions. For ADVI, we
started the method with a standard Gaussian distribu-
tion in the unconstrained space, and performed 10,000
iterations at which point the misfit value ceases to de-
crease using theADAMoptimisation algorithm (Kingma
and Ba, 2014). To visualize the results we generated
5,000 samples from the obtained Gaussian distribution
and transformed them back to the original space to es-
timate posterior statistics. For SVGD, we generated 500
particles from the prior distribution and updated them
using equation (18) for 3,000 iterations at which point
themeanand standarddeviationmodels became stable.
The final particles are used to calculate the mean and
standard deviation of the posterior distribution. For
sSVGD, we started from 20 particles generated from the
prior distribution, and updated them using equation
(23) for 6,000 iterations after an additional burn-in pe-
riod of 2,000 iteration, after which the average misfit
value across all particles becameapproximately station-
ary. To reduce thememory and storage cost, we only re-
tained samples every fourth iteration after the burn-in
period, which results in a total of 30,000 samples.
Figure 3 shows the mean and standard deviation

maps obtainedusing the suite of variationalmethods, as
well as those obtained using the MH-McMC algorithm
(Zhao et al., 2022a). Overall the results obtained using
different methods show similar mean structures which
have a good agreementwith the knowngeology andpre-
vious tomographic studies in the British Isles (Nicolson
et al., 2012, 2014; Galetti et al., 2017; Zhao et al., 2022a).
For example, in the Scottish highlands the mean maps
clearly exhibit high velocities (annotation 1 in Figure 3)
which are consistent with the distribution of Lewisian
and Dalradian complexes in this area. Similarly high
velocities associated with the accretionary complex of
the Southern Uplands (annotation 2) are clearly visible
around 4°W, 55°N following a SW-NE trend. Between
the Highland Boundary Fault and the Southern Uplands
Fault a similar trend of low velocity zone (annotation 3)
is found in the Midland Valley. Low velocities are also
observed in a number of sedimentary basins such as the
East Irish Sea (4.5°W, 54°E - annotation 4), the Cheshire
Basin (2.5°W, 52.5°E - annotation 6), theAnglian-London
Basin (0°, 52°N - annotation 7), theWeald Basin (0°, 51°N
- annotation 8) and the Wessex Basin (3°W, 50.5°N - an-
notation 9). By contrast, high velocities can be found
in granitic intrusion regions, for example, in northwest
Wales (around 4°W, 53°N - annotation 5) and Cornwall
(around 4.5°W, 50.5°N - annotation 10). More detailed
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Figure 3 Mean (top row) and standard deviation (bottom row) maps of group velocity at 10 s period obtained using ADVI,
SVGD, sSVGD and MH-McMC respectively. White triangles denote locations of seismometers. Black dashed lines show the
Terrane boundaries in Figure 2. Black numbers are referred to in the main text.

discussion and interpretation of the velocity structures
can be found in Galetti et al. (2017).

Among these results the mean map obtained using
ADVI shows the smoothest structure, whereas other
maps provide more detailed information. This has also
been observed in previous studies (Zhang and Curtis,
2020a; Zhao et al., 2022a) and is likely caused by the lim-
itation of implicit Gaussian assumption made in ADVI.
In far offshore areas because few ray paths go through
the open marine regions, the mean maps obtained us-
ing ADVI and SVGD show almost homogeneous veloc-
ity structure across these areas whose value is consis-
tent with the mean of prior distribution. In compari-
son, the results obtained using sSVGD and MH-McMC
exhibitmore heterogeneous structures, which probably
indicates that the two methods have not converged suf-
ficiently. These areas are only loosely constrained by
the data (or not at all) and hence have large posterior
uncertainties requiring many more randomly gener-
ated samples in order to explore and represent the pos-
terior distribution accurately compared to areas with
tighter constraints from the data. Note that both sSVGD

and MH-McMC involve random sampling of the poste-
rior distribution, whereas samples obtainedusing SVGD
are found deterministically by optimisation. As a re-
sult, SVGD produces smoother results (Zhang and Cur-
tis, 2021; Zhang et al., 2023).

Overall the standard deviation maps obtained using
SVGD, sSVGD and MH-McMC show similar structures.
For example, the results show lower uncertainties in
the Scottish highlands and southern England because
of dense arrays in those areas. In the offshore areas
the standard deviation is around 0.93 which is the stan-
dard deviation of the prior as no ray path goes through
these regions. On the east side of the island just off the
coast, although no seismometer is deployed, there are
rays that travel through those areas (see details inGaletti
et al., 2017), and consequently the standard deviation
is smaller than that of the prior. There is a high un-
certainty loop around the low velocity anomaly in the
Anglian-London Basin (annotation 7 in Figure 3), which
has also beenobserved inprevious studies (Galetti et al.,
2015, 2017) and reflects uncertainty in the shape of the
anomaly. In addition, the East Irish Sea (annotation 4)
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shows high uncertainties. This is probably because few
ray paths go through this area due to its lower veloc-
ity, and consequently the area is not well constrained
by the data. By contrast, the standard deviationmap ob-
tained usingADVI shows different features. Although in
the Scottishhighlands the results still show loweruncer-
tainty, the rest of the area within the receiver array has
almost the same uncertainty level with little variation.
In addition, in theWest Irish Sea and the North Sea area
betweenNorthern Scotland and Shetland Islands the re-
sults show lower uncertainties which are not observed
in the results obtained using other methods. This sug-
gests that ADVI can produce biased results because of
its underlying Gaussian assumption as found in previ-
ous studies (Zhang and Curtis, 2020a).
Table 1 compares the number of forward simulations

required by each method to obtain these results, which
provides a good metric of the computation cost as the
forward simulation is the most computationally expen-
sive component of each method. Note that the three
variational methods require computation of derivatives
of the posterior pdf with respect to model parameters,
which adds computational cost compared with theMH-
McMCmethod. In this travel time tomography example
the derivatives are calculated using ray paths, which are
traced through the computed travel time field. This cal-
culation requires a computation equivalent to approxi-
mately 0.08 forward simulations. We therefore compute
the equivalent number of simulations by multiplying
the number of simulations required by the three vari-
ational methods by 1.08, which are shown in the third
column in Table 1.
The results indicate that ADVI is apparently the most

efficient method as it only requires 10,000 simulations,
but we have demonstrated that the method probably
produces biased results. SVGD demands the highest
computational cost among the three variational meth-
ods, while sSVGD requires about 10 times fewer sim-
ulations than SVGD. This makes sSVGD a good choice
for practical applications as noted in Zhang et al. (2023).
Nevertheless, all three variational methods are signifi-
cantly more efficient than the basic MH-McMCmethod
implemented here as a bench-mark, which required 15
millions simulations in total with 10 independent paral-
lel chains.
We note that the above comparison depends on sub-

jective assessment of the point of convergence for each
method, so the absolute number of simulations re-
quired by eachmethodmay not be entirely accurate (es-
pecially the number used for theMH-McMCalgorithm).
Nevertheless the comparison at least provides insights
into the relative computational cost of each method.
A more careful and thorough comparison between the
same MH-McMC method and variational methods can
be found in Zhao et al. (2022a) which again demon-
strated that variational methods were computationally
efficient.

4.2 Full-waveform inversion

For the second example we use theVIP package to solve
a 2D full waveform inversion problem. The inputmodel

is selected to be a part of the Marmousi model (Figure
4a,Martin et al., 2006), and is discretized using a regular
120 × 200 grid with a spacing of 20 m. Ten sources are
equally distributed at 20mwater depth (red stars in Fig-
ure 4), and 200 receivers are equally spaced at the depth
of 360 m on the seabed across the horizontal extent of
themodel. We simulate thewaveformdata using a time-
domain finite difference method with a Ricker wavelet
of 10 Hz central frequency, and added Gaussian noise
to the data whose standard deviation is set to be 2 per-
cent of the median of the maximum amplitude of each
seismic trace. The gradients of the logarithm posterior
pdf with respect to velocity are calculated using the ad-
joint method (Tarantola, 1988; Tromp et al., 2005; Ficht-
ner et al., 2006; Plessix, 2006).
The prior distribution is set to be a Uniform distribu-

tion over an interval of 2 km/s at each depth (Figure 4b).
To ensure that the rock velocity is higher than the ve-
locity in the water, we imposed an extra lower bound of
1.5 km/s. For the likelihood function we use a Gaussian
distribution to represent uncertainties on thewaveform
data:

p(dobs|m) ∝ exp
[

−1
2

∑
i

(
dobs

i − di(m)
σi

)2]
(28)

where i is the index of time samples, and σi is the stan-
dard deviation of that sample.
We apply SVGD and sSVGD to solve this full waveform

inversion problem as we have demonstrated that these
methods provide more accurate results than ADVI. For
SVGD we used 600 particles that are initially generated
from the prior distribution (an example is shown in Fig-
ure 4c) and updated them using equation (18) for 600 it-
erations. The final particles are used to calculate statis-
tics of the posterior distribution. For sSVGD we gen-
erated 20 particles from the prior distribution and up-
dated them for 4,000 iterations after an additional burn-
in period of 2,000. Similarly, to reduce the memory and
storage cost we only retain samples from every tenth it-
erations, which results in a total of 8,000 samples. Those
final samples are then used to compute statistics of the
posterior distribution.
Figure 5 shows themeanand standarddeviationmod-

els obtained using SVGD and sSVGD. Overall the two
methods produce similar results. For example, both
mean models (Figure 5a and c) show similar structures
to the true structure, especially in the shallow part (<
1.5 km). In the deep part (> 1.5 km) and close to the
sides, the mean models appear to be less similar to the
true structure because the waveform data are less sen-
sitive to the velocity structure in those areas. However,
the mean obtained using sSVGD is more similar to the
true structure than that obtained using SVGD. This re-
flects the fact that sSVGD can producemore accurate re-
sults than SVGD in high dimensional spaces, which has
also been observed in other studies (Gallego and Insua,
2018; Zhang et al., 2023). Note that similarly to the travel
time tomography example above, themeanobtainedus-
ing SVGD shows smoother structures than that obtained
using sSVGD. This is likely because sSVGD is an McMC
method which generates samples using stochastic sam-
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Method Number of simulations Comparable number of simulations
ADVI 10,000 10,800
SVGD 1500,000 1620,000
sSVGD 160,000 172,800

MH-McMC 15,000,000 15,000,000

Table 1 A comparison of computational cost for ADVI, SVGD, sSVGD and MH-McMC.

Figure 4 (a) The true structure used in the full waveform inversion example. Ten sources are located at the depth of 20 m
(red stars) and 200 receivers (not shown) are equally spaced at the depth of 360mon the seabed. (b) The prior distribution of
seismic velocity, which is set to be a Uniformdistributionwith an interval of 2 km/s at each depth. An additional lower bound
of 1.5 km/s is also imposed on the velocity to ensure that the rock velocity is higher than the velocity in water. (c) An example
particle generated from the prior distribution.

pling, whereas in SVGD particles are obtained deter-
ministically using optimisation. A similar phenomenon
has also been observed in other studies when compar-
ing results obtained using SVGD and sSVGD or McMC
(Zhang and Curtis, 2021; Zhang et al., 2023).

Overall the standard deviation models show similar
structural shapes to those in the mean model as has
been observed in other studies (Gebraad et al., 2020;
Zhang and Curtis, 2020b, 2021; Zhang et al., 2023). In
the shallow part (< 1.0 km) the results show lower un-
certainties and in the deeper part the uncertainty is
higher because of lower data coverage. Those higher
velocity anomalies in the deeper part are clearly asso-
ciated with lower standard deviations, which likely re-
flects that those anomalies have large influences on the
waveformdata and hence have lower uncertainty. Simi-

larly to themean structures, the standard deviations ob-
tained using SVGD show smoother structures than are
obtained using sSVGD. In addition, the magnitude of
the standard deviation obtained using SVGD is slightly
lower than that obtained using sSVGD, which is likely
because SVGD can underestimate uncertainties in high
dimensional spaces due to the limited number of pos-
terior samples produced (Ba et al., 2022; Zhang et al.,
2023).

To further understand the results we show marginal
distributions obtained using SVGD and sSVGD along
three vertical profiles whose locations are denoted by
dashed black lines in Figure 5. Overall the results show
broader distributions in the deeper part (> 1 km) than
in the shallow part as we have observed in the stan-
dard deviation models. Furthermore, the distributions
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Figure5 Themean (top row) and standarddeviation (bottomrow)obtainedusingSVGD (leftpanel) and sSVGD (right panel),
respectively. Black dashed lines denote well log locations referred to in the main text.

Method Number of simulations
SVGD 360,000
sSVGD 120,000

Table 2 Computational cost required by SVGD and sSVGD
for FWI.

obtained using sSVGD are broader than those obtained
using SVGD, which again demonstrates that SVGD can
underestimate uncertainties. Note that in the results
obtained using SVGD some true velocities lie outside
the high probability area at large depths (> 1.5 km),
whereas those obtained using sSVGD generally include
the true velocity in values with non-zero uncertainty.
This shows that SVGD can produce biased results for
high dimensional problems as noted in several studies
(Ba et al., 2022; Zhang et al., 2023).
Similarly to the above sectionwemeasure the compu-

tational cost requiredby eachmethodusing thenumber
of forward and adjoint simulations (Table 2). Specifi-
cally, SVGD required 360,000 simulations to converge,
while sSVGD used 120,000 simulations. This again
demonstrates that sSVGD can be more computationally
efficient than SVGD because sSVGD requires fewer par-
ticles yet generates many more samples. To give an
overall idea of the computational cost, the above inver-
sions required 49 hours for sSVGD using 40 AMD EPYC
CPU cores, and 3 days for SVGD using 90 CPU cores.

5 Discussion
Although in the VIP package we only implemented 2D
travel time tomography and 2D full waveform inversion,
the code can easily be applied to other types of prob-
lems, and also to larger scale problems by using mod-
ernhighperformance computation (HPC) facilities. For
example, users can implement 3D full waveform inver-
sion by providing a 3D forward and adjoint simulation

code (see more details in the code documentation, and
an example in Zhang et al., 2023). In order to enable
easy deployment on HPC facilities, the code provides a
guide on how to parallelize the computation using the
Sun Grid Engine queuing system. Other queuing sys-
tems can be implemented in a similar way.

Although we have demonstrated that sSVGD can gen-
erate more accurate results than SVGD in high dimen-
sional problems and requires less computational cost
in total, the method generally requires many more it-
erations. As a result, sSVGD may be less efficient than
SVGD in wall clock time when a large number of CPU
cores is available. This is why we implement SVGD in
the VIP package as in practice it may be a better choice
for low dimensional problems.

ADVI may become inefficient in a high dimensional
space because of the increased size of the covariance
matrix. To enable applications in such cases, we also
implement a diagonal covariance matrix, that is, a
mean-field approximation (Kucukelbir et al., 2017). In
SVGD and sSVGD besides the radial basis function ker-
nel used in above examples, the package also imple-
ments diagonal matrix-valued kernel functions which
are constructed by combining a positive definite diago-
nal matrix Q and the radial basis function (Wang et al.,
2019; Zhang and Curtis, 2021). The elements of Q can
be set as the inverse of the variance calculated across
particles (Zhang and Curtis, 2021).

To promote reproducibility and show how to use the
code, we included several examples alongwith the code
which can be used to reproduce those results obtained
in the above section. We encourage interested readers
to begin with these examples to familiarize themselves
with the code. Finally, we note that VIP is actively be-
ing developed and expanded, and contributions from
the community are welcome.
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Figure 6 Marginal distributions at three well logs (black dashed lines in Figure 5) obtained using (a) SVGD and (b) sSVGD,
respectively. Red lines show the true velocity profiles and white dashed lines show the lower and upper bound of the prior
distribution.

6 Conclusion

VIP is a Python package which solves general inverse
problems using variational inference methods, includ-
ing automatic differential variational inference (ADVI),
Stein variational gradient descent (SVGD) and stochas-
tic SVGD (sSVGD). The package is designed to be easy
enough for beginners to use, and efficient enough to
solve complex inverse problems. In addition, VIP is
implemented in a scalable way such that it can be de-
ployedonadesktop aswell as inhighperformance com-

putation facilities. We demonstrated the package us-
ing two examples: 2D travel time tomography and 2D
full waveform inversion. Users can also use the pack-
age to solve their own inverse problems by providing
an appropriate forward modelling and gradient calcu-
lation code. We conclude that VIP can be used to solve a
wide range of inverse problems in practice. The most
recent release of the code can be downloaded from
GitHub (https://github.com/xin2zhang/VIP) and a sta-
ble version is available on Zenodo (Zhang and Curtis,
2023).
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