
Comments from Reviewer 1: 
 
1. Line 25: I do not quite see how a physical rela:onship predicts noise distribu:ons. The noise distribu:on 
is, in fact, that part of the data that the physical rela:on cannot predict, bascially by defini:on. 
 
We agree that the noise distribu0on cannot be predicted. We have deleted noise distribu0ons. Now we say 
“a physical rela0onship is defined that predicts data that would be recorded for any par0cular set of model 
parameters…”. 
 
2. Line 27: I wonder why you restrict yourself to imaging problems. Your method should be applicable to a 
much broader range of inverse problems, beyond the imaging class. 
 
We agree that the method can be applied to a broader range of inverse problems. We restrict ourselves to 
imaging problems in the manuscript mainly because we have so far only applied the method to imaging 
problems. 
 
3. Line 29: This is not a par:cularity of geophysical inverse problems but of prac:cally any inverse problem. 
 
Thank you for the comment. We have changed to “inverse problems” instead of “geophysical inverse 
problems”. 
 
4. Line 33: I think this sentence is basically a contradic:on in itself because finding an op:mum just does not 
mean that you have actually solved an inverse problem! Also, note that people are oLen more careful and do 
not find an op:mum but merely a set of model parameters that fits the data to within the noise. Otherwise, you 
risk fiNng the noise. 
 
We agree that finding an op0mum does not mean an inverse problem is completely solved. We note that this 
is just the standard way how we deal with inverse problems.  To be clearer, we have changed to: 
“Solu0ons to an inverse problem are oEen found by seeking an op0mal set of parameter values that 
minimizes the difference or misfit between observed data and model-predicted data to within the data noise”. 
 
5. Line 36: Isn't code and soLware the same thing? 
 
We have deleted “and soEware”. 
 
6. Line 56: style: applied to applica:ons 
 
Thank you for the comment. We have changed to “applied to a range of geophysical inverse problems”. 
 
7. Line 59: I do not think this is the real problem. THE problem is the poor scaling of Metropolis-Has:ngs. The 
number of samples that you need to draw in order to obtain an independent sample grows as n^2, where n is 
the model space dimension. Hence, when you go to higher dimensions, you simply need too many samples to 
achieve convergence. 
 
We agree. We have changed our descrip0on to “However, the algorithm becomes inefficient in high 



dimensional space because of poor scaling due to its random walk behaviour”. 
 
8. Line 61: I think this formula:on is not so clean. In fact, many of the methods that you list aLerwards are 
actually McMC methods. 
 
We have changed to “In order to solve Bayesian inference problems more efficiently, a variety of more 
advanced methods have been introduced to geophysics, …”. 
 
9. Line 69: I think this statement is a kiYle diffuse. What means "large-scale" or "extremely high"?  Not sure 
such sentences are useful. 
 
Thank you for the comment. To be clearer, we have changed our descrip0on to: “Bayesian solu0ons to large 
scale problems (e.g., those involving thousands of parameters to be es0mated) remain intractable because 
of their unaffordable computa0onal cost due to the curse of dimensionality”. 
 
10. Line 74: I never quite understood why this par:cular measure is chosen. Can this be explained in a few 
words? Is it mere computa:onal convenience? 
 
Yes, you are right. It is mainly because KL divergence is easy to es0mate computa0onally. We have added this: 
“One commonly-used measure of the difference between the pdfs is the Kullback-Leibler (KL) divergence 
(Kullback and Leibler, 1975) as it is easier to es0mate computa0onally than other measures.” 
 
11. Line 77: The logic of this argument is not clear. Why exactly is op:misa:on more efficient than sampling? 
 
Thank you for the comment. It is not theore0cally clear that op0misa0on is more efficient than sampling. But 
from a prac0cal point of view, many studies have demonstrated that op0misa0on is more efficient than 
sampling in Bayesian inversion (Bishop 2006; Blei et al., 2017). Also, tradi0onal op0misa0on-based methods 
are more efficient than sampling-based methods in solving inverse problems. Of course, we note that this 
op0misa0on is different from op0misa0on in varia0onal inference, but they share some common 
characteris0cs. 
 
To be clearer, we changed our descrip0on to: 
“The method has been demonstrated to be computa0onally more efficient and more scalable to high 
dimensionality in some class of problems…”  
 
12. Line 80: This statement is too strong. Of course, mini-batch approaches work with McMC provided that the 
batch is large enough to represent the full dataset. McMC methods are preYy forgiving when it comes to this 
kind of sloppiness. 
 
We agree. But as you said this requires the batch to be large enough to represent the full dataset, whereas 
varia0onal inference does not have such strong requirements. On the other hand, we also note that this will 
inevitably reduce accuracy of McMC methods, which is the most important feature of McMC methods when 
compared with varia0onal inference. We have changed our descrip0on to “the same strategy cannot easily 
be used for McMC…” 
 
13. Line 82: Also here I think you are a bit too harsh to McMC, which can be trivially parallelised by running 
mul:ple chains; either just in a sloppy way or with parallel tempering. 
 
We slightly disagree with this comment. We agree that McMC can be parallelised by running mul0ple chains. 
However, in principle we would then require that every chain converges, and in such cases parallelisa0on 
does not help much. In addi0on, as our experience much computa0on is spent in the burn-in period which 
does not contribute to the final samples, so parallelisa0on across chains contributes limited improvements 
to the overall efficiency. 



14. Line 84: style again: applied to applica:ons 
 
We have changed to “applied to a range of geophysical inverse problems”. 
 
15. Line 87: No superla:ves in scien:fic text! 
 
We have deleted “extremely”. 
 
16. Line 92: Used for what? 
 
We have changed to “Kucukelbir et al. (2017) used a Gaussian family in varia0onal inference to create a 
method called …” 
 
17. Line 102, par:cles 
 
Done. 
 
18. Theore:cal background sec:on, I really appreciate the authors' effort to make the theory understandable. 
S:ll, I afraid that this sec:on is too condensed for people who do not know the method yet. However, expanding 
this overview also does not make much sense. A difficult issue. 
 
Thank you for the comment. As also suggested by Reviewer 2, we have expanded the descrip0on to give a 
more detailed overview of the method. See the new Theore0cal background sec0on. 
 
19. Line 130, This is the crux of the whole problem, which, I think, deserves a bit more aYen:on. How do you 
know a priori what a useful family is? It seems like this connects to the No-Free-Lunch Theorem: The method 
becomes efficient only when you chose a family that is actually useful, which is something you can only do when 
you have an a priori idea about the solu:on. 
 
We agree. The family plays an important role in varia0onal inference as it determines the accuracy of the 
approxima0on. In prac0ce we can only choose some simplified family that provides the informa0on that we 
seek (such as a specific closed-form approxima0on to the posterior distribu0on) or such that the op0misa0on 
problem can easily be solved, (as occurs, for example, when using a Gaussian family). So you are right, this 
connects to the No-Free-Lunch theorem. For example, a mean-field family or a Gaussian family is easy to solve, 
but they cannot provide a good approxima0on; whereas using samples (par0cles) to approximate the 
posterior pdf can be more accurate, but the problem will be more difficult to solve. We have added this 
informa0on on page 6: 
 
“In varia0onal inference, the choice of the varia0onal family Q is important because it determines both the 
accuracy of the approxima0on and the complexity of the op0misa0on problem. A good choice should be rich 
enough to approximate the posterior pdf accurately or at least provides the informa0on that we seek, but 
simple enough such that the op0misa0on problem is tractable. Different choices of family may also allow 
different types of algorithm to be developed.” 
 
20. Line 135, This is not easy to see, given that q in eq. (3) is arbitrary. Can you explain? 
 
The nonnega0vity of KL divergence is not obvious. It requires mathema0cal proof. Since this is not our main 
purpose, we do not prove it in the manuscript.  
 
For your informa0on, a simple proof is as follows: 
Use the fact that ln 𝑎	 ≤ 𝑎 − 1 for all 𝑎 > 0, 
−𝐾𝐿(𝑞‖𝑝) = −∑ 𝑞(𝑥)𝑙𝑜𝑔 !
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21. Line 142, Now I do not understand your previous argument anymore. If the evidence is treated as a constant, 
then you can actually directly minimise equa:on (3). 
 
Yes, minimise equa0on 3 is equivalent to maximize ELBO. The only difference is that we cannot calculate the 
actual value of equa0on 3 (only up to a constant), but can compute the value of the ELBO. From the 
op0misa0on perspec0ve, they are essen0ally the same because a constant does not affect the op0misa0on 
procedure.  
 
22. Line 156: Does this mean that you only consider one Gaussian? This suggests that you only try to find the 
posterior mean covarience. 
 
Yes, you are right. In this method we only use one Gaussian, and it only finds the posterior mean and 
covariance. 
 
23. Line 273: This statement is far too general to be universally true! It is not difficult to come up with code 
examples that runs as fast as C++ code. 
 
We agree. We have changed to “… which suffers from slow execu0on for computa0onally intensive numerical 
simula0ons”. 
 
24. Line 276: Dask, Please explain what that is. 
 
We have added explana0on of Dask. Now we say:  
“… we use a Python library called Dask, which is designed for parallel and distributed compu0ng, to parallelize 
the forward computa0on at the sample (par0cle) level.”  
 
25. Line 296: What is the travel:me of a velocity? Veloci:es do not travel. 
 
We have changed to “Travel 0mes associated with group velocity at different … “. 
 
26. Line 305: Is this not a contradic:on to what you wrote above? You wrote that gradients from the travel:me 
tomography example are computed with ray tracing. However, now you use fast marching for the forward 
problem, meaning that you should obtain gradient from the adjoint fast marching code. 
 
Thank you for the comment. We use the fast marching method for the travel 0me field calcula0on, and then 
obtain gradients by tracing rays through the travel 0me field. This is one of the standard ways to calculate 
gradients (see Rawlinson and Sambridge, 2004 – cited in the manuscript). We note that the adjoint method 
can also be used to calculate gradients. From our experience, the two methods produce similar results. 
 
27. Figure 3: I am surprised by these results. There is absolutely no data coverage east of the island. Therefore, 
the standard devia:ons should be much larger, equal to the standard devia:on of the prior. 
 
Thank you for the comment. Outside of the island, the standard devia0on is around 0.93 which is the standard 
devia0on of the prior as expected. On the east side of the island just off the coast, although no seismometer 
is deployed, there are rays that travel through those areas (see details in Galej et al., 2017), and 
consequently the standard devia0on is smaller than that of the prior. We have added this informa0on on 
page 16: 
 
“In the offshore areas the standard devia0on is around 0.93 which is the standard devia0on of the prior as 
no ray path goes through these regions. By contrast, on the east side of the island just off the coast, although 
no seismometer is deployed, there are rays that travel through those areas (see details in Galej et al., 2017), 
and consequently the standard devia0on is smaller than that of the prior.” 
 
28. Line 310 – 319: It is difficult to avoid the impression that this is a comparison of apples and oranges. Why 
did you choose all of these different setups, and what makes them comparable in a meaningful way? 



We agree that it is difficult to compare different methods in a completely fair way. However, it would s0ll be 
useful to compare them on a specific problem so that prac00oners can at least have an idea of the character 
of each method and their required computa0onal cost. To provide a rela0vely fair comparison, for each 
method we followed the best prac0ce from other studies. For example, for ADVI we used a standard Gaussian 
as the star0ng point and used the ADAM op0mizer (Kucukelbir et al., 2017). For SVGD, we used 500 ini0al 
par0cles and updated them un0l the mean and standard devia0on models become stable. For the effects of 
different number of par0cles on the results, see the discussion in Zhang et al., (2021). For sSVGD, when the 
average misfit value across all par0cles becomes sta0onary (i.e., post burn-in), we started to collect samples. 
The number of par0cles is selected by trial and error so that we can use a minimum number of par0cles to 
generate accurate results. We have added the informa0on in the text: 
 
“For ADVI, we started the method with a standard Gaussian distribu0on in the unconstrained space and 
performed 10,000 itera0ons at which point the misfit value ceases to decrease using the ADAM op0misa0on 
algorithm. For SVGD, we generated 500 par0cles from the prior distribu0on and updated them using equa0on 
(17) for 3,000 itera0ons at which point the mean and standard devia0on models became stable. For sSVGD, 
we started from 20 par0cles generated from the prior distribu0on and updated them using equa0on (22) for 
6,000 itera0ons aEer an addi0onal burn-in period of 2,000 itera0on, aEer which the average misfit value 
across all par0cles became approximately sta0onary.” 
 
29. Line 333: See my comment above. Why is this a meaningful statement, given that it is not obvious how these 
different setups can be compared. In fact, this touches upon another very important issue: Convergence! How 
can convergence of all these implementa:ons be assessed? How is a user who does not understand all the 
methodological details supposed to decide on a specific setup for a specific problem? Is the statement in this 
sentence not just saying that the different methods have not converged to the same extent? 
 
Although it is difficult to fully assess the convergence, it can at least be es0mated in several ways in prac0ce 
(see our discussion in point 28). In addi0on, we also extended each method for many more itera0ons, to 
check that the results showed similar features. As a result, we are confident that the main features of the 
solu0on from each method have essen0ally converged. 
 
30. Line 359: See comment above. This suggests that you do not actually compute the exact deriva:ves of the 
forward problem. 
 
See our discussion in 26. It might be true that the adjoint method would provide more accurate deriva0ves, 
but from our tests using rays to compute deriva0ves is sufficient. In addi0on, ray tracing is computa0onally 
more efficient. 
 
31. Line 376: There is no such thing as a true model. It should beYer be called input model. 
 
Thank you for the comment. Since the input model here is the model we proposed as the “ground truth”, we 
prefer to call it “true structure” as input model does not really sound like ground truth. We have changed to 
“true structure” in the manuscript. 
 
32. Line 399: “because of lower resolu:on in those areas”, I do not quite understand the logic of this statement. 
 
In the deep part (> 1.5 km) and close to the sides, the data are less sensi0ve to the velocity, and consequently 
there is higher uncertainty in those areas. As a result, the mean model is less similar to the input (true) model. 
We have changed our descrip0on to: 
 
“In the deep part (> 1.5 km) and close to the sides, the mean models appear to be less similar to the input 
model because the waveform data are less sensi0ve to the velocity structure in those areas.” 
 
33. Figure 4: “10 sources …”, style: sentence should not start with numbers 
 
Done. 



Comments from Reviewer 2: 
 
1 General comments 
 
I found this manuscript interes:ng to read, and the authors’ ini:a:ve to release their Varia:onal Inversion 
Package (VIP) will certainly benefit to the geosciences community. 
 
We thank the reviewer for the posi0ve feedback. 
 
My main comment is about the wri:ng of Sec:on 2, about Varia:onal Inversion (VI) theory. That is, as a non 
expert of VI methods, I’ve found Sect. 2 difficult to read and fully understand. Indeed, I think that the authors 
assume unduly prior knowledge, on VI methods, from the lay-reader. This seems to contradict the ini:al 
mo:va:on of this paper: to release a VI package to help spreading/widening the use of VI methods in the 
community. That is, the authors write in the introduc:on: “VI has not been widely used in geophysics because 
the method is not easily accessible to non specialists”. I then encourage the authors to make further efforts to 
explain the basics of VI, in this companion paper with respect to the VIP codes. And to refrain from jumping so 
fast from one equa:on to another. More precisely, without having a close look at other (more complete 
technically) papers (for example the authors’s paper Zhang et al 2023), it is not easy to follow all the equa:ons 
here. From the point of view of possible future prac::oners of VI, this may be a liYle discouraging. Therefore, I 
think, it would benefit the paper to explain the VI methods in a much more pedagogical way, in Sec:on 2. 
 
Thank you for the comment. We have expanded Sec0on 2 so that the theory is more clearly explained. See 
details in the new Sec0on 2. Note that we s0ll omioed detailed mathema0cal deriva0ons in several places as 
they are not important for prac00oners to understand and use the method. 
 
2 Other comments (listed in no preferen:al order) 
 
1. Lines 33–44: Though VI methods are suited to tackle non-linear inverse problems, they may become 
computa:onally (too?) costly when facing large scale 3–D tomographic problems, because of the ‘curse of 
dimensionality’, and are also dependent on the choice of prior informa:on on the model solu:on. For 
completeness, the authors could then also men:on in the introduc:on that progress was recently made for 
solving large-scale linear(-ised) 3–D tomographic problems using the SOLA-Backus-Gilbert inversion (Zaroli, 
2016, 2019). That is, SOLA tomography seeks local-average proper:es of the ‘true’ Earth model, accompanied 
with informa:on on resolu:on and uncertainty. It strictly avoids using any a priori informa:on/constraints on 
the model itself —hence avoiding related bias effects (Zaroli, Koelemeijer, LamboYe, 2017). Moreover, it is not 
necessary to discre:se the infinite-dimensional model space —hence avoiding discre:sa:on-related artefacts. 
 
Thank you for the comment. We have added this informa0on: 
“To overcome these issues, the SOLA-Backus-Gilbert inversion method has recently been applied to large 
scale linearised tomographic problems. This method evaluates the weighted average of the true model 
parameters and provides both resolu0on and uncertainty es0mates (Zaroli, 2016; Zaroli et al., 2017). In 
addi0on, the method does not require regulariza0on and can be conducted in a parameter-free way which 
avoids bias caused by parameterisa0on (Zaroli, 2019). Unfortunately, the method is only developed for linear 
problems; since most Geophysical problems are significantly nonlinear, our goal is to provide methods that 
es0mate solu0ons and uncertain0es for that class of problems.” 
 
2. Lines 61–66: Maybe the authors should also men:on HMCLab (Zunino et al., 2023), a framework for solving 
inverse problems using the Hamiltonian Monte Carlo method, and also men:on the work on Gaussian process 
models by Valen:ne and Sambridge (2020). 
 
We have added these references in the main text. 
 
3. Line 134: Eq and p(m, dobs) should be defined explicitly here (I note that Eq is defined in Zhang et al 2023 
(but not in this paper) and p(m, dobs) is only defined later, at line 153). 



 
We have added the defini0on: 
 
“…where logp(m, dobs) is the joint distribu0on of model m and data dobs. The expecta0ons are calculated 
with respect to the known pdf q, and we have used Bayes’ theorem to expand the posterior pdf p(m|dobs).” 
 
4. Line 229: Matrix → Matrices. 
 
Done. 
 
5. Line 230: if set → if we set. 
 
Done. 
 
6. Line 251: Taking account → Taking into account. 
 
Done. 
 
7. Line 275: complied → compiled. 
 
Done. 
 
8. Lines 300–301: It would be useful to add the total number of data. 
 
We have added this informa0on: 
 
“In this study we use a total number of 401 travel 0me measurements at 10 s period.” 
 
9. Figure 3: The models (except ADVI) all look somehow very noisy/patchy. Why are there non-negligible 
values in the offshore areas, where there is no data informa:on (i.e., no ray paths)? 
 
This is probably because the number of samples are not sufficient to represent the distribu0on in the far 
offshore areas. In fact, the distribu0on in those areas is equal to the prior distribu0on, which spans a broad 
region of the high dimensional parameter space. As a result, the limited number of samples that we can use 
is not sufficient to explore it and approximate the posterior pdf accurately. We have added discussion on this: 
 
“In far offshore areas…the results obtained using sSVGD and MH-McMC exhibit more heterogeneous 
structures, which probably indicates that the two methods have not converged sufficiently. These areas are 
only loosely constrained by the data (or not at all) and hence have large posterior uncertain0es requiring 
many more randomly generated samples in order to explore and represent the posterior distribu0on 
accurately compared to areas with 0ghter constraints from the data.” 
 
10. Fig. 3: It could be useful to plot the terrane boundaries (those shown in Fig. 2b) in Fig. 3. 
 
Done. 
 
11. Line 326: tend → trend. 
 
Done. 
 
12. Lines 327–328: Annota:on 4 depicts very high uncertain:es (∼ 0.9 km/s). Why are these uncertain:es so 
high here, while the local data coverage seems preYy good and the model varia:ons seem to be quite smooth? 
 
This is likely because few ray paths go through this area due to its low velocity (it is surrounded by high 
veloci0es). As a result, this area has high uncertain0es. This is probably also the reason why the high 



uncertainty is clearer in the gradient-based methods as the gradient is zero in this area. We have added this 
in the text: 
 
“In addi0on, the East Irish Sea (annota0on 4) shows high uncertain0es. This is probably because few ray paths 
go through this area due to its lower velocity, and consequently the area is not well constrained by the data.” 
 
13. Lines 333–334: “...other maps provide more detailed informa:on” —yes, but the authors should recognise 
that these maps also seem to be more contaminated by noise, for example in the offshore areas where there is 
a poor data coverage. 
 
We agree. See our comments in 9. We also note that for areas that are well constrained by the data, the 
results should be more stable as in those areas we do not require such a large number of samples to 
approximate the posterior distribu0on. 
 
14. Lines 338–341: As most (global) tomographies suffer from strongly uneven data coverage, would the non-
convergence issue be a serious problem in prac:ce, for those applica:ons? 
 
We do not think this will be a serious problem as those areas with poor data coverage would have high 
uncertain0es, and therefore the structure would not be reliable. As a result, the structure would probably 
not be interpreted. 
 
15. Line 353: demonstrates → suggests. 
 
Done. 
 
16. Line 410: resolu:on → data coverage. 
 
Done. 
 
17. Fig. 6: Why is there so much difference between the marginal distribu:ons at the second 
well log obtained using SVGD and sSVGD? (See the white circles in Fig. 1 of this review.) 
 
This is because SVGD and sSVGD are different methods. sSVGD is an McMC method which adds a random 
noise term to the dynamics of SVGD, which makes the method explore the space more broadly. By contrast, 
SVGD is a determinis0c method which requires a large number of par0cles to approximate the posterior 
distribu0on in a high dimensional space. As a result, for a rela0vely small number of par0cles (e.g., 500 as we 
used in this study) the method can underes0mate uncertainty as all the par0cles fall within the high 
probability area. This is the reason why the marginal distribu0ons obtained using sSVGD has broader 
distribu0ons. This can also explain the biased results obtained using SVGD in the deeper part (> 1.5 km). 
However, we note that sSVGD might also produce biased results because of discre0sa0on error. 
 
18. Fig. 6 also shows that SVGD produces beYer results than sSVGD, since it fits beYer the true velocity (red) 
profile. (See Fig. 1 of this review.) So why are the authors claiming (in lines 422–423) that “SVGD can produce 
biased results for high dimensional problems”? 
 
See the comments above. From a Bayesian perspec0ve, fijng beoer the true velocity does not mean the 
result is more accurate because this does not mean the es0mate of the posterior distribu0on is more accurate. 
Put another way, when we do not know the true solu0on we require that it lies in a posi0ve probability region 
of our es0mate of the posterior. In the deeper part of the model (> 1.5 km), SVGD clearly produces biased 
results as the true velocity (red line) lies outside of the range of values with significantly posi0ve probability. 
By contrast, the results obtained using sSVGD include the true velocity value with nonzero probability almost 
everywhere. 



 


