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Abstract Automated seismic arrival picking on large and real-time seismological waveform datasets
is fundamental for monitoring and research. Recent, high-performance arrival pickers apply deep-neural-
networks to nearly raw seismogram inputs. However, there is a long history of rule-based, automated arrival
detection and picking methods that efficiently exploit variations in amplitude, frequency and polarization
of seismograms. Here we use this seismological domain-knowledge to transform raw seismograms as input
to a deep-learning picker. We preprocess 3-component seismograms into 3-component characteristic func-
tions of a multi-band picker, plus modulus and inclination. We use these five time-series as input instead of
raw seismograms to extend the deep-neural-network picker PhaseNet. We compare the original, data-driven
PhaseNet and our domain-knowledge PhaseNet (DKPN) after identical training on datasets of different sizes
and application to in- and cross-domain test datasets. We find DKPN and PhaseNet show near identical pick-
ing performance for in-domain picking, while DKPN outperforms PhaseNet for some cases of cross-domain
picking, particularly with smaller training datasets; additionally, DKPN trains faster than PhaseNet. These re-
sults show that while the neural-network architecture underlying PhaseNet is remarkably robust with respect
to transformations of the input data (e.g. DKPN preprocessing), use of domain-knowledge input can improve
picker performance.

Riassunto Individuare l’arrivo delle fasi sismiche è fondamentale per il monitoraggio e la ricerca dei ter-
remoti. Attualmente, la maggior parte dei programmi di riconoscimento (pickers) utilizza le deep neural net-
work (DNN) su sismogrammi grezzi. Esistono però decadi di ricerche sul rilevamento automatico degli arrivi
sismici basate su variazioni in ampiezza, frequenza e polarizzazione dei sismogrammi (domain-knowledge).
Sfruttiamo queste conoscenze per pre-processare i sismogrammi grezzi in cinque serie temporali, ottenendo
le tre funzioni caratteristiche di un pickermultibanda, il modulo e l’inclinazione. Utilizzando questo nuovo in-
put, realizziamoun’estensionedi PhaseNet (PN) basata sulla domain-knowledge (DKPN) e confrontiamo i due
modelli (PN e DKPN), addestrandoli su stessi dataset di diverse dimensioni. Eseguiamo due test: in-domain
(su dati estratti dallo stesso dataset di addestramento) e cross-domain (su dataset diversi). DKPN e PhaseNet
mostrano prestazioni quasi identiche per il riconoscimento delle fasi in-domain, mentre DKPN supera Pha-
seNet per alcuni casi cross-domain, in particolare per dataset di addestramento più piccoli. L’allenamento di
DKPN è più veloce di quello di PhaseNet. Questi risultati mostrano che, sebbene l’architettura di rete neurale
alla base di PhaseNet sia notevolmente robusta, l’uso di input basati sulla domain-knowledge puòmigliorare
le prestazioni del picker.

Non-technical summary Automatic procedures for detecting seismic energy onsets on seismo-
grams are critical for earthquake and environmentalmonitoring, earthquake and tsunami early-warning, and
for fundamental research in seismology and earthquake hazard. Recent, high-performance onset detectors
mainlyuse sophisticated,machine-learningalgorithmswhichare “trained”on large setsof, unprocessed, seis-
mograms. However, there is a longhistoryof rule-based, automatedonsetdetectionalgorithms inearthquake
seismology that efficiently exploit various characteristics of seismogram waveforms. Here we use classical,
seismological energy onset detection algorithms to transform seismogram waveforms before input to an es-
tablished machine-learning onset-detector. We compare this extended detector with the original detector
using identical training seismograms and application to diverse test seismograms. We find that the extended
detector shows improvedperformancewhenapplied to seismogramswithdifferent characteristics fromthose
used for training, and can allow use of smaller datasets during training. The results show that the established
machine-learning detector performs well independent of transformations of the input data, but that such
transformations can improve performance and efficiency in some cases.
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1 Introduction
Automated seismic arrival pickers are algorithms for
detection, onset timing, phase type identification, and
other characterization of seismic energy arrivals on
seismogram waveforms. These pickers are funda-
mental for earthquake and environmental monitoring,
earthquake and tsunami early-warning, arrival-time to-
mography, subsurface characterization, and for basic
research of earthquakes and their hazard. Highly ef-
ficient, accurate and consistent automated picking is
necessary for processing large to massive datasets with
manydata channels, high sampling rates or long record-
ing periods, for real-time monitoring and warning, and
for analyzing highly productive aftershock sequences
and swarms.
For some years, automated seismic arrival picking

algorithms have been developed using machine learn-
ing (Enescu, 1996; Dai and MacBeth, 1995; Wang and
Teng, 1995; Mousset et al., 1996; Gentili and Michelini,
2006; Beyreuther et al., 2012; Kong et al., 2018). Recent,
high-performance machine-learning pickers are based
mainly on deep-neural-networks (LeCun et al., 2015)
and are data-driven—trained and applied to nearly raw,
seismogram waveforms as input features (Liao et al.,
2021; Mousavi et al., 2019, 2020; Mousavi and Beroza,
2022; Münchmeyer et al., 2022; Ross et al., 2018a; Soto
and Schurr, 2021; Woollam et al., 2019; Yu and Wang,
2022; Zhu and Beroza, 2018). There is, however, a
long history of automated, seismic arrival detection,
onset-timing and phase identification algorithmswhich
efficiently exploit variations in amplitude, frequency
and polarization of seismogram waveforms (Steven-
son, 1976; Allen, 1978, 1982; Bai, 2000; Bagagli, 2022;
McEvilly and Majer, 1982; Baer and Kradolfer, 1987;
Withers et al., 1998; Lomax et al., 2012). These “classi-
cal” pickers are typically composed of rule-based algo-
rithms defined by experts, using seismological domain
knowledge to perform processing of seismogramwave-
forms, and subsequent analyses for detection, onset-
timing and phase identification. Various parameters of
the pickers are adjusted through trial-and-error or for-
mal optimization (e.g., machine-learningVassallo et al.,
2012) to produce results best matching manually deter-
mined or other reference picks. Detections from clas-
sical pickers can also be fed into deep-neural-networks
to further refine the arrival timing and characterize the
picks (Yeck et al., 2020).
Incorporating expert, domain knowledge in the fea-

ture engineering and training of deep-neural-networks
has been proposed and shown to improve performance
over pure data-driven learning (Marcus, 2018; Borgh-
esi et al., 2020; Jozinović et al., 2021; Kong et al., 2018;
Mousavi and Beroza, 2022; Muralidhar et al., 2018), es-
pecially when there is limited or poor quality train-
ing data, or with difficult learning tasks. A basic
question then arises: should the expert, seismologi-
cal domain-knowledge components of classical pick-
ers be discarded when developing high-performance,
deep-neural-network pickers? This may be the case if
the deep-neural-networks have a sufficiently large and
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complex architecture to learn to accurately map key
characteristics of seismogram waveforms and phase
onset energy into detections and picks, especially for
cross-domain application. Such learning requires large,
comprehensive and high-quality training datasets, and
adequate computing resources to train the network.
Otherwise, the use of domain-knowledge for prepro-
cessing input seismogram waveforms may improve the
performance, or even make viable, the training and ap-
plication of deep-neural-network pickers, particularly
for small or poor quality training datasets, when com-
puting resources are limited, or for urgent analysis.
Most classical, automated pickers first convert raw

seismograms into characteristic function (CF) time-
series which greatly amplify the main features of seis-
mic phase arrivals, such as abrupt changes in ampli-
tude, frequency, or polarization of the waveforms. Sec-
ondly, these pickers analyze the CFs to detect and de-
termine onset-times, phase types and other character-
istics of possible seismic energy arrivals while ignor-
ing background variations in signal. Conversion of raw
seismograms into picker CFs is commonly and most
basically performed with mean removal and high-pass
filtering, followed by sliding-window calculation of a
short-term average (STA) and a long-term average (LTA)
of the signal amplitude to form the CF based on the
ratio STA/LTA (Allen, 1978, 1982; Baer and Kradolfer,
1987). Additional or alternative processing of seismo-
grams for detection, time picking or phase identifica-
tion include autoregressive analysis (Sleeman and van
Eck, 1999), particle-motion and polarization analysis
(Vidale, 1986; Bai, 2000; Plešinger et al., 1986; Anant
and Dowla, 1997; Ross and Ben-Zion, 2014), vectormod-
ulus (Bai, 2000), and time-frequency domain, spectro-
gram (Lomax et al., 2012; Alvarez et al., 2013; Njirjak
et al., 2022) or wavelet analyses (Anant andDowla, 1997;
Zhanget al., 2003;Mousavi et al., 2016). FilterPicker (Lo-
max et al., 2012) constructs a picker CF through applica-
tion of an STA/LTA algorithm to a series of band-pass fil-
tered seismograms, equivalent to a simplified spectro-
gram representation of the raw waveforms. The multi-
band nature of FilterPicker enables picking of seismic
onsets over a range of dominant frequencies in the pres-
ence of signal offset and high noise, improving correct
detection of true seismic phase onsets even in complex
waveforms.
Here we examine changes in the performance of

a deep-learning picker when its raw seismogram in-
put is modified using seismological domain-knowledge
from classical pickers. In a manner similar to Gentili
and Michelini (2006) for picking and Wang and Teng
(1995) and Njirjak et al. (2022) for earthquake detec-
tion, we preprocess 3-component, broadband seismo-
grams into a set of 5 input time-series: the 3-component
characteristic functions of the multi-band FilterPicker,
plus the instantaneous modulus and inclination of the
waveforms from particle-motion analysis. This prepro-
cessing increases the dimensionality of the input data.
We use these 5 time-series as input features instead
of 3-component, raw seismograms to extend the deep-
neural-network picker PhaseNet (Zhu andBeroza, 2018)
within the SeisBench platform (Woollam et al., 2022).
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We compare the original PhaseNet and our extended,
domain-knowledge PhaseNet (DKPN) using identical
training, validation and test datasets and identical pro-
cessing pipelines. We train PhaseNet and DKPN on
waveforms from the INSTANCEdataset (Michelini et al.,
2021). The training is run on 7 subsets with different
sizes, leading to a set of trained model variants. We ap-
ply this set of trained models to in-domain test datasets
from INSTANCE and to cross-domain test data from two
different datasets available in SeisBench: ETHZ from
the Swiss Seismological Service, and PNWfrom seismic
networks in the US Pacific Northwest (Ni et al., 2023).
The use of domain-knowledge input in DKPN instead

of near-raw waveforms for the PhaseNet deep-learning
picker requires slightly more computing time for train-
ing and application, due to the additionalwaveformpre-
processing, though data preprocessing, code optimiza-
tion, multi-processing and use of GPUs effectively re-
moves this time penalty. For P and S arrivals the explicit
information targeting detection and picking of seismic
energy arrivals introduced by the domain-knowledge
processing enables DKPN to reach higher performance
than PhaseNet for cross-domain application, especially
with smaller training datasets. In contrast, DKPN and
PhaseNet perform nearly identically for in-domain P
and S picking. These results suggest that the underlying
PhaseNet architecture can robustly learn arrival detec-
tion andpick characterization somewhat independently
of the form of the input data, presumably as long as key
information relevant to arrival detection and picking re-
mains present in the input, as is the case with DKPN.

2 Data and Methods
We use the SeisBench machine learning toolbox (Wool-
lam et al., 2022) to access seismogram waveform
datasets and the PhaseNet deep-neural-network picker
model, and as a general platform for data processing
and augmentation operations.

2.1 PhaseNet, a deep-neural-network picker
PhaseNet (Zhu and Beroza, 2018) is a deep-neural-
network algorithm for probabilistic detection, onset-
timing and phase-type identification of seismic P and
S arrivals.A trained deep-neural-network can be inter-
preted as a very high-dimensional approximation func-
tion composed of many, local mappings of input to
output (Balestriero and Baraniuk, 2018). These map-
pings produce increasingly abstract layers which pre-
serve only essential information in the data needed for
a target regression or classification task (LeCun et al.,
2015). Indeed, in this study we are investigating the ef-
fects of using essential information for picking as input
and thus potentially reducing the amount of network
training needed to identify and isolate essential infor-
mation.
The input for PhaseNet are 3-component, broadband,

seismogram waveforms of 3001 samples (30 sec at 100
Hz sampling) with minimal preprocessing (mean re-
moval and normalization). These input data are pro-
cessed through a modified U-net (Ronneberger et al.,

2015; Zhu and Beroza, 2018, , their figure 5) with 4
stages of down-sampling and reduction in number of
nodes based on 1-D convolution followed by 4 stages
of near-symmetric up-sampling and expansion based
on 1-D deconvolution (Zhu and Beroza, 2018). Direct,
skip connections between corresponding down- and
up-sampling layers help to improve training conver-
gence. After the last stage of down-sampling, the in-
put is reduced to 22 points x 12 channels, which, con-
sidering the size of the convolutional kernel , implies
the network has a broad receptive field on the original
seismograms (Zhu and Beroza, 2018) which is about 26
sec (Hien, 2018). At the end of up-sampling, PhaseNet
outputs 3 channels of 3001 points: prediction probabil-
ity distributions for P and S arrivals and for noise, time-
aligned to the original 3001 input samples. Here we de-
rive arrival picks from peaks in the P and S probabilities
through rule-based post-processing to give pick arrival
time (at peak maximum), and confidence (peak ampli-
tude)
In Zhu and Beroza (2018) PhaseNet is trained on a

dataset of detected earthquakes from Northern Califor-
nia composed of 623,054 3-component recordings, all
of which have manually picked, P and S arrival times.
Through various experiments, Zhu and Beroza (2018)
conclude that PhaseNet achieves much higher picking
accuracy and recall rate than a classical STA/LTA plus
autoregressive analysis method (Akazawa, 2004) when
applied to the waveforms of known earthquakes, with a
particularly pronounced improvement in S picking per-
formance.

2.2 Modified FilterPicker characteristic func-
tions

FilterPicker (Lomax et al., 2012) applies an adaptation
of the STA/LTAalgorithmof Baer andKradolfer (1987) to
construct a picker CF froma succession of band-pass fil-
tered seismograms. Seismogram waveforms, with little
or no preprocessing, pass through a pipeline of: 1) dif-
ferentiation, 2) band-pass filtering at a geometric pro-
gression of center periods ranging from the sampling
interval to the longest period signal to be picked (e.g.,
for sampling interval 0.01sec, 7 bands at 0.01, 0.02, 0.04,
0.08, 0.16, 0.32, 0.64 sec center periods), 3) squaring of
each band-pass series to form a positive, envelope func-
tion, 4) forming a CF for each band as the ratio of instan-
taneous deviation from long-term mean to long-term
standard deviation of the band envelope, and 5) form-
ing a definitive, summary CF from the maximum of the
band CFs at each sample point. The succession of band-
pass filtered seismograms are equivalent to a simplified
time-frequency, spectrogram representation of the raw
waveforms. The multi-band nature of FilterPicker pro-
vides a strong response in the summary CF for seismic
onsets with a range of dominant periods, even in the
presence of strong, narrow-bandnoise, of strongmicro-
seismic or other, longer period noise, and of offset sig-
nals. See Lomax et al. (2012) for details and examples.
We implement FilterPicker within the data aug-

mentation step of SeisBench processing using the
FBpicker, Python implementation of FilterPicker from
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Figure 1 Standard PhaseNet andmodified Domain Knowledge PhaseNet deep-learning architecture. The DKPNmodel re-
places the nearly-raw, 3-component seismogram input of PhaseNetwith the 3-component FilterPicker CF plus instantaneous
modulus and inclination traces (bottom left panel). Otherwise, the layers, connections and output for bothmodels are iden-
tical. For details of the full PhaseNet architecture, symbols and color codes, see Zhu and Beroza (2018, ; their figure 4).

the PhasePApy package (Chen and Holland, 2016). We
modify the FBpicker algorithm to replace its sliding,
fixed-window procedure for generating band CFs with
the decay-constant, recursive filter procedure of the
original FilterPicker. We further modify the resulting
FilterPicker algorithm by taking the logarithm of the
summary CF to compress high amplitudes in the CF at
strong arrival onsets and thus avoid the need for a cut-
off parameter (Lomax et al., 2012) to limit the highly-
variable maximum CF values. Finally, we normalize
the CFs with the maximum standard-deviation of the 3-
component CFs. Aswe donot use the detection andpick
characterization logic of FilterPicker, there are only two
primary picker parameters: a filter window defining
the frequency of the longest period band, and the long-
term, time-averaging scale for recursive band-pass fil-
tering. In this study we set FilterPicker parameters
following the guidelines and defaults in Lomax et al.
(2012), with some trial-and-error over a limited range of
typical values for broadband, local and regional event
picking.

2.3 Instantaneousmodulus and inclination

In addition to themodified, 3-component CFwaveforms
fromFilterPicker, we also calculate twowaveforms con-
sisting of quantities from particle-motion analysis, the
instantaneous modulus and inclination, using the Fil-
terPicker, band-pass filtered seismograms. In order to
suppress response to background noise, both quantities
are calculated independently at each sample point, us-
ing the 3-component Z, N, E data values on the band-

passwaveformcorresponding to themaximumbandCF
for the sample point. The modulus is the length of the
3-component data vector, √(Z2 + N2 + E2), normalized
by dividing by the maximum standard-deviation over
all sample points. The inclination or incidence angle
is given by tan-1[Z / √(N2 + E2)] / π, where dividing by π
normalizes to a range of [-1,1] so -1, 0 and 1 correspond
to down, horizontal and up inclination, respectively.
We expect these two additional waveform inputs will

help the picker to recognize and discriminate between
P and S phases in the stream, especially given that the
replacement of raw waveforms with CF’s entails a loss
of information. Modulus re-introduces absolute ampli-
tude information which might aid in discrimination of,
for example, a typically higher amplitude S arrival from
a lower amplitude P arrival. Inclination re-introduces
polarization information which can indicate the type of
arrival sincePwavesusually exhibit dominantly vertical
particle motion and S waves often show stronger hori-
zontal motion.

2.4 Domain Knowledge PhaseNet

DKPN is our extension of the PhaseNet picker model to
use classical, seismological domain-knowledge as input
features. We replace the 3-component, raw seismogram
input to the PhaseNet model with the 3-component CFs
of themodified FilterPicker and the instantaneousmod-
ulus and inclination of the waveforms (Figures 1 and
2-5). This entails that in the first convolution plus rec-
tified linear unit step in the first layer, instead of trans-
forming a 3x3001 input dimension to 8x3001 dimension
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Figure 2 Example processing and picking results for models trained with the INSTANCE NANO2 dataset and applied to IN-
STANCE, ETHZ, and PNW trace samples. In each plot, the title indicates INSTANCE training dataset size, test dataset, network-
station-location-channel code, event date, magnitude and distance from station. Subplots show: (rows 1-3) de-meaned and
normalized Z, N, and E component, observed seismograms; (row 4) P (blue-green) and S (light red) label data; (rows 5-6)
PhaseNet (PN) and DKPN P (blue-green) and S (light-red) probabilistic predictions, gray horizontal lines indicate threshold
0.3; (row 7) normalized, DKPN FilterPicker Z, N, E CF’s; (rows 8-9) normalized, DKPN instantaneous inclination andmodulus.
Solid bars at top of each subplots show P (blue-green) and S (light red) label picks. Dashed bars at the bottom of each sub-
plot show PhaseNet (yellow) and DKPN (blue) P and S predicted picks for threshold 0.3. Horizontal axis shows sample count.
Seismogram from the INSTANCE dataset (in-domain testing) for which DKPN and PhaseNet both pick P and S strongly near
the label times. Note the sharp, strong P onset and emergent S onset in the DKPN CFs, the change in character between P
and S of the DKPN inclination, and the clear P and S onsets in theDKPNmodulus; these features show the introduced domain
knowledge which drives the DKPN picks.
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Figure3 SameasFigure2, for a seismogramfromtheETHZdataset (cross-domain testing) forwhichaclear, high-frequency,
labeledParrival ismatchedbyDKPNbutnotPhaseNet. DKPNstrongly, andPhaseNetmoreweaklyboth identify anunlabeled
S arrival, which is likely correct given the waveforms and epicentral distance. The relatively poor performance of PhaseNet
for this seismogrammay be due to the waveform arrivals (e.g. short, high-frequency P signal and long duration, long-period
S signal) differing significantly from arrival waveforms in the INSTANCE dataset used for training.

as in standard PhaseNet (Zhu and Beroza, 2018, ; their
figure 4), DKPN transforms a 5x3001 input dimension
(channels x length) to 8x3001 dimension (Figure 1). We
otherwisemakeno change to thePhaseNetmodel as im-
plemented in SeisBench (SeisBench v0.3 or later).

2.5 Seismogramwaveform datasets
In this study we use three benchmark, seismogram
waveform datasets provided in SeisBench: INSTANCE
(Michelini et al., 2021) composed of ~1.2 million, 3-
component waveforms for ∼50,000 earthquakes from
M 0 to M 6.5 in and around the Italy region (epi-
central distances ~0-6°); Eidgenössische Technische
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Figure4 Sameas Figure 2, for a lowS/N seismogram from thePNWdataset (cross-domain testing) forwhichDKPNcorrectly
picks a P arrivalwith a sharppredictionprobability peak, while PhaseNet fails to pick but shows aweakpredictionprobability
peak.

Hochschule Zürich (ETHZ; Woollam et al., 2022) com-
posed of 36,743, 3-component waveforms for 2231
events from M 1.5 to ~M 5 in and around the Switzer-
land region (epicentral distances ~0-4°); and the Pacific
Northwest AI-ready Seismic Dataset (PNW, Ni et al.,
2023) composed of ~200,000, 3-component waveforms
for ~65,000 events from M 0 to ~M 6.4 in the US Pa-
cific Northwest region with local and regional epicen-
tral distances. A signal-to-noise (S/N) ratio included

in the INSTANCE metadata, reported in dB, is calcu-
lated (Michelini et al., 2021) from amplitudes in the 5
sec following the S arrival (signal) and 5 sec before the
P arrival (noise), though here we do not filter the IN-
STANCE training datasets on S/N ratio. INSTANCE in-
cludes pure noise waveforms, which, following Zhu and
Beroza (2018)we do not use for training. For detailed in-
formation on filtering criteria for both training and test-
ing stages, the reader is referred to the Supplementary
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Figure 5 Same as Figure 2, for a low S/N seismogram from the PNW dataset (cross-domain testing) for which PhaseNet
correctly picks a weak P arrival with a sharp prediction probability peak, perhaps by responding to the low amplitude, P
coda signal. DKPN fails to pick P, with a very weak prediction probability peak; this failure is likely due to the emergent CF Z
component and lack of amplitude increase on the modulus at the P time, both related to the P arrival on the Z seismogram
having low amplitude and frequency content similar to the preceding noise.

Text S1 and Table S1.

Visual examination of INSTANCE dataset waveforms
and picks shows some traces with: missing S picks; la-
beled picks on very high or pure noise low-gain data;
clearly early or late picks; and unreasonably large pick
uncertainty estimates. To mitigate these problems, we
filter the dataset metadata to include only high-gain HH

channels, events at epicentral distance ≤ 100 km, and,
following Zhu andBeroza (2018), traceswhichhaveboth
P and S picks, resulting in ~300,000 3-component trace
sets available for training, validation and testing. We
also create probabilistic pick labels for training using a
fixed sigma of 0.1 sec instead of using the labeled pick
uncertainties. See Supplementary File S1 for examples
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of filtered INSTANCE waveforms.
In order to evaluate picker performance when dif-

ferent amounts of training data are available, we es-
tablish INSTANCE training datasets with different sizes
ranging from insufficient for training convergence and
stability (NANO3, ~900 samples), to minimal for con-
vergence (NANO2, ~1.6k samples), through intermedi-
ate sizes (NANO1, ~3k samples; NANO, ~6k samples;
MICRO, ~12k samples; TINY, ~24k samples; SMALL,
~61k samples; MEDIUM, ~163k samples) tomuch larger
than needed for apparent convergence for both pick-
ers (LARGE, ~245k samples). In the following we focus
on results for the NANO2, MICRO and MEDIUM train-
ing datasets as representative of the main evolutions
and features of picker performance across all training
dataset sizes.
Missed S picks are also a problem with the ETHZ

dataset, but apparently much less so with the PNW
dataset. As we do not train on these datasets we do
not remove these potential problem traces (examples of
used ETHZ and PNW waveforms are shown in Supple-
mentary Files S2 and S3, respectively). However, due to
missed S picks, our testing statistics and metrics for S
for the ETHZ dataset are likely degraded. Similar and
other quality problems are likely present in most seis-
mological waveform datasets for machine-learning, as
Münchmeyer et al. (2022) discuss for the datasets pro-
vided in SeisBench. Such errors in the data labels will
adversely affect the rate and quality of model training
and bias the validation and test statistics and metrics,
but similarly for the two picker algorithms, thus high-
lighting their performance in practice.
FilterPicker, like most STA/LTA pickers, requires a

minimum length of background data before any phase
arrivals for statistical stabilization; this length is con-
trolled by the long-term window parameter. For ma-
chine learning training in general, an ample length of
background before arrivals is also needed for random
window-shift, data augmentation to enhance general-
ization in the trained model, and, most importantly, to
avoid that first arrivals are near the same window posi-
tion in all or most training samples. Lack of sufficient
background data before arrivals can impair classical
methods like STA/LTA in comparisons with machine-
learning pickers. The processing workflow described
below addresses this requiredminimum length of back-
ground data. We note also that lack of sufficient back-
ground data before arrivals can preclude pertinent
training and evaluation ofmachine-learning pickers for
real-time and early-warning application, where in prac-
tice an almost unbounded amount of data before an ar-
rival is available, and very little data may be available
after an arrival onset before reaching the last received
data sample.

2.6 Dataset and model configuration, pro-
cessing, training and comparison

To compare the performances of PhaseNet and DKPN
on different test sets we configure and preprocess
datasets and models, train the models and compare
PhaseNet and DKPN P and S arrival predictions, statis-

tics and metrics (see Data and code availability). Care
must be taken at the data generation stage to ensure that
the waveform time-series has sufficient length before
the first label pick for FilterPicker stabilization (FPS);
this length should be greater than the number of sam-
ple points (NFPS) corresponding to the FilterPicker long-
term, time-averaging scale. Figures 2-5 show prepro-
cessing, label and pick prediction waveforms for trace
samples from the INSTANCE, ETHZ and dataset.
The configuration and processingworkflow includes:

1. Load the requested dataset; set the sampling rate to
100 Hz.

2. Optionally select ormask dataset trace sets on pres-
ence of P and S picks, channel code, epicentral dis-
tance, or other available meta-data. (Supplemen-
tary Text T1)

3. For training, randomly split the data into training,
validation and test sets according to a target train-
ing set size (e.g. for our INSTANCE MEDIUM train-
ing dataset: 50% training, 5% validation and 45%
remainder for drawing test samples).

4. Define data generators with identical preprocess-
ing and augmentation steps for training, validation
and testing, the principal steps are:

(a) Get a randomly positioned data window in the
input, 3-component seismograms starting at
least NFPS points before the first pick label,
and with a length of NFPS plus the 3001 points
required for input to the deep-learning mod-
els.

(b) Normalize to the maximum standard-
deviation across the 3-component data.

(c) For DKPN, apply the processing described in
the section “Modified FilterPicker character-
istic functions” to generate the 3-component,
FilterPicker CF time-series, and apply the pro-
cessing described in “Instantaneous modulus
and inclination” to generate the modulus and
inclination time-series. In this study the Fil-
terPicker filter window is set so the longest
period signal analyzed is 2 sec, and the long-
term, recursive-filter time-averaging scale to 4
sec, giving NFPS = 401 point.

(d) For DKPN, cut the firstNFPS (after FilterPicker
stabilization) for all time-series to form a data
window of length 3001 points as required for
input to the deep-learning models.

(e) Create probabilistic, P and S label traces with
the same 3001 point window from picks speci-
fied in the tracemetadata using theprobabilis-
tic labeler function in SeisBench. Each P or S
pick is summed into the corresponding P or
S trace as Gaussian function of amplitude 1.0
and with a fixed variance of 5 points (0.05 sec
for 100 Hz data).
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The training workflow includes:

1. Model and dataset setup following steps 1-4 of the
configuration and processing workflow.

2. Run the training on the training dataset for speci-
fied optimizer and loss functions, learning rate and
number of epochs. In this study the Adam opti-
mizer (Kingma & Ba, 2017), and a cross-entropy
loss function are always used. Train models us-
ing an early-stopping approach governed by a “pa-
tience” parameter indicating the number of epochs
to tolerate without improvement, and a fixed “im-
provement” threshold. If the mean validation loss
over the last two patience length epochs does not
exceed the improvement threshold compared to the
mean development loss over the preceding patience
epochs, the training process is halted. A second
condition for halting the training process is if the
validation loss over the last patience epochs consis-
tently surpasses the training loss, indicating a po-
tential overfitting tendency. In either halting case,
the model weights obtained patience epochs before
the current epoch are utilized. We use this ap-
proach to respect the different, natural learning-
time behavior of the 2 algorithms, and to smoothly
converge to the best possible minima. For details
of the training parameters and loss curves compar-
isons see Supplementary Text S1, Table S1, and File
S4).

The comparison workflow includes:

1. Model and dataset setup following steps 1-4 of the
configuration workflow.

2. Load a trained model and apply it to traces drawn
from the test dataset to obtain prediction probabil-
ity distributions for P and S arrivals.

3. Post-process the probabilistic, P and S prediction
traces with:

(a) 3-point smoothing to suppress rapid oscilla-
tion,

(b) pick detection at peaks of amplitude greater
than specified thresholds and separated by
more than 0.5 sec,

(c) retain the pick time, Tp and amplitude, Ap.

4. Accumulation of the P and S, Gaussian labels and
prediction picks for multiple traces from the test
dataset for calculation of evaluation statistics and
metrics as described in the following.

In this study we repeat the training workflow using
7 different, randomly selected training and validation
subsets of traces for each experiment. We therefore ob-
tain 7 different models and 7 sets of test results for each
individual training dataset size. Wemerge these test re-
sults to reduce the dependence of testing performance
statistics with respect to training dataset selection.

2.7 Evaluation statistics andmetrics
Asabasis for comparisonof PhaseNet andDKPNperfor-
mance on test datasets, and following (Zhu and Beroza,
2018), we count, relative to the labeled P or S arrivals
in the test dataset, the number for P or S of correct
Gaussian predicted arrivals (true positives; TP), incor-
rect predicted arrivals (false positives; FP), and no pre-
diction of a labelled arrival (false negatives; FN). There
may bemultiple FP picks for P or for S on each datawin-
dow. Here, a smoothed, Gaussian predicted P or S ar-
rival is counted as correct when its peak amplitude, Ap,
is greater than a specified threshold and the difference,
ΔTp, between its peak time and the time of a label ar-
rival of the same phase is less than 0.1 sec for P and 0.2
sec for S, which has typically noisier onsets than P ar-
rivals. Zhu and Beroza (2018) use ΔTp ≤ 0.1 for P and S,
and use a threshold Ap ≥ 0.5. In this work, we examine
a range of thresholds 0.1 ≤ Ap ≤ 0.9 to find optimal met-
rics such as F1 score, which vary with training dataset
size, test dataset and for PhaseNet versus DKPN. While
use of a low amplitude threshold leads to a higher rate
of picking, we find that low amplitude predictions gen-
erally correspond to correct arrival picks. Additionally,
filtering of a limited number of false picks can be done
in phase association and hypocenter location process-
ing stages (Kim et al., 2023). For advanced hypocenter
location and other algorithms (e.g., Satriano et al., 2008;
Lomax et al., 2014) the peak amplitude Ap can also be
used for weighting or selection of picks and some mea-
sure of the width of the peak (e.g. at half its height) as a
pick uncertainty.
From the TP, FP, FN statistics, we form the following

metrics for P and for S:
Precision, the proportion of positive arrival predic-

tions that are correct,

P = TP

TP + FP
(1)

Recall, the proportion of labeled positives that are cor-
rectly predicted,

R = TP

TP + FN
(2)

and the F1 score, which balances the often opposing,
Precision and Recall metrics through their harmonic
mean,

F1 = 2x
PxR

P + R
(3)

3 Results
We present a set of tests to show and compare the per-
formance of PhaseNet and DKPN for different train-
ing dataset sizes applied to in-domain (INSTANCE) and
cross-domain (ETHZ and PNW) test datasets.

3.1 Test 1 – In-domain
We first compare the in-domain performance of
PhaseNet and DKPN across different training dataset
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Figure6 ComparisonofPhaseNet (PN)andDKPNwith testingon the INSTANCEdataset (in-domain). F1 scoremetricsacross
a range of pick amplitude thresholds for P arrivals and S arrivals for models trained with different size INSTANCE datasets.
Mean,median and upper/lower limits of themean (dashed curves) of F1 for 7 runs eachwith 5,000 evaluation samples drawn
from the test datasets, these samples vary for each training dataset size.

sizes and amplitude thresholds to define correct pre-
dicted picks. We train and test with data samples from
the INSTANCE dataset. Sample INSTANCE waveforms
are presented in Supplementary File S1. The F1metrics
for this test are shown in Figure 6.
For the larger training datasets (e.g. MICRO and

MEDIUM) DKPN and PhaseNet show almost identical
performance, with F1 scores of about 0.9 for P up to
a threshold of about 0.7 and F1 about 0.8 for S up to
thresholds of about 0.4 - 0.5. The reduced performance
of both pickers for S is almost certainly due to difficul-
ties for bothmodels indetecting andpicking the Sonset,
which is often embedded in the P coda and emergent.

For the smaller NANO2 training dataset, the DKPN
and PhaseNet, median P and S F1 scores are slightly re-
duced relative to those with the larger training datasets.
The mean and lower limit of F1 scores, however, show
a significant degradation, likely indicating instability in
training with small datasets and chance of convergence
to an inadequately trained model, even for application
to an in-domain dataset.
Histograms of P and S pick residuals (predicted time

- label time) for PhaseNet and DKPN for a selection of
training data set sizes are shown in Figure 7. For P the
total number of predicted picks within twice ΔTp is gen-
erally similar for PhaseNet and DKPN and independent
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Figure 7 Histograms of P and S pick residuals for selected INSTANCE training dataset sizes tested on the INSTANCE dataset
(in-domain). Results shown for the pick amplitude threshold (Thr) giving the highest F1 score for each case of dataset size
andmethod (DKPN or PhaseNet). Vertical, dashed gray lines show themaximumdifference ΔTp between a pick time and the
corresponding label time (0.1 sec for P and 0.2 sec for S) to declare a correctly predicted arrival for evaluation statistics (TP).
Pick counts show: Number of residuals (number of predicted picks) used in themean and standard-deviation statistics / Total
number of residuals available / Total number of label picks available for the test case. To remove outlier data, the mean and
standard-deviation statistics use trimmed residuals, within twice ΔTp: ± 0.2 sec for P and ± 0.4 sec for S.

of training dataset size, and there is little variation in
the mean of the residuals, which is always near zero, or
for standard deviation with training dataset size. How-
ever, the DKPN P residuals are slightly more concen-
trated and peaked around zero than are the PhaseNet
residuals for NANO2. For S the distribution of resid-
uals and statistics for the two pickers are very similar
and show little variationwith training dataset size, aside
from slightly more concentration of residuals around
zero for the larger training dataset sizes (e.g. MEDIUM).

Figures 2-5 show test results for PhaseNet and DKPN
models trained with the INSTANCE NANO2 dataset and
applied to INSTANCE, ETHZ andPNWtesting trace sam-
ples. These examples illustrate how the FilterPicker
CFs, inclination and modulus relate to and help deter-
mine the probabilistic P and S predictions and picks for
DKPN, and how the amplitude and complexity of proba-
bilistic predictions for PhaseNet and DKPN relate to the
trace noise and to the complexity and impulsiveness of
arrival onsets. Note in particular how theDKPNCF’s for
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Figure 8 Comparison of PhaseNet (PN) andDKPNwith testing on the ETHZ dataset (cross-domain). F1 scoremetrics across
a range of pick amplitude thresholds for P arrivals and S arrivals for models trained with different size INSTANCE datasets.
Mean,median and upper/lower limits of themean (dashed curves) of F1 for 7 runs eachwith 5,000 evaluation samples drawn
from the test dataset. Because some ETHZ traces have missing P or S picks, FP count may be overestimated.

different events and datasets can have a similar overall
form and amplitude even when the corresponding raw
seismograms have very different absolute amplitudes
and frequency content.

3.2 Test 2 – Cross-domain—INSTANCE train-
ing and ETHZ test datasets

A most important, general and realistic use case is
where a pre-trained picker model will be applied cross-
domain—to seismogram waveforms with substantially
different characteristics from the training waveforms.
The differences may be related to recording instru-

ments, data-loggers, available channel types and gain,
wave propagation, site conditions and noise, and the
distance, size, stress-drop and other properties of tar-
get seismic sources. To examine the cross-domain case,
we applymodels trained with the INSTANCE datasets of
different sizes to testing (i.e. application) on waveforms
from the ETHZ and PNW datasets. Sample waveforms
are presented in Supplementary Files S2 and S3. The
resulting F1 metrics across a range of pick amplitude
thresholds for ETHZ test datasets are shown in Figure 8.
For P arrivals, relative to in-domain testing with IN-

STANCE (Test 1; Figure 6), DKPN shows a small reduc-
tion in overall performance and stability (e.g. maxi-
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Figure 9 Histograms of P and S pick residuals for selected INSTANCE training dataset sizes tested on the ETHZ dataset
(cross-domain). Results shown for the pick amplitude threshold (Thr) giving the highest F1 score for each case of dataset
size andmethod (DKPN or PhaseNet). Vertical, dashed gray lines show themaximumdifference between a pick time and the
corresponding label time (0.1 sec for P and 0.2 sec for S) to declare a correctly predicted arrival for evaluation statistics. Pick
counts show: Number of residuals (number of predicted picks) used in the mean, mode and standard-deviation statistics
(trimmed within twice ΔTp: ± 0.2 sec for P and ± 0.4 sec for S) / Total number of residuals available / Total number of label
picks available for the test case.

mum F1 scores almost always ≥ ~0.8 and converging to
~0.9 for larger training datasets) while PhaseNet shows
a slightly larger reduction in performance (e.g. max-
imum F1 scores around 0.7 for the smaller datasets,
and converging to ~0.85 for larger datasets). With
the smaller training sets (NANO2 and MICRO) DKPN
shows better results than PhaseNet, which indicates
that, for application to ETHZ data, the DKPN model,
with domain-knowledge input processing, has intrinsic
properties that improve generalization and effective P

picking with cross-domain data, as well as allowing use
of smaller training datasets.
For S arrivals (Figure 8), as with Test 1, the perfor-

mance of DKPN and PhaseNet are notably poorer than
for P arrivals, though DKPN performs slightly better for
the two smaller datasets. Relative to in-domain testing
with INSTANCE (Figure 6), both DKPN and PhaseNet
show generally reduced performance (e.g. maximum
F1 scores of ~0.7-0.75 instead of ~0.8) except for an in-
crease in Recall, due to a decrease in false negative
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Figure10 Comparisonof PhaseNet (PN) andDKPNwith testingon thePNWdataset (cross-domain). F1 scoremetrics across
a range of pick amplitude thresholds for P arrivals and S arrivals for models trained with different size INSTANCE datasets.
Mean,median and upper/lower limits of themean (dashed curves) of F1 for 7 runs eachwith 5,000 evaluation samples drawn
from the test dataset. Because some PNW traces have missing P or S picks, FP count may be overestimated.

count (Supplementary Text S2) .
Histograms of P and S pick residuals for PhaseNet

and DKPN are shown in Figure 9. For P, in contrast to
the INSTANCE testing results, the total number of pre-
dicted picks within twice ΔTp increases with increasing
training dataset size and is greater for DKPN than for
PhaseNet. There is little change with respect to train-
ing dataset size in the mean of the residuals, which
is always near zero, or for standard deviation. For P,
DKPN always has a higher count of near-zero residual
picks thanPhaseNet, especially for the smallest training
datasets (e.g. NANO2), in agreement with the evolution
of F1 score and other statistics discussed above. For S,

as with INSTANCE testing, DKPN has a higher count of
near-zero residual picks than PhaseNet for the smaller
training datasets, while for larger training datasets both
models show almost identical performance. Notably,
the total number of predicted pickswithin twice ΔTp de-
creases (DKPN) or is roughly stable (PhaseNet) instead
of increasing with increasing training dataset size as for
P.
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3.3 Test 3 – Cross-domain—INSTANCE train-
ing and PNW test datasets

We examine a second cross-domain case, applying the
models trained with the INSTANCE datasets of different
sizes to testing on waveforms from the PNW dataset.
Relative to INSTANCE and ETHZ, the PNW waveform
dataset is characterized by many trace sets with clear,
impulsive S arrivals at larger S-P times (larger epicen-
tral distance), but also trace sets with missing horizon-
tal channels. Since the DKPN processing requires 3
component trace sets, we only use data for PNWwhich
includes all 3 channels (Supplementary File S3). The
resulting F1 metrics across a range of pick amplitude
thresholds for PNWtest datasets are shown in Figure 10.
For P arrivals, the PNW results are similar to those

for cross-domain testing with ETHZ (Test 2; Figure 8)
with a small reduction in overall performance and sta-
bility relative to in-domain testing with INSTANCE (Test
1; Figure 6) (e.g. maximumF1 scores ~0.8 insteadof ~0.9
for larger datasets) and a small performance increase
of DKPN over PhaseNet for larger training sets (MICRO
and MEDIUM), and a more prominent increase for the
smallest datasets (NANO2).
For S arrivals (Figure 10), as with ETHZ (Test 2; Fig-

ure 8), the performance of DKPN and PhaseNet for the
smallest training dataset, NANO2 is slightly poorer than
in-domain testing with INSTANCE (Test 1; Figure 6),
nearly identical for the MICRO dataset, and, for the
largest dataset, MEDIUM, nearly identical for PhaseNet
and slightly improved for DKPN. These latter results are
surprising for a cross-domain dataset, likely explained
by the high rate in the PNW dataset of clear, impulsive
S arrivals which may resemble well S arrivals captured
most strongly in INSTANCE training, and, for DKPN, by
the sensitivity of the introduced domain knowledge to
impulsive arrivals.
Histograms of P and S pick residuals for PhaseNet

and DKPN for PNW testing are shown in Figure 11. For
P, and similar to cross-domain, ETHZ testing, with in-
creasing training dataset size the total pick rate gener-
ally increases, there is little evolution for mean (always
near zero) and standard-deviation, while DKPN has a
higher count of near-zero residual picks than PhaseNet
for all training dataset sizes. For S, DKPN shows slightly
better statistics and count of near-zero residuals than
PhaseNet in agreement with the evolution of F1 score
and other S statistics discussed above. However, both
PhaseNet and DKPN show a consistent negative mean
residual of almost 0.1 sec, perhaps suggesting that the
impulsiveness of many PNW S onsets relative to typical
S onsets on INSTANCE trainingwaveforms is leading the
INSTANCE trained network to bias and advance the pick
time predictions relative to those for INSTANCE wave-
forms.

4 Discussion

We use classical picker algorithms as domain-
knowledge to transform raw seismogram waveforms
into modified input features for the deep-learning
PhaseNet picker, without otherwise modifying the

picker architecture. We compare the deep-learning
picker with modified input, DKPN, with standard
PhaseNet when both are trained using the same IN-
STANCE data, training strategy and hyper-parameters
and applied to an INSTANCE in-domain and two
cross-domain datasets, ETHZ and PNW.
For P detection and picking, cross-domain applica-

tion to the ETHZ (Test 2; Figure 8) and PNW datasets
(Test 3; Figure 10) shows an improvement in F1 of
around 15% for DKPN over PhaseNet for the small-
est training dataset NANO2. For larger cross-domain
training datasets and for all INSTANCE in-domain test-
ing (Test 1; Figure 6) PhaseNet and DKPN show almost
identical performance. These results suggest that with
smaller size training datasets the domain-knowledge
modified input of the DKPN deep-learning model pro-
vides useful prior information for effective and stable
seismic phase detection and picking. The DKPN net-
work thus does not need to learn this information dur-
ing training (Figure 12), though the basic PhaseNet ar-
chitecture is still capable of efficiently learning equiv-
alent information during training with larger datasets.
In histograms of P pick residuals (Figures 7, 9 and
11), DKPN generally shows a higher count of near-zero
residual picks than PhaseNet, with slight reduction of
this difference for the largest training datasets. This
suggests the domain-knowledge modified input of the
DKPN provides some improvement in the fine-scale on-
set timing of picks over PhaseNet. Overall, besides
pick detection, much of the training for both PhaseNet
and DKPN likely involves refinement of onset timing,
phase identification and other pick characterization
tasks; these are difficult tasks in manual tuning of clas-
sical picker algorithms and perhaps fundamentally bet-
ter addressedwithmachine-learning optimization (Vas-
sallo et al., 2012; Yeck et al., 2020).
The improved DKPN performance for P picking rel-

ative to PhaseNet for the ETHZ and PNW datasets with
smaller training dataset sizes is likely due to the ETHZ
and PNW pre-event noise, event waveforms, and P and
S phase onsets having greater differences from the IN-
STANCE training waveforms than can be accommo-
dated by the generalization of the PhaseNet INSTANCE
training with small datasets. Important differences in
waveforms relative to INSTANCE may include a larger
number of regional events with lower frequency wave-
forms in ETHZ (Supplementary File S2), and the preva-
lence of sharper S onsets in PNW (Supplementary File
S3).
These learning and performance differences indi-

cate that for P picking, relative to purely data-driven
deep-learning pickers such as PhaseNet, DKPN or other
domain-knowledge machine-learning pickers may be
better for small to very small training sets, may gen-
eralize better, e.g. when applied cross-domain to wave-
forms having very different characteristics to the wave-
forms of the training events, andmay provide generally
smaller differences relative to manual pick timing.
In addition, for all NANO2 models (Figure 6, 8, 10),

DKPN is more stable than PhaseNet in P performances
across many threshold levels as indicated by the spread
of upper/lower limits of the mean (dashed curves). This
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Figure 11 Histograms of P and S pick residuals for selected INSTANCE training dataset sizes tested on the ETHZ dataset
(cross-domain). Results shown for the pick amplitude threshold (Thr) giving the highest F1 score for each case of dataset
size andmethod (DKPN or PhaseNet). Vertical, dashed gray lines show themaximumdifference between a pick time and the
corresponding label time (0.1 sec for P and 0.2 sec for S) to declare a correctly predicted arrival for evaluation statistics. Pick
counts show: Number of residuals (number of predicted picks) used in the mean, mode and standard-deviation statistics
(trimmed within twice ΔTp: ± 0.2 sec for P and ± 0.4 sec for S) / Total number of residuals available / Total number of label
picks available for the test case.

means that DKPN is less sensitive to changes in pick
threshold selection, proving to be more assertive about
onset prediction (i.e. sharper prediction probability
functions) even when few training data are available.
DKPN is also less sensitive to training-data selection as
resulting from different random selections across the 7
training-testing experiments, as shown from the upper
and lower bounds of F1-scores that better follow theme-
dian trends.
For S detection and picking, both PhaseNet and

DKPN show lower performance relative to P detec-
tion and picking (Figures 6-11), as also found for the
deep-learning pickers examined in (Münchmeyer et al.,
2022). This reduced performance is most likely due to S
arrivals occurring in the P coda, and to the often emer-
gent and complicated form of S arrival onsets, espe-
cially at regional distances in areas of complex geol-
ogy. For in-domain testing on INSTANCE datasets and
cross-domain ETHZ testing, PhaseNet and DKPN show
nearly identical S performance for all but the smallest
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training datasets. However, for the cross-domain PNW
test dataset DKPN shows slightly better S picking perfor-
mance than PhaseNet across all training dataset sizes.
This result may be related to the PNW dataset, relative
to INSTANCE and ETHZ, having a large number of clear,
impulsive S arrivals, which maymatch well impulsive P
arrivals for which classical pickers such as Filter Picker
are optimized, and thus more easily detected by DKPN.
Training dataset size is an important issue with deep-

learning pickers, as there are few large, well curated
and error-free seismic waveform datasets with reliable,
manual or other, reference picks. Many studies, such
as temporary aftershockmonitoring and short-term ex-
periments, may have manually picked datasets that are
too small for training with pure, data-driven picker
models. Moreover, waveforms for some studies may
have specific characteristics (e.g., in frequency content,
epicentral distance ranges, noise, distribution of mag-
nitudes) that preclude processing with machine learn-
ing methods pretrained with large datasets with differ-
ent waveform characteristics. Here we have used rela-
tively small to moderate size training datasets (~800 to
245k samples) relative to other key studies (e.g. 11k,
65k, 555k, 780k, 1.3M and 4.5M training and evalua-
tion traces for the 6 picker models examined in Münch-
meyer et al., 2022). We have shown that DKPN some-
times outperforms PhaseNet with smaller datasets for
P picking, especially for cross-domain picking of the
ETHZ and PNW datasets, probably due to the prior,
domain-knowledge information on picking inherent
in the DKPN input traces (Figure 12). Thus domain-
knowledge based methods such as DKPN may be espe-
cially useful for studieswith smaller datasets, especially
those with unusual waveform characteristics which ne-
cessitates picker retraining, as well as for when limited
computing time or resources are available. The combi-
nation of domain-knowledge basedmethodswith trans-
fer learning (e.g., Jozinović et al., 2021) may be partic-
ularly useful with small datasets that require retraining
of machine learning pickers.
The FilterPicker CF amplifies and transforms energy

onsets and changes in frequency content into abrupt,
step- or pulse-like waveforms, while remaining fairly
insensitive to absolute amplitudes and frequency con-
tent which vary between events and datasets (Figs 2-5).
Improvements in P picking performance of DKPN over
the purely data-driven PhaseNet may primarily be due
to the similarity between these CF waveforms and the
narrow, Gaussian wavelets of the target, probabilistic,
picks (Fig. 12). To help verify this proposition, we ran
a version of DKPN which retains the 3 channels of raw
waveform input, giving 8 channels total for input. This
change gives almost no difference in the picking results
such as mean andmedian F1 scores, except for a degra-
dation of results for S picking with the smallest train-
ing dataset NANO2, and the 8 channel input leads to in-
creased spread of the upper/lower limits of themean for
the NANO2 and MICRO training datasets. This reduc-
tion in performance suggest the 5 channels of CF’s plus
inclination and modulus waveforms input to DKPN re-
tain the majority of information relevant to picking ef-
fectively contained in the raw waveforms.

The DKPN network thus apparently receives rule-
based, deterministically modified input that resembles
a simple transformation of the required output defin-
ing pick detection, potentially simplifying training and
improving performance and stability, and also provid-
ing an inherent mechanism for generalization. On
the other hand, given a classical picker CF, the de-
sign and optimization of subsequent algorithms for
refining onset-timing, phase identification and other
characterization are difficult and somewhat haphaz-
ard tasks (Lomax et al., 2012; Vassallo et al., 2012).
In DKPN and PhaseNet these subsequent tasks are
performed by the deep-neural-network; indeed, high-
dimensional, stochastically-driven machine-learning is
eminently suited to such tasks. However, when obser-
vations from a network of seismometers are available,
a domain-knowledge, rule-based approach may also be
valuable for pick characterization tasks such as quality
control (Ning et al., 2022). And, in practice, domain-
knowledge is used to improve detection and picking
even with nominally, data-driven, machine-learning
pickers, since many studies apply a high-pass filter to
suppress known microseismic noise at longer period
and amplify arrivals of interest expected at higher fre-
quencies (Mousavi et al., 2019, 2020;Münchmeyer et al.,
2022; Ross et al., 2018b,a; Woollam et al., 2019).
Additional study might investigate the usage of “sim-

pler” and “shallower” model-architectures than that of
PhaseNet, while still feeding the DKPN input or simi-
lar. Such a configuration could help understand the ef-
fects of domain-knowledge onmachine-learningmodel
generalization. In particular, less complex architec-
tures may allow easier setting of meta-parameters dur-
ing the learning stages andbetter explanation of thema-
chine learning models, and produce more robust mod-
els that are easier to debug and improve. However,
if pick characterization tasks other than detection ac-
count formuch of the learning effort during training for
both DKPN and PhaseNet, then the use of CF, inclina-
tion andmodulus waveforms in DKPN is not likely to al-
low reducing the number of layers or otherwise simpli-
fying the underlying CNN architecture inherited from
PhaseNet.
FilterPicker and STA/LTA methods in general require

stabilization after the start of a time-series and after im-
pulsive arrivals; the time of stabilization for FilterPicker
is proportional to the long-term, recursive-filter time-
averaging scale. This stabilization, besides making it
necessary to have sufficient background data before the
first arrival in a time-series, usually degrades picker
sensitivity to arrivals closely followingprevious arrivals,
in particular an S arrival, even when higher amplitude
than the preceding P. This is one reasonwhywe include
in DKPN the instantaneous polarization modulus time-
series, which preserves S amplitude relative to P, and
the inclination time-series, which often changes char-
acter from predominantly up-down to near horizontal
at the S arrival. Future work might investigate if, in
the context of a domain-knowledge, machine-learning
picker, it is possible to modify the FilterPicker CF algo-
rithm to reduce adverse effects of the stabilization with-
out otherwise adversely affecting the overall picker per-
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Figure 12 Results with progression of epoch for models trained with the INSTANCE NANO2 dataset applied to ETHZ trace
samples. Panel a) shows de-meaned and normalized Z, N, E component input seismograms; panel b) normalized, DKPN
FilterPicker Z, N, E CFs, and normalized instantaneous inclination and modulus; and panel c) P (blue) and S (orange) pick
label data (red vertical lines). Panel e) shows PhaseNet (PN) and DKPN Gaussian P (blue) and S (orange) predicted picks after
epoch 15 training. Panel d) shows PhaseNet and DKPN probabilistic P (blue) and S (orange) pick predictions for a sequence
of training epochs; for clarity, the predictions for epochs 1 and 3 are not normalized. For the untrained model (epoch 0) the
predictions are random, non-linearmappings of the input traces. The epoch 0 predictions for DKPN reflect the input CFs and
polarization traces and show a distinct P arrival signature which is not present in the predictions for PhaseNet, which reflect
mainly amplitudes in the near-raw seismograms (continued).
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Figure 12 (Continued) The DKPN probabilistic predictions show in epoch 1 the P arrival as a step-like signal and the S
arrival as a concentrated prediction, in epoch 3 both P and S arrivals as isolated predictions, and from epoch 6 to 15 as stable
predictions, though in epoch 6 the P arrival has both P andSpredictions. PhaseNet obtains an Sbut not P prediction in epoch
3, isolated but noisy P and S predictions starting from epoch 6, and stable predictions between epochs 10 and 15. The slower
evolution of the PhaseNet predictions from near random to clear arrivals through epochs 0-6 support that it is learning both
arrival detection andpicking throughout the trainingprocess. P predictions at the S arrival time for bothPhaseNet andDKPN,
and S predictions at the P arrival for DKPN visible in epochs 3 and 6 are highly suppressed through learning by epoch 10. The
final PhaseNet P and S picks are delayed relative to the label picks, likely due to the emergent amplitude of the arrivals which
is not represented well in the INSTANCE training dataset. The final DKPN picks do not show this delay, likely due to the high
sensitivity of the domain-knowledgepreprocessing (panel b) to changes inwaveformcharacteristics besides amplitude, such
as frequency content.

formance.
Relative to PhaseNet, DKPNhas an increase in overall

training and evaluation time due to the preprocessing
required to derive the 3-component, FilterPicker CFs,
modulus and inclination from the seismogram wave-
forms. However, our calculations in this study show
that the processing time penalty is effectively removed
through code optimization and use of parallel, GPUpro-
cessing. In addition, preprocessing the training dataset
once before training and storing it on disk or in mem-
ory can removemost of the DKPN training time penalty.
Moreover, despite having an increased dimensionality
of input data, DKPN training converges faster (requires
fewer epochs) than PhaseNet (see Supplementary File
S4).

5 Conclusions

Using seismological domain-knowledge, we transform
3-component seismograms into the characteristic func-
tions of a classical, multi-band picker, plus instan-
taneous modulus and inclination. We replace the
near-raw seismogram input of the deep-learning picker
PhaseNet with these transformed traces, forming
DKPN, a modified PhaseNet, and we compare the per-
formance of DKPN and standard PhaseNet with differ-
ent training and testing datasets. DKPN shows some
improvements in performance and generalization over
PhaseNet, and may be applicable with smaller train-
ing datasets. DKPN requires more computation time
than standard PhaseNet due to the additional, domain-
knowledge preprocessing. However, this time penalty
can be removed with code optimization, GPU use,
real-time processing, and storing DKPN preprocessed
waveforms for training. Additionally, DKPN training
time (number of epochs) may be reduced relative to
PhaseNet.
For P arrivals, DKPN shows little or no improve-

ment in performance over PhaseNet in picking the in-
domain, INSTANCEdataset for all training dataset sizes,
and in picking cross-domain ETHZ and PNW datasets
for larger training dataset sizes. These results demon-
strate the power and robustness of the PhaseNet ar-
chitecture for extracting information relevant to pick
detection and characterization from near-raw seismo-
gram waveforms. However, DKPN generally shows im-
proved statistics such as true positive rate and increased
number of picks with small residuals, and sometimes

improved metrics such as F1 score, especially for
small training datasets and for cross-domain testing.
These improvements can be attributed to the addi-
tional information relevant to picking introduced in the
DKPN input data by the rule-based, domain-knowledge
waveform preprocessing. For the purely data-driven
PhaseNet, much of this same picking-specific informa-
tion must be learned by the network in training; the ef-
ficiency and success of this training will depend on the
training dataset being sufficiently large and having sim-
ilar event waveform characteristics to the application
datasets.
The performance of both PhaseNet and DKPN is

worse for picking S arrivals than for P, likelymainly due
to S onsets occurring in the P coda. Both models show
similar S performance for in- and cross-domain pick-
ing on the ETHZdataset, but DKPN shows slightly better
performance than PhaseNet for cross-domain S picking
on the PNW dataset, likely due to the frequent occur-
rence of sharp S onsets on the PNW waveforms which
are less prevalent in the INSTANCE training data.
Overall, our results show that PhaseNet, and perhaps

deep-neural-network pickers in general, have a suffi-
ciently large and complex architecture to learn to ac-
curately map key characteristics of seismogram wave-
forms andphase onset energy into detections andpicks,
including for cross-domain application. This learning
requires comprehensive and high-quality, but not nec-
essarily very large training datasets.
However, given our results, DKPN is of interest for

cross-domain picking when retraining on the target
dataset is not possible, or for cases where training is
needed but can be performed on only a very small
dataset, such as when few manual picks are available.
Further work with DKPN and other, domain-knowledge
augmented machine-learning procedures for picking
and other seismological analyses is warranted to in-
vestigate performance improvements over pure, data-
driven, learning algorithms, especially for small or
highly varied training datasets and for strongly cross-
domain application.
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