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Abstract The aim of this study is to collect information about events in the city of Oslo, Norway, that
produce a seismic signature. In particular, we focus on blasts from the ongoing construction of tunnels and
under-ground water storage facilities under populated areas in Oslo. We use seismic data recorded simulta-
neously on up to 11 Raspberry Shake sensors deployed between 2021 and 2023 to quickly detect, locate, and
classify urban seismic events. We present a deep learning approach to first identify rare events and then to
build an automatic classifier from those templates. For the first step, we employ an outlier detectionmethod
using auto-encoders trained on continuous background noise. We detect events using an STA/LTA trigger and
apply the auto-encoder to those. Badly reconstructed signals are identified as outliers and subsequently lo-
cated using their surfacewave (Rg) signatures on the seismic network. In a second step, we train a supervised
classifier using a Convolutional Neural Network to detect events similar to the identified blast signals. Our
results show that up to 87% of about 1,900 confirmed blasts are detected and locatable in challenging back-
ground noise conditions. We demonstrate that a city can be monitored automatically and continuously for
explosion events, which allows implementing an alert system for future smart city solutions.

Non-technical summary Monitoring infrastructures and operations in cities relies on different
kinds of sensors providing information for local authorities and the general public. In this study we collect
information about events in the city of Oslo, Norway, that produce ground shaking. We focus on blasts from
the ongoing construction of tunnels and under-ground storage facilities under populated areas in Oslo. We
use data from senors in the city, deployed between 2021 and 2023 for example in schools, to identify these
blasts by means of machine learning methods. We are able to detect up to 87% of about 1,900 confirmed
blasts.

1 Introduction
Global estimates for future growth indicate that thepop-
ulation of cities will continue to increase (Brockerhoff,
1999). This growth has caused many cities to upgrade
their infrastructures and to embrace the vision of a
“smart-city” (McKinsey, 2018). Data collection through
different types of sensors represents the base layer for
such solutions. Large data sets are being produced and
need to be automatically processed so that relevant in-
formation can be extracted and transferred to local au-
thorities and the general public to facilitate decisions
and to optimize the performance of cities in areas such
as transport, safety and supply of water and energy (Fis-
cher et al., 2013; Chang et al., 2014; Al Nuaimi et al.,
2015).
Integrating seismic data into the data collection of

such systems is currently not a common and wide-
spread approach, although the potential of urban seis-
mology using seismometers or Distributed Acoustic

∗Corresponding author: andreas.kohler@norsar.no

Sensing (DAS) has already been recognized in previous
studies (Ritter et al., 2005; Díaz et al., 2017; Spica et al.,
2020). To date, this approach is routinely used mainly
for earthquake early warning and fast response in ur-
ban areas with substantial seismic hazard (Kong et al.,
2016), or for monitoring geothermal or other reservoirs
in proximity to cities (Kraft et al., 2009; Hillers et al.,
2020; Fiori et al., 2023). Advantages of using seismic
data to monitor other urban activities compared to, for
example, optical and acoustic systems include better
compliance with General Data Protection Regulations
(GDPR) (Zhang et al., 2017), efficient propagation of sig-
nals in the ground, independence of visibility, and in
general a new type of sensor data not provided by the
other methods.

This study focuses on the city of Oslo, Norway, ad-
dressing common needs of two departments of the mu-
nicipality, i.e., the Agency for Emergency Planning and
the Water and Sewage Department. The Agency for
Emergency Planning is interested in obtaining quick in-
formation about any kind of unusual event that pro-
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duces a seismic signature, e.g., explosions or sudden
massmovements, to facilitate fast emergency response.
An example of such an event was the bombing of a
government building in the city center of Oslo during
the terrorist attack on 22 July 2011 which was recorded
on seismometers in and around Oslo (Bergen Univer-
sity, 2012). The Water and Sewage Department is con-
cerned with monitoring ongoing construction activity
to secure the freshwater supply of the city of Oslo. The
construction of tunnels and under-ground water stor-
age facilities under populated areas started in 2021 and
is planned to be finished in 2028. Furthermore, due
to population growth in Oslo, public transport infras-
tructure is currently extended, i.e., new metro tun-
nels are being constructed below or close to residen-
tial areas. Finally, a tunnel for a main electric power
line under the city has been under construction since
2023. All these construction activities are accommo-
dated by blasts which are partly felt by citizens, which
have raised concerns in the population during a few
documented incidents when the explosion yield was
higher than anticipated.
Explosion monitoring with seismic sensors is a well-

established technique for observing mining and quarry
activities on a regional scale (Gibbons and Ringdal,
2006) or for verifying the Comprehensive Nuclear Test
Ban Treaty (CTBTO) on a global scale (Kalinowski and
Mialle, 2021). More recently it has also been used for
identifying military attacks (Dando et al., 2023). A chal-
lengewith pursuing such an approach in urban areas on
a very local scale andpreferably in real-time, is the pres-
ence of a multitude of other seismic sources and high
background noise levels. Such complex records require
advanced processing methods which may be found in
machine (ML) or deep learning (DL), fields which have
made great advances within seismology in recent years
(Kong et al., 2019; Bergen et al., 2019; Mousavi et al.,
2019; Mousavi and Beroza, 2023; Zhu and Beroza, 2018;
Mousavi et al., 2020; Provost et al., 2017).
In this context, there are two main possible ap-

proaches we can pursue: (1) Identification of so far
unidentified seismic events of interest in an unsuper-
vised manner or (2) using a sufficiently large number
of already identified events of interest to train a classi-
fier in a supervised manner. Approach (1) will be re-
quired inmost cases as an initial step for urbanmonitor-
ing purposes. It can be further divided into clustering,
where the outcome are groups of signals or time win-
dows of potential interest, or outlier detection, where
the target is only aparticular groupof infrequent events.
Clustering can be either done by automatically group-
ing the continuous seismic records (Köhler et al., 2010;
Johnson et al., 2020; Chamarczuk et al., 2020; Seydoux
et al., 2020; Steinmann et al., 2022a,b) or by grouping
pre-detected transient signals (Sick et al., 2015; Jenk-
ins et al., 2021). The features a clustering algorithm
utilizes must be either extracted beforehand (e.g., Köh-
ler et al., 2010) or are extracted automatically by a DL
architecture (e.g., Mousavi et al., 2019). In a broader
sense, simple non-machine learning methods, such as
thewell-knownShort-TermAverageoverLong-TermAv-
erage (STA/LTA) trigger or trigger algorithms based on

other characteristic functions of the seismic waveforms
(kurtosis, spectral amplitudes in different bands, etc.),
may be considered to belong to approach (1). They can
be used directly or combined with clustering for out-
lier detection. Hence, we can consider the STA/LTA
method to be the baseline which ML or DL methods
must outperform. In other words, under certain con-
ditions STA/LTA may still be the most efficient way to
detect events of interest.
In this study, we use passive seismic records acquired

with the objective to quickly detect, classify and locate
urban seismic events, particularly blasts. The use cases
for detecting those events in near real-time include, but
are not limited to, quickly informing the public in case
of ground shaking felt by citizens or quickly identifying
large blasts from construction works or attacks that can
impact public safety and infrastructure integrity due to
potential damage caused to structures (Shallan et al.,
2014; Dowding, 2016; Naveen et al., 2021) or mobiliza-
tion of unstable ground (Bouchard et al., 2018). For this
purpose, a seismic network of low-cost sensors was de-
ployed in target areaswithin the city of Oslo from spring
2021 onwards. We present a DL approach to first iden-
tify target events and then, if target events are sufficient
in number, to build an automatic classifier from those
templates. For thefirst step, we suggest an outlier detec-
tion method for automatic identification of rare events.
These events are then located using their short-period
fundamental-mode Rayleigh wave (Rg) signatures on
the seismic network by means of stacking the observed
travel-time corrected waveform envelopes. We then
identify blasts inside and close to the city limits of Oslo
and use them to train a supervised deep learning clas-
sificationmethod to detect more of these events missed
by the outlier detector.

2 The seismic network
We deployed three-component Raspberry Shake 3D
sensors (Nugent, 2018) at different locations within the
city of Oslo (Fig. 1, Table 1). The network was ex-
tended gradually starting in May 2021, with up to 11
stations recording simultaneously from June 2022 to
July 2023. The sensors were connected to mobile net-
work modems for real-time data transmission and re-
motemaintenance. GPS antennaswere deployedwhere
possible. However, we found that the timing provided
through NTP (Network Time Protocol) was sufficient at
a few sites where free view to the sky could not be estab-
lished. Sensor locationswere in the basement of private
businesses, private houses, andpublic school buildings.
The first batch of sensors (ALNN1-4, ALNN7) was de-
ployed with a dense layout in an area with quick clay in
the sub-surface in the Eastern part of Oslo (Alna area)
to allow for near-surface structural monitoring using
ambient noise and detection of possible ground move-
ments, a task which will be described in a future study.
ALNN2 was removed after a few months in November
2021 due to construction activities in the host building.
More sensors were deployed to the North of that area
(ALNN5, ALNN6, ALNN8) and towards the city center
and the Western part of Oslo (EKBG1, OSLN1-OSLN5).
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The latter batch of sensorswas located closer to the area
of activity related to the construction of tunnels and
an underground cavity for freshwater storage (Fig. 1),
where the excavation is mostly done by blasting. All
data are recorded continuously with a 100Hz sampling
rate, and the corner frequency of the sensors is at about
0.5Hz. In addition, we use two permanent seismic sta-
tions equipped with broadband seismometers, one lo-
cated on the university campus (OSL, part of Norwe-
gian National Seismic Network) (Ottemöller et al., 2018,
2021) and the other one outside the city, to the Southeast
of Oslo (OFNS2, not on map in Fig. 1).

3 Methods
Our aim is to detect rare or unusual seismic events ob-
served on the deployed network using an outlier detec-
tion method. In contrast to a standard STA/LTA trigger
approach, we do not want to simply detect all transient
signals in the data stream. Frequently and regularly oc-
curring urban events or noise bursts only recorded at
single stations are not the focus of this study, although
for example traffic monitoring with seismic data might
be another topic of interest in urban seismology. Out-
lier events in our definition are singular or repeating
events, but the latter not dominating the record, i.e.,
occurring not more than a few times per day. Hence,
here we do not pursue a full clustering of all occurring
signal and noise classes using ML, DL or other big data
methods as done in previous studies (Köhler et al., 2010;
Yoon et al., 2015; Seydoux et al., 2020; Steinmann et al.,
2022a). However, it should be noted that clustering can
be used for outlier detection. It would require to iden-
tify the event cluster of interest, i.e., the rare events.
However, we decided to not pursue this approach fur-
ther since we want to avoid the manual step to identify
the outlier cluster. Furthermore, rare events may not
necessarily be caught up in a distinct cluster.
Our workflow begins with identifying and collecting

these repeating outlier events based on their origin lo-
cations and, if a sufficient number of observations has
been collected, building a supervised classifier with la-
beled training data to more reliably detect those events
in continuous data. Doing so, we have an outlier de-
tection method available shortly after the start of the
measurements which is flexible enough to pick up new
events, while the supervised classifier can be gradually
enhanced during the course of the seismic deployment
by training it with newly identified events.

3.1 Outlier detection
Auto-encoder neural networks are popularmethods for
dimensionality reduction (Wang et al., 2016) and to
identify anomalies or outliers in time series data (Yin
et al., 2020; Thill et al., 2021). The idea is to use a Convo-
lutional Neural Network (CNN) to reduce the dimension
of the input time series, here three-component seismic
waveforms with T time samples per component, using
a series of convolutional layers or filters, and then use
the resulting latent features to reconstruct the signal
with amirroredmodel neural network structure (Fig. 2).

In seismology this approach has been mostly adapted
for data compression and interpolation (Navarro et al.,
2019; Zheng and Zhang, 2020; Nuha et al., 2020). Fur-
thermore, Valentine and Trampert (2012) highlighted
the potential of auto-encoders for various applications
in seismology. Mousavi et al. (2019) used an auto-
encoder model to extract features suitable for unsuper-
vised clustering. If data compression is the goal, the
number of latent features should be low. However, our
objective here is not primarily to compress data, and
therefore we tested different dimensions from no com-
pression at all, i.e., number of latent features is equal to
3T , down to a latent dimension of T . Our final choice
with best performance is a number of 2T latent fea-
tures, i.e., a data compression by 33% (see supplemen-
tary Figure S1 for a comparison).
If the auto-encoder is trained using a continuous (un-

labeled) seismic record, which is representative for a
particular station,waveformsof regularly occurring sig-
nals and background noise should be reconstructed
well by the model. If a signal is not reconstructed well
enough, it can be considered to be an outlier. This ap-
proach has some relation to an auto-regressive model,
which predicts a time series based on previously ob-
served data and which is well known in seismology for
its ability to detect the onset of seismic arrivals (Leonard
and Kennett, 1999). However, similar to the STA/LTA
method, an auto-regressive model is sensitive to all
(including frequently occurring) transient signals with
different characteristics than the background noise, a
property which is not desired in our case.
We train auto-encoder models for single stations us-

ing the vertical and both horizontal components. Here,
we use two stations with comparable low background
noise levels as trigger stations: EKBG1 southeast of the
city center and OSLN2 to the west of the city center
(Fig. 1). The auto-encoder is trained for the two sites and
then applied to time windows including STA/LTA detec-
tions obtained from the continuous data. Doing so, we
aim to select only those STA/LTA triggered signals that
can potentially be of interest. A future extension would
ideally include outlier triggers on all stations. However,
since in this study we are only interested in locatable
events observed simultaneously on several stations of
our network, we found it to be sufficient to trigger only
on these two stations, since all locatable events are ob-
served on at least one of these.
The auto-encoder input differs slightly for both

stations, and also the selection of training data is
done in a different manner. For OSLN2 the train-
ing data is a continuous record of eight consecu-
tive days (02/06/2022–09/06/2022) band-pass filtered be-
tween 0.3–12.5 Hz. The size of the input time segment
fed into the auto-encoder is T = 512 samples (see Fig. 2)
for each component. For EKBG1 we use a higher num-
ber of samples (T = 1024), partly because this record
visually appeared a bit more complex (frequent tran-
sients). A band-pass filter between 0.3 and 25 Hz is
used to potentially also capture outliers with higher fre-
quency content. The training data for EKBG1 are 90
time periods of continuous data of 6 hours’ duration
each, selected between 02/11/2021 and 14/03/2022. The
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Name Longitude Latitude Recording time Location
ALNN1 10.8582 59.9336 08.06.2021-30.09.2023 Alfaset graveyard
ALNN2 10.8497 59.9282 09.06.2021-15.11.2021 private business
ALNN3 10.8452 59.9300 21.05.2021-30.09.2023 private business
ALNN4 10.8480 59.9314 09.06.2021-30.09.2022 private business
ALNN5 10.8336 59.9409 25.09.2021-30.09.2023 Linderud public school
ALNN6 10.8353 59.9405 29.09.2021-30.09.2023 Linderud public school
ALNN7 10.8464 59.9302 30.09.2021-30.09.2023 private business
ALNN8 10.8373 59.9411 15.11.2021-22.01.2023 Bjerke public school
EKBG1 10.7581 59.8974 03.11.2021-30.09.2023 Kongshavn public school
OSLN1 10.7694 59.9552 27.04.2022-30.09.2023 private house
OSLN2 10.7062 59.9415 01.06.2022-30.09.2023 Vinderen public school
OSLN3 10.7328 59.9425 01.06.2022-13.09.2023 Ullevål public school
OSLN4 10.6548 59.9415 24.10.2022-24.06.2023 Hovseter public school
OSLN5 10.7670 59.9650 10.06.2023-30.09.2023 private house
OSL 10.7227 59.9372 permanent NNSN station
OFSN2 10.9108 59.8401 permanent NORSAR station

Table 1 Seismic stations used in the study.

Figure 1 Map of the city of Oslo (OpenStreetMap contributors, 2017) draped on the Digital Elevation Model (DEM) at 10 m
resolution, with infrastructure, potential seismic source areas and seismic stations. Map location is shown on the top left
inset. (A, B) Close-ups of two areas in Eastern Oslo with denser seismic deployment. Stations which were used for STA/LTA
triggering and outlier detection are marked with orange circles.
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Figure2 Auto-encoder architecture consistingof several down-sampling andup-samplingblocks shown indetail above the
neural network. T represent the number of time-steps of one component. After down-sampling, the output is flattened and
a dense layer is used to create the latent dimension (2T ). The latent dimension is reshaped and used as input to the series of
up-sampling blocks. Finally, a single convolutional layer is used to construct the output of the network. Each convolutional
layer uses between 64 and 256 filters with a kernel size of 7. Input and output signals are cross-correlated to detect badly
reconstructed events with low correlation coefficients, i.e., outliers.

motivation for this selection was to exclude visually de-
tected blast signals from the training. Thiswas achieved
by manually screening a selection of days, from which
the 6 hour-long time windows were then chosen. We
did not pursue the same approach for OSLN2, which
was implemented later, since we found that keeping the
rare outlier events in the training data did not impair
detection performance. In general, we found it to be
more important that representative noise records are
included (i.e., day and night, weekday and weekend),
rather than making sure that outlier events of interest
are excluded from the auto-encoder training. All wave-
form time windows are normalized with minimum and
maximum amplitude before being fed into the auto-
encoder.
We apply an STA/LTA detector with a low threshold

(STA length = 0.5 s, LTA length = 10 s, STA/LTA threshold
= 4) to continuous three-component data, and if all three
components exhibit a coincident trigger, a detection is
declared. We then apply the auto-encoder method to
a time window around each detection (same duration
as training data). One way of evaluating the quality of
the auto-encoder signal reconstruction, i.e., to identify
an outlier signal, is to compute the normalized correla-
tion coefficient of the original and reconstructed seis-
mic traces (Fig. 2). We also tested using the recon-
struction loss, i.e., RMS value of the observed and re-
constructed waveforms, for outlier detection. However,

we found the correlation value to be more suitable to
identify outlier events which are mostly blasts in our
case. A comparison of RMS and correlation values of
all STA/LTA detections and confirmed blast signals at
station OSLN2 is provided in the supplementary Figure
S4, showing that the RMS is not a good discriminant for
blasts in our case.

Figure 3 shows examples of one outlier event and
three STA/LTA detections not recognized as outliers at
each station (OSLN2 (a-d) andEKBG1 (e-h)). The correla-
tion between original and reconstructed traces formost
data is in general very high, i.e., larger than about 0.8.
Using a lower/higher latent dimension would compress
the seismic data more/less, which would increase/de-
crease the construction loss and decrease/increase the
correlation. We found the current dimension of the
auto-encoder to be optimal for our task. However, it
must be tuned for each new data set. Figure 3a and
e show seismic signals which were later confirmed as
blasts. Particularly, the vertical component waveforms
are not well reconstructed. Hence, both exhibit com-
parably low correlation coefficients (0.6 and 0.84) in re-
lation to the other STA/LTA detected transient signals.
The latter aremanually identified as regularly occurring
noise bursts, including signals originating from very
close to the sensors.
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Figure 3 Comparison of recorded three-component waveforms (blue) and waveforms predicted by auto-encoder (orange)
for stationOSLN2andEKBG1. STA/LTA value and correlation coefficient between traces are given in eachpanel. Twodetected
outlier events, marked red in a) and e), are confirmed blast signals. The other transient signals triggered by the STA/LTA
method were not detected as outliers due to higher correlation.

3.2 Locations based on Rgwaves

Once an outlier is detected at station OSLN2 or EKBG1,
the remaining stations are used in addition to attempt
an automatic location. P and S wave arrivals would
be needed for traditional event location based on on-
set time readings, but are not observed for the majority

of events due to high noise levels. However, we found
the Rg wave, which is a short-period Rayleigh wave in
the Earth crust typically observed for seismic sources
close to the surface, to be well recorded over the en-
tire network between 0.8 and 2 Hz. In order to use
Rg for event location, we first compute envelopes of
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the band-pass filtered vertical component data and dis-
card stations with Signal-to-Noise Ratios (SNR) below
7.0 (OSLN2) and 6.2 (EKBG1). If a minimum of four
stations are left, we perform a 2D gridsearch to find
the event source location maximizing the stacked time-
shifted envelopes of all stations, an approach similar to
stacking and migration methods developed for seismic
event localization (Gharti et al., 2010). ForRg travel time
computation we assume a velocity of 2.0 km/s which we
found to fit observed Rg waves with plane wave fronts
travelling over the network from a known source at a
large distance. The extent of the gridsearch is from
10.55 to 11.0 degrees longitude and 59.86 to 60.0 degrees
latitude. The step width is 0.01 degrees in longitude
and 0.005 degrees in latitude. In addition to maximiz-
ing envelope stacks, we estimate the Rg back-azimuth
from three-component data for the stations above the
SNR threshold. This is done by finding the rotation an-
glemaximizing the amplitude on the radial component.
The 180 degree ambiguity is avoided by selecting the di-
rection whose correlation coefficient between the verti-
cal andHilbert-transformed radial component of theRg
wave is positive. The weighted back-azimuth residual
of each location grid point is subtracted from the stack-
ing amplitude. The grid point maximizing this value is
taken as the source location. Based on the location, we
assign to each confirmed and locatable outlier a label
corresponding to different construction areas in the city
of Oslo.

3.3 CNNs for blast classification

The supervised classifier is a Convolutional Neural Net-
work (CNN) which takes three-component waveform
data of a single seismic station as input (Fig. 4). The
method uses the well-established AlexNet architecture
(Krizhevsky et al., 2012) and is loosely based on the
model we used in Köhler et al. (2022) to classify calv-
ing events in the Arctic. We train a two-class model
distinguishing STA/LTA detections of blasts in Oslo and
all other detections (noise and other events). Here, we
only use station OSLN2 to train and test the classifier.
The model consists of a layer to randomly crop the in-
putwaveforms, five convolutional layerswith batchnor-
malization and max-pooling, and finally two dense lay-
ers which process the flattened output of the convolu-
tional layers and generate the output probabilities. We
use 26 s as input time window duration around each
blast which is cut to 22 s by random cropping. For the
noise class we use a time window of waveform data of
the same duration before each blast detection such that
the classes are balanced. The hyper-parameters con-
trolling size of convolutional filters and type of pool-
ing are tuned with KerasTuner (Chollet et al., 2015).
In the tuning process, the number of filters in each of
the five convolutional layers was kept constant. Keras-
Tuner uses ranges of hyper-parameters (filter length be-
tween 3 and 49) and different options (max vs. average
pooling) as input and searches the parameter space to
optimize the classification accuracy. The final hyper-
parameters are shown in Figure 4.
For the final classifier, we use a stratified 5-fold cross

validation, i.e., five different models are trained, each
using 80% of the shuffled data (confirmed blasts from
the outlier detection and the noise class examples) for
training and 20% for validation. When applying the
classifier for prediction, the averaged probabilities for
blast andnot blast of these fivemodels are used. Finally,
we have to set a probability threshold for detecting a
blast. We can either use a threshold of 0.5, i.e., select
the winning class, or require a higher confidence for a
blast to be detected using a higher threshold.

3.4 Reference blast detections based on
STA/LTAmethod

For evaluating the outlier detection method and the
blast classifier, we would need complete ground-truth
data about blast occurrence in the city of Oslo, which
turned out to be difficult to obtain. Alternatively, we
canvisually screenall potential seismic events observed
on the network. This will not allow us to assess the
network’s detection sensitivity, but rather the detection
method’s ability to recognize all recorded blasts. Since
our methods use STA/LTA detections as input, we cre-
ate our reference event catalog by processing all these
STA/LTA detections in the sameway we process the out-
liers, i.e., attempt a Rg wave based localization and la-
bel the recognized blast signals in the different parts of
the city. This resulted in 1,870 blasts located within the
study area between November 2021 and October 2023.
We use the recall and precision metrics to evaluate

all deep learning models with respect to this data set.
We want to achieve a high recall (high number of rec-
ognized blasts) and high precision (low number of false
triggers). In contrast to a conventional event detector,
the decision on what is a false and what is a true posi-
tive is amoving target for an outlier detector. Additional
events not being part of the reference data could still
be events of interest. Nevertheless, we can still use the
recall-precision metrics as a proxy to compare model
performance relative to each other. To decide on deci-
sion thresholds for the outlier detector (correlation co-
efficient) and blast classifier (blast probability), we eval-
uate recall-precision curves provided in the supplemen-
tarymaterial. We compute the performancemetrics be-
fore event localization sincewewant to include unlocat-
able events.

4 Results of outlier event detection

After visual inspection ofmany signals detected onmul-
tiple days as well as evaluating recall and precision,
we finally set the outlier detection threshold to 0.86 for
EKBG1 and 0.78 for OSLN2. Supplementary Figure S1
shows recall-precision curves for outlier detectors at
OSLN2. The optimal detection threshold corresponds
to correlation coefficients producing a recall-precision
point closest to the upper-left corner. Note that pre-
cision will increase after applying the automatic loca-
tion procedure because false alarms are usually unlo-
catable events. The distribution of correlation coeffi-
cients at stations OSLN2 and EKBG1 in relation to the
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Figure 4 Architecture of the deep Neural Network of the blast classifier.

chosen thresholds are provided in supplementary Fig-
ure S5.
Figures 5, 6 and 7 showmaps of stacked envelope am-

plitudes and the best location estimates for several blast
signals detected as outliers. The events in Figure 5a–
c are blasts related to the construction of underground
water tunnels and storage facilities at the Stubberud,
Oset, and Huseby sites (see also Fig. 1). Figure 6 shows
a blast at the Losby quarry East of Oslo, a blast at the
metro tunnel construction site at Bryn, and a blast from
a construction site for a new electric power line tunnel
in Sogn. For the latterwe have a ground-truth confirma-
tion of location and blasting time. Figure 7 shows three
blast signals for which we also have ground-truth times
and locations. They originate from the construction of
the newmetro tunnel for the Fornebu line in theWest of
Oslo, about 3 km south of the underground water stor-
age construction site. The precise locations were pro-
vided to us and the public with an uncertainty of about
100m.
The spatial distribution of stacking amplitudes shows

as expected that the resolution strongly depends on
the event location. Outside of the network, resolution
is poorer and consequently the blast locations are not
well-constrained. This can be observed as broader am-
plitude maxima to the West and East of Oslo, as well as
biases with respect to the ground-truth locations. Note
that since OSLN4 was not deployed before October 2022
and produced corrupted data from summer 2023 on-
wards, poor resolution is also expected for locations at
theHuseby construction site for events outside this time
interval. As a consequence, blasts from the Fornebu
metro tunnel and the water storage site cannot always
be discriminated. However, as the comparison with
ground-truth location shows, the accuracy is very good
when the entire network was in operation (see Fig. 5, 6
and 7).
Figure 8a shows all locatable outliers triggered at

OSLN2 and EKBG1 in the study period (1,272 events).
Two different symbol colors are used to distinguish the
time period of complete and incomplete station cover-
age (see Table 1). Almost all events are located inside
or close to areas of known construction or quarry blast
activities. Clusters of events are indicated, of which
we have already seen examples above. By far the most

blasting activity is observed to the West of the city cen-
ter, i.e., the Huseby and Fornebu constructions sites.
Events are well-located during complete station cover-
age, while a number of blasts tend to be falsely located
westwards from Huseby when the westernmost station
OSNL4 was not in operation. Note that we have filtered
out distant events (blasts from distant quarries and re-
gional and teleseismic earthquakes) since they are usu-
ally falsely located at the edge of the grid search region
or in the center of the network if the incidence angles
are steeper.
Figure 8b shows the corresponding time line of locat-

able outliers. Before July 2022 only stations with high
noise levels in the east of Oslo were in operation and
consequently only a few events are observed. For the
rest of the study period, there is a lot of blasting activ-
ity with up to 10 events per day and about 4 per day on
average. Pauses in the blasting during public holidays
(Easter and Christmas break) and school holidays dur-
ing summer are clearly visible. Figure 9 presents more
detection statistics for all located blasts. Time of day
and day of week distribution are consistent with blast-
ing which usually ceases on Sundays and during night-
time (Figure 9d and e). Local seismic magnitudes of
blasts are between -0.5 and 1.5 (Figure 9c).
The temporal distribution of blasts in the reviewed

reference data set is shown in the background of Figure
8b. A high percentage of these events are recognized
as outliers (69%). However, 31% of visually identified
blasts are not found (i.e., false negatives; 520 events).
A closer look at the distributions of STA/LTA ratios of
all events in Figure 9a and b, as a proxy for SNRs, gives
an explanation for those results. The distribution of ra-
tios are shown for all locatable outlier events, for all
detected outliers (including those that were not locat-
able), and for all STA/LTA detections. Note that logarith-
mic scales for number of detections are used. The com-
parison shows that STA/LTA detections at OSLN2 with
STA/LTA ratios above 10 are almost all classified as out-
liers, themajority being also locatable as blasts (Fig. 8a).
In other words, there would be no need for an outlier
detectionmethod for those events, andwe could simply
use the STA/LTA detections directly to monitor blasts.
However, towards lower SNRs the picture changes. We
obtain an increasing number of STA/LTA detections, the
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b) Construction blast Oset

a) Construction blast Stubberud

c) Construction blast Huseby

Figure 5 Map of Oslo region overlayed with stacked envelope amplitudes (normalized). High amplitudes indicate more
likely event location. The best location (orange cricle) and seismic stations (triangles) are shown. The star symbols and
their extents indicate the areas of known blasting activity. On the right-hand side the vertical component seismic data for all
stations are shown. Orange data indicate low-pass filtered envelopes enhancing Rg arrivals.

majority not being locatable events, probablymostly lo-
cal noise bursts. The outlier detectionmethod allows us
to reduce the number of detections to be screened for
location considerably. For the lowest SNRs we obtain a
number of locatable STA/LTA detections which turned
out to be blasts not detected as outliers (red bars). This
indicates that our outlier detection method has limi-

tations in recognizing weak events. We will deal with
thesemissed events when applying the supervised blast
classifier. It is worth emphasizing that visual inspection
of the unlocatable outliers at OSLN2 revealed clear blast
signals which were not observed on more than three
stations. Four examples are included in supplementary
Figure S6. This shows that the outlier detector com-
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a) Quarry blast Losby

b) Construction blast Bryn (metro tunnel)

c) Construction blast Sogn (power line tunnel)

Figure 6 Same as Figure 5. Note that smaller size of star in (c) indicates more certain (ground-truth) blast location.

bined with a denser station network would have recog-
nized even more blasts.

For EKBG1 (Fig. 8b) there are a few more detections
with high SNRs that are not classified as outliers. The
major difference to OSLN2 is that fewer outliers turned
out to be locatable events which could be identified as
blasts. In other words, a lot of outliers are seismic
events at EKBG1 which are not observed on other sta-
tions. Given that we know that blasts are usually picked
up by at least twomore stations, it is likely that these are

mostly local noise bursts around EKBG1 that cannot be
explained by normal backgroundnoise fluctuations and
hence are not well-reconstructed by the auto-encoder.
However, it is worth emphasizing that many STA/LTA
are still removedbyoutlier detection,which reduces the
amount of detections to be screened for possible local-
ization.

10
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a) Construction blast Fornebu metro (Lysaker)

b) Construction blast Fornebu metro (Skøyen)

c) Construction blast Fornebu metro (Frognerparken)

Figure 7 Same as Figure 5. Note that smaller size of stars in all panels indicate more certain (ground-truth) blast locations.

5 Results of blast classifier

Ideally, we need to train a classifier with data from sev-
eral stations so that it generalizes well enough and can
identify blast signals in the data from different stations.
As also discussed below, the reason for starting with a
classifier trained for a single station (OSLN2) is the lim-
ited number of blasts observed on all stations which re-
sults in an unbalanced training data set with respect to
event location and observing stations. However, a few

stations close to OSLN2 have a comparable number of
observations and could be included in the training. We
will come back to this in the discussion section.

We train the blast classifier with waveforms from
OSLN2 including all 1,272 blasts from different areas in
Oslo detected as outliers at OSLN2 and with the same
number of noise examples. The reason for not using all
1,870 signals in the reference data set is that we want to
simulate aworkflowwhereweonly trainwithblasts pre-
viously detected by the outlier detector, excluding those

11
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Figure8 a) Located seismic events fromoutlier detection. Clusters andnumber of blasts are indicated. b) Time line of those
events together with all observed andmanually confirmed blast STA/LTA detections.

that we only identified after screening all STA/LTA de-
tections. The classification performance metrics of the
best model of all five folds using data not used for train-
ing are shown in Table 2. We achieve high values for
both precision and recall.
Next, we apply the classifier to all 29,058 STA/LTA de-

tections at OSLN2 in the time period from 01/06/2022
until 28/09/2023. We use a probability threshold of 0.5,
i.e., picking the winning class (blast vs. not blast) as
well as 0.7 to test different confidence levels. Figure
10a shows the time line of 1,385 classified and locatable
blasts using a threshold of 0.7 together with the refer-

Class Blast Not blast
Precision 0.92 0.95
Recall 0.94 0.93
F1 0.93 0.94
Accuracy 0.93

Table 2 Performance of blast classifier on validation data.
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a) Number of detections vs. STA/LTA (OSLN2) b) Number of detections vs. STA/LTA (EKBG1)

d) Time of day of locatable eventsc) Local magnitude of locatable events e) Day of week of locatable events

Figure 9 Statistics of STA/LTA and outliers detections, and locatable blasts.

ence data set. In comparison with the outlier detec-
tor (Fig. 8b), more blasts are recognized. When we use
our reference data set, which includes 1,870 blast man-
ually identified by screening all locatable STA/LTA de-
tections, as ground-truth for evaluation, the recognition
rate increases from 69 to 80%, and the number of False
Negatives decreases to 371 events. A number of 22 False
Positives are either blasts outside the study area, which
we did not include in the reference data set of locatable
blasts, or are local signals at OSLN2which are randomly
associated with Rg wave-like signals at other stations.
Of all STA/LTA detections, 424 events are classified as
blasts but are not locatable. As with the outlier detector,
these events are not necessarily false, but are simply not
observed on more than three stations, which would al-
low for a reliable location and for being included in the
reference data set (supplementary Figure S6 shows ex-
amples). In fact, we checked a selection of these detec-
tions manually and found that almost all of these show
clear blast-like signatures at station OSLN2 and OSLN3.
Hence, in relation to the high number of tested STA/LTA
detections (29,058), the actual number of false classifi-
cation is negligible if the goal is to provide real-time in-
formation about ongoing blasting at construction sites.
However, if the goal is early warning in case of unusual
events (accidents, attacks), any false detection should
be avoided and other data have to be included before
issuing an alert.

For a probability threshold of 0.5 the blast recogni-
tion rate increases further to 87%. As themaps inFigure

10b–c show, this is partly due to more of the underrep-
resented blasts in the north and east of Oslo being cor-
rectly classified (compare Fig. 10b and c). It is expected
that those events yield a lowerblast probability since the
training data is unbalanced with respect to event loca-
tion. However, there are also more False Positives (77)
and about 100 more unlocatable events (519) compared
to using the high threshold. Visually inspecting those
100 additional events revealed that about 30% look like
blasts, but are not locatable because they are observed
on only one or two stations. However, the rest (70%) are
now actual false detections which we would avoid with
a higher threshold.

6 Discussion
We present a prototype for an automatic urban seismic
monitoring system which identifies any potentially in-
teresting event as well as routinely detects previously
identified events. Our system is based on a low number
of low-cost seismic sensors and was running for almost
two years. We demonstrate that with comparably low
effort when it comes to upgrades of the sensor infras-
tructure, a city can be monitored continuously for ex-
plosion activity. In our case this includes construction
blasts, but there is no reason for other types of explo-
sions, such as accidents or deliberate attacks, not to be
detected as long as there is sufficient coupling with the
ground.
An alternative approach to identify events of inter-
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Figure 10 a) Time line of locatable STA/LTA detections classified as blasts by the CNN model in comparison to reference
blast data set. b–c) Locations of classified blasts using a probability threshold of 0.7 (a) and 0.5 (c). Orange symbols are for
complete and blue symbols for incomplete network operation. Black triangles show seismic stations.

est in an unsupervised fashion would be to apply re-
cently developed (deep) clustering methods (e.g., Sey-
doux et al., 2020). While adapting such methods and
comparison of the results with our method would go
beyond the scope of the current paper, we encourage
further studies to compare both approaches. The main
reason why we did not choose a method to identify
outlier events via clustering, is the additional need to
identify the cluster(s) of interest and the risk that out-
lier might be too rare to form separate clusters. We
found that an auto-encoder is a relatively easily imple-
mented and trained alternative (compared to more so-
phisticated deep learningmodels), and is not difficult to
tune for each station. The only tuning we did for each
new station was the selection of the training data, the
number of samples in the input time window, and the
latent dimension if the auto-encoder. We identified the
sample number and latent dimension to be themost im-
portant parameters, while the rest of the model archi-

tecture, hyper-parameters, and the choice of training
data (except that it should cover different noise condi-
tions at different times) does not need to be adapted for
each station.

There are different possibilities for improving the sys-
tem. First and most important, the seismic station net-
work can be extended by covering a larger area and by
increasing station density. This will improve location
accuracy, especially outside the current network area
beyond the city limits. A denser sensor deployment will
also enable locatingmore events that so far are only ob-
served on a single or two stations and are, therefore,
not locatable with our Rg wave stacking approach. This
would also allow us to potentially run the outlier de-
tector on more than two stations simultaneously and to
locate the detected events with more stations that are
close-by.

Secondly, the detection process could be further im-
proved. The outlier detector could be retrained regu-
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larly since local noise conditions around each station
may have changed over time. Furthermore, more work
can be done to further tune the neural network archi-
tecture of the auto-encoder to optimize outlier detec-
tion at different seismic stations. One could also further
investigate if the same outlier detector model can be
applied to different stations despite of station-specific
background noise conditions and sub-surface-related
site effects. To test this we already trained an additional
auto-encoder model with combined data from stations
OSLN2 and OSLN3. We then applied this and the orig-
inal model for OSLN2 to both stations and compared
the results. The outlier detector performance con-
firmed our choice to make the detector station-specific
(see recall-precision curves in supplementary Figure
S2). While we found best performance with the current
model, we acknowledge the high number of latent fea-
tures. However, this is not an issue as such since our
goal is not data compression but outlier detection. A
more systematic study of outlier detector performance
for decreasing the number of latent features beyond the
tests we presented here may help to further optimize
the detection rate.
We train the supervised blast classifier with a com-

parably low number of data points. Longer recording
periods will increase the available data and, thus, most
likely improve classifier performance. Alternatively, it
is possible to augment the existing training data with
noise or other seismic signals (Köhler et al., 2022). This
is of particular importance for areas with infrequent
blasts which are currently not well-represented in the
training data and are therefore less likely to be correctly
classified (events in the east of Oslo). We only used a
single station to train the classifier. Consequently, the
model learns station-specific features and does not gen-
eralizewell. However, ideallywewould need a classifier
which generalizeswell enough to detect blasts on all sta-
tions. We started to explore training a single classifier
with waveform data from all stations, either using inde-
pendent input data (three-component waveforms from
different stations) or using multiple channels from dif-
ferent stations in one data sample as input. However,
we found that both approaches requiremore and better
balanced training data when it comes to blast detection.
We trained a model using data from two stations in the
west of Oslo (OSLN2 and OSLN3). Supplementary Fig-
ure S3 shows that the generalization ability is not satis-
factory. The classifier trained on OSLN2 and applied to
OSLN3 does not perform well at all. The model trained
on both stations and applied separately to both stations
performs better at OSLN3, but still clearly worse than
our preferred model. The model trained on both sta-
tions andapplied toOSLN2performs slightlyworse than
the original model we used above. With longer time se-
ries of blasts being available in future, we would like
to generalize the blast classifier for more stations, and
most important, for other source areas.
The SNRs of many detected blasts in our study are

rather low (see Fig. 9a and b) which is expected for
an urban environment. This naturally impacts the per-
formance of the outlier detector, as discussed above, as
well as to someextent theblast classifier. Again, thebest

way to deal with this issue is a larger training data set to
better represent noisy waveform data.
For evaluating our methodology we used a manually

compiled data set of locatable blasts in the city of Oslo.
We have shown that the outlier detector detects about
70% of those events. The classifier specifically trained
to detect blasts increases recognition rate to 80%. If the
goal ofmonitoring is to detect asmany real blasts as pos-
sible while accepting a number of false alarms, the clas-
sifier performance can be improved further up to 87%
by using a lower probability threshold. In general, our
outlier event detector andblast classifier generate a very
low number of false alarms. We encountered randomly
associated Rg waves producing false events in less than
1% of the locatable outlier events. However, this is
partially due to the combination with the Rg-based lo-
cations procedure which sorts out many unlocatable
events. Nevertheless, even without event location, the
amount of events to be processed is reduced consider-
ably compared to simply applying an STA/LTA detector
and attempting to locate all those events. Furthermore,
we found also many real blast signals among the out-
liers being unlocatable due to limited station density.
With larger training data and denser seismic networks,
we therefore expect the benefit of our methodology to
become even more evident.
A system such the one we have proposed has to be

adapted and modified when deployed in another city.
Themost critical parts are the existence of a station net-
work with sufficient resolution for event location and
the deployment of a functional outlier detector. If all
signals of interest have a high SNR, it may be sufficient
to simply use an STA/LTA detector combined with Rg-
wave based location for outlier detection. However, the
supervised blast classifier would still be part of such
a system. Before deploying the network and selecting
stations for the outlier detector, potential source loca-
tions for blasts, e.g., construction sites, or infrastruc-
ture to bemonitored should be identified. From our ex-
perience, the Rg waves of blasts needed for localization
can be observed at up to about 12 km distance, whereas
blast signals detected as outliers require stations at not
more than about 6 km distance. Furthermore, adaption
to other stations in another city requires retraining of
the DL models. The outlier detector does not require
a large data set for this. After 2-3 weeks there should
be sufficient wave field variability captured to train the
auto-encoder(s). However, the blast classifier would re-
quire rather frequent blasting to gather enough events
for training the CNN; from our experience around 1,000
events are needed. This might be a limitation of our
work flow in areas with infrequent blasting.
The final question is how our system can be inte-

grated into a smart-city solution. The simplest objec-
tive could be to provide the general public with real-
time information about event locations on a publicweb-
dashboard or through a mobile app. If citizens felt
ground shaking, they can easily check if it was related to
any known construction site. If the goal is early warn-
ing in case of unusual events (accidents, attacks) and
the seismic monitoring system is supposed to automat-
ically alert the city authorities and possibly the pub-
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lic, combination with other data sources available to
the stakeholders may be needed to avoid false alarms.
All data layers combined could then provide automatic
alerts and initiate further actions. For example, we en-
vision that the recorded ground motion could be uti-
lized to predict potential damage of infrastructure and
buildings categorized on the European Macroseismic
Scale (EMS-98). Ifmost detected events are construction
blasts as in our case, automatic monitoring can still be
useful in a smart-city application, for example to alert
about blasts above a certain magnitude or amplitude
threshold in areas with unstable ground such as quick
clay.

7 Conclusions
The objective of this study was to detect events in the
city of Oslo, Norway, that generate seismic signals. To
this end, we have successfully developed a prototype of
an automatic urban seismic monitoring system using
input data from low-cost seismic sensors deployed be-
tween 2021 and 2023. The work flow of our system in-
cludes two deep learning methods: the first one iden-
tifies rare events using an event outlier detector based
on an auto-encodermodel and the second one classifies
events of interest using a CNNmodel trained in a super-
visedmanner. Bothmethods usedwaveforms of signals
as input, which were pre-detected using the traditional
STA/LTA triggermethod. For both evaluating the outlier
detector and training the event classifier with events of
interest, we relied on locating the seismic signals using
Rg waves observed on the seismic network.
The results of our approach impressively reveal ongo-

ing construction activity and their temporal variation in
the city of Oslo. From about 1,870 construction blasts in
different areas during 22months ofmonitoring generat-
ing locatable seismic signals on our network, the outlier
detector recognized 69%. The classifier trainedon these
blasts was able to detect between 80 and 87% of those,
many with low Signal-to-Noise ratios. At the same time,
the false detection rate is very low. In absolute num-
bers, the automatic system was able to retrieve 1,271 of
themanually identifiedblasts in the initial outlier detec-
tion step, and between 1,385 and 1,627 blasts, depend-
ing on the detection threshold, using the blast classifier.
The performance of our prototype system could be

improved by expanding and densifying the seismic net-
work as well as increasing the training data with more
blast records. However, we demonstrated that even
with a low number of seismic sensors, a city can be
monitored automatically and continuously for explo-
sion events. This opens up new possibilities to include
seismic records into the sensor data stream of future
smart city solutions. We are therefore confident that
the outcomeof ourpilot study represents a robust proto-
type system for urban explosion monitoring in the city
of Oslo and possibly elsewhere.
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