
Production Editor:
Gareth Funning
Handling Editor:
Bradley Lipovsky

Copy & Layout Editor:
Kirsty Bayliss

Received:
January 17, 2024

Accepted:
June 12, 2024

Published:
July 30, 2024

REPORT
doi:10.26443/seismica.v3i2.1184

DASCore: a Python Library for Distributed Fiber Optic
Sensing

Derrick Chambers � ∗ 1, Ge Jin � 2, Ahmad Tourei � 2, Abdul Hafiz Saeed Issah � 4, Ariel Lellouch � 3, Eileen R.
Martin � 2,4, Donglin Zhu � 2, Aaron J. Girard � 2, Shihao Yuan � 2, Thomas Cullison � 6, Tomas Snyder � 2,
Seunghoo Kim � 2,6, Nicholas Danes � 7, Nikhil Punithan � 2, M. Shawn Boltz � 1, Manuel M. Mendoza � 5

1Spokane Mining Research Division, National Institute for Occupational Safety and Health, Spokane, USA, 2Department of Geophysics,
Colorado School of Mines, Golden, USA, 3Geophysics Department, Tel Aviv University, Tel-Aviv Jaffa, Israel, 4Department of Applied Math and
Statistics, Colorado School of Mines, Golden, USA, 5Cooperative Institute for Research in Environmental Sciences and Department of
Geological Sciences, University of Colorado Boulder, Boulder, CO, USA, 6Department of Geophysics, Stanford University, Stanford, USA, 7Cyber
Infrastructure and Advanced Research Computing, Colorado School of Mines, Golden, USA

Abstract In the past decade, distributed acoustic sensing (DAS) has enabled many new monitoring ap-
plications in diverse fields including hydrocarbon exploration and extraction; induced, local, regional, and
global seismology; infrastructure and urban monitoring; and several others. However, to date, the open-
source softwareecosystem forhandlingDASdata is relatively immature. Herewe introduceDASCore, aPython
library for analyzing, visualizing, and managing DAS data. DASCore implements an object-oriented interface
for performing common data processing and transformations, reading andwriting various DAS file types, cre-
ating simple visualizations, andmanaging file system-basedDAS archives. DASCore also integrateswith other
Python-based tools which enable the processing of massive data sets in cloud environments. DASCore is the
foundational package for the broader DAS data analysis ecosystem (DASDAE), and as such its main goal is to
facilitate the development of other DAS libraries and applications.

1 Introduction
Over the past decade, off-the-shelf distributed acoustic
sensing (DAS) units have becomemore reliable and eco-
nomical, resulting in their broad adoption for a wide
range of geophysical applications. DAS consists of an in-
terrogator unit (i.e. a collection of opto-electronic com-
ponents) connected to a fiber-optic cable. The inter-
rogator unit uses rapid laser pulses tomeasure the aver-
age axial strain, strain rate, or effective velocity across
different segments of the cable known as channels. DAS
tends to be used in scenarios requiring thousands of
channels, and for continuous or time-lapsemonitoring,
and often leads to many-terabyte datasets (Spica et al.,
2023). Analysis of DAS data has been hindered by lack of
free, readily available, easy-to-use software for reading,
processing, visualizing, and analyzing large-scale DAS
data recorded in a wide variety of formats (Lindsey and
Martin, 2021).
Here we present DASCore: an open-source Python

library for processing, visualizing, and managing DAS
data. Although the Python programming language is
certainly not the most performant, its open-source li-
cense, approachable design, ability to easily interface
with more efficient languages, and vibrant commu-
nity have made it one of the most popular language
choices. Today, Python plays an important role in most
computation-dependent fields including astronomy, bi-
ology, machine learning, etc. In seismology, stalwart

∗Corresponding author: derchambers@cdc.gov

Python libraries such as ObsPy (Krischer et al., 2015)
and Pyrocko (Heimann et al., 2017) have enticed many
researchers, sometimeswith initial reservations, to em-
brace the scientific Python ecosystem. They have also
enabled the creation of a variety of impactful applica-
tions and libraries for tasks such as template match-
ing for earthquake detection (Chamberlain et al., 2018),
complex ray-tracing (Bloch and Audet, 2023), seismic
signal classification (Bueno et al., 2020), ambient noise
correlations (Jiang and Denolle, 2020), seismic utility
packages (Chambers et al., 2021) and many others. In
this same spirit, DASCore aims to facilitate the rapid de-
velopment of DAS-based research workflows and pro-
vide a robust foundation on which other projects can
build.

2 Library Description
DASCore provides the following high-level features:

• An object-oriented interface for working with DAS
data and metadata

• IO support for DAS files and file archives

• Processing and transformation routines

• Static visualizations

2.1 Data Structures
DASCore’s application programming interface (API)
was inspired by ObsPy and the multi-dimensional ar-

1 SEISMICA | ISSN 2816-9387 | volume 3.2 | 2024

https://doi.org/10.26443/seismica.v3i2.1184
https://orcid.org/0000-0003-3656-6607
https://orcid.org/0000-0002-9640-7547
https://orcid.org/0000-0001-8911-9574
https://orcid.org/0000-0002-4794-2754
https://orcid.org/0000-0002-9913-7191
https://orcid.org/0000-0002-3420-4971
https://orcid.org/0000-0002-3068-7021
https://orcid.org/0000-0002-1455-2514
https://orcid.org/0000-0002-5401-0381
https://orcid.org/0000-0002-1605-0243
https://orcid.org/0000-0002-3538-5794
https://orcid.org/0009-0006-8664-0253
https://orcid.org/0000-0001-6638-0673
https://orcid.org/0009-0009-0967-6318
https://orcid.org/0000-0002-9690-1967
https://orcid.org/0000-0002-9022-5056

SEISMICA | SOFTWARE REPORT | DASCore

Figure 1 DASCore’s Patch and Spool and some of their associated methods. See text for details.

ray library Xarray (Hoyer and Hamman, 2017). DAS-
Core utilizes Patch and Spool data structures to fa-
cilitate data processing and management (Figure 1).
For readers familiar with ObsPy, the Patch is analo-
gous to ObsPy’s Trace and is modeled after Xarray’s
DataArray . The Spool combines the functionality of
ObsPy’s Stream and Client and is focused on data
querying and retrieval.
The Patch class has three main attributes: coords

which specify the labels and values for each dimension,
attrs which stores non-coordinate related metadata,
and data which contains an n-dimensional array. The
Patch is immutable, to the extent Python allows, so all
of its methods return new objects. We chose to make
the Patch and its sub-components immutable in order
to minimize errors related to data mutation, allow safe
sharing of Patch components, and make distributed
computing simpler.
Rather than a concrete implementation, the Spool

is an interface which unifies data access across a vari-
ety of sources. It enables DASCore code to treat an
archive of DAS files in a file system, a single data file, or
DAS data loaded into memory, in an identical manner.
Additionally, using DASCore’s plug-in system, external
codes can add support for other file formats and data
sources. For example, a separate package currently un-
der development will provide Spool implementations
to interact with a number of databases and remote re-
sources. In addition to a unified interface, most Spool
implementations lazily plan the selection, chunking,
and merging of data sources through the chunk and
select methods. A Spool implementation included
in DASCore enables the selection and querying of large
file archives using an HDF5-based index built on the
table and in-kernel query features of PyTables (Alted
and Fernández-Alonso, 2003). The index, which itself
is an HDF5 file, currently tracks basic metadata such
as instrument name, experiment identifier, sampling
rate, start and end times, etc. It can be included with
a dataset and shared among multiple users. Although
initially creating the index does take some time, once

it exists DASCore can query and retrieve data very effi-
ciently. For example, we currently use DASCore toman-
age several datasets, one of the largest contains 230,000
DAS files comprising 50 TB of data. It took approxi-
mately 4 hours to index and we haven’t observed any
slowdowns in querying or data retrieval as compared
to smaller (GB-scale) datasets. Currently, DASCore re-
quires one of the Patch dimensions to be named “time”
but this restriction may be lifted in future versions.

2.2 Processing and Transformations
Processing routines and transformations are imple-
mented as Patch methods. These always return new
Patch instances, leaving the original unaltered but
sharing immutable components where possible. Most
methods and transformations can be applied along
any, or multiple, dimensions which are specified using
Python’s keyword arguments. Although certainly not
exhaustive, a few of the commonly used Patch process-
ing and transformation methods are shown in Figure 1.

2.3 Supported File Formats
DASCore provides four types of file support: read - the
ability to load the file contents into one or more Patch
objects; write - the ability to dump one or more Patch
objects to a file or byte stream; scan - a fast extraction
of the file’s metadata; and get_format - the ability to
automatically determine the format (and version) of a
file. Table 1 shows DASCore’s file support for the cur-
rent version, 0.1.0, although we anticipate adding sup-
port for more formats in the future.

2.4 Visualization
Although visualization is not DASCore’s primary fo-
cus, it currently provides two types of matplotlib-based
plots; the waterfall plot and the wiggle plot. The water-
fall plot is a simple 2D color image and scale bar that is
commonly used to visualize dense seismic array data,
including DAS data. The wiggle plot is more commonly

2 SEISMICA | volume 3.2 | 2024

SEISMICA | SOFTWARE REPORT | DASCore

format & version read write scan get_format

DASDAE v1
DASHDF5 v1
H5SIMPLE v1
PICKLE
PRODML v2.0
PRODML v2.1
RSF
SEGY v2.0
TDMS v4713
TERRA15 v4
TERRA15 v5
TERRA15 v6
WAV

Table 1 Supported file formats for DASCore.

0.00 0.02 0.04 0.06 0.08 0.10
time(s)

400

500

600

700

800

900

1000

di
st

an
ce

(m
)

A

0.00 0.02 0.04 0.06 0.08 0.10
time(s)

650.0

661.0

672.0

683.0

694.0

705.0

716.0

727.0

738.0

749.0

di
st

an
ce

(m
)

B

100

50

0

50

100
st

ra
in

_r
at

e
(1

 /
s)

Figure 2 Waterfall (left) and wiggle (right) plots produced by Listing 2.

used in small or sparse seismic networks and displays
a selection of channel traces offset along the y-axis and
scaled according to some trace-specific metric, such as
absolute value. For example, Figure 2, shows both a
waterfall plot (A) and wiggle plot (B) of a microseismic
event detailed in Staněk et al. (2022). The code to gener-
ate this figure is found in Listing 2.

2.5 Software Engineering
DASCore strives to implement best software engineer-
ing practices. It has an extensive test suite which in-
cludes more than 1800 automated tests which exercise
over 99.5% of the codebase. DASCore also makes use
of GitHub’s features to enforce coding style rules, run
the test suite before code can merge into the main
branch, organize development planning, code review
and issue tracking, and for packaging and automatic
releases to the Python package index and conda-forge.
DASCore has comprehensive documentation, which in-
cludes tutorials, recipes, API references, and notes,
hosted at https://dascore.org. The documentation is built

Listing 1 Example of Patch processing
import dascore as dc

patch = (
Load data from DASCore's data registry.
dc.get_example_patch('example_event_1')
Taper the ends of the time dimension.
.taper(time=0.05)
Apply a low-pass filter at 300 Hz.
.pass_filter(time=(..., 300))

)

Plot the result.
patch.viz.waterfall(show=True, scale=0.2)

in a somewhat unique way among Python projects be-
cause it uses Quarto (Bauer and Landesvatter, 2023)
rather than other popular documentation frameworks
such as Sphinx or MkDocs. Although largely a personal
preference, we find Quarto to be more user-friendly,
feature complete, and easier to customize.

3 SEISMICA | volume 3.2 | 2024

https://dascore.org

SEISMICA | SOFTWARE REPORT | DASCore

Listing 2 Example of Patch visualization
import dascore as dc
import matplotlib.pyplot as plt

Setup matplotlib figure/axis.
_, (ax1, ax2) = plt.subplots(

1, 2, figsize=(10, 4.5)
)

Load example patch.
patch = dc.get_example_patch(

"example_event_2"
)

Sub-select only center channels.
sub_patch = patch.select(

distance=(650, 750)
)

Plot waterfall.
patch.viz.waterfall(ax=ax1, scale=0.5)

Plot wiggles.
sub_patch.viz.wiggle(ax=ax2, scale=0.5)

Add subplot labels.
ax1.text(.01, .99, 'A', ha='left', va='top',

transform=ax1.transAxes, size=24)
ax2.text(.01, .99, 'B', ha='left', va='top',

transform=ax2.transAxes, size=24)

plt.tight_layout()
plt.show()

3 Additional Examples

3.1 Processing and visualization
DASCore processing (and transformation) methods are
typically combined in a chain ofmethod calls. Structur-
ing code in this way provides a unique semantic mean-
ing to each line, leaves room for comments, and avoids
creating intermediary variables. Listing 1 provides an
example of using DASCore to load, taper, filter, and vi-
sualize an example patch.
Visualization functions are found in the patch viz

namespace, and since they operate on matplotlib axes,
they are highly customizable. For example, Listing 2
shows the code used to produce Figure 2.

3.2 Units
Most of DASCore’s functionality provides support for
units using the Pint library. Units improve the clarity
of the code intent and can reduce errors. Listing 3 pro-
vides anexampleof importing a fewcommonunits such
as meter (m), foot (ft), and millisecond (ms), filtering
the selected portion of data, and converting Patch’s dis-
tance units to feet.

3.3 Archivemanagement
Listing 4 code showshow to indexandquery a collection
of DAS files in a directory. The Spool.update method
ensures any files with timestamps after the last update

Listing 3 Example of using units
import dascore as dc
from dascore.units import m, ft, ms

patch = (
dc.get_example_patch()
Trim ten millisecond from patch start

and end.
.select(time=(10*ms, -10*ms), relative=

True)
Apply spatial filter specifying

wavelength.
.pass_filter(distance=(3*m, 6*m))
Convert distance coord to ft.
.convert_units(distance=ft)

)

Listing 4 Example for interacting with directory of DAS
files
import dascore as dc
from dascore.units import second, minute

spool = dc.spool("data_path").update()

sub_spool = spool.select(
Select time range.
time=("2021-01-01", "2021-01-01T12:00"),
Query supports posix style matching.
tag="experiment_??",

)

Chunk data into patches with overlap.
sub_chunked_spool = sub_spool.chunk(

time=10*minute,
overlap=30*second,

)

Iterate the spool to get patches.
for patch in sub_chunked_spool:

...

are appended to the index. With these concepts, DAS-
Core can also process data associated with active acqui-
sitions in near real-time.

3.4 Parallel processing
Since DASCore Spool instances act as a sequence of
patches, many of the popular multi-process/distributed
frameworks can use them to easily implement
embarrassingly parallel workflows. For exam-
ple, Listing 5 provides an example of using the
ProcessPoolExecutor from Python’s standard li-
brary to spread out a processing workflow to multiple
processes. This can also be done with libraries like
Dask (Rocklin, 2015) which provide an Executor -like
interface (an object which has a map method).

3.5 Escape Hatches
Although DASCore’s abstractions are useful for basic
processing, users may want to work with DAS data in
other ways. To that end, DASCore provides several “es-
cape hatches” for accessing raw data directly or con-
verting data contained in a Patch to another data struc-

4 SEISMICA | volume 3.2 | 2024

SEISMICA | SOFTWARE REPORT | DASCore

Listing 5 Example of parallel processing

from concurrent.futures import
ProcessPoolExecutor

import dascore as dc

def patch_function(patch):
"""A custom function for processing

patches."""
...

spool = dc.get_example_spool("random_das")

executor = ProcessPoolExecutor()

results = spool.map(patch_function, client=
executor)

...

Listing 6 Example of converting a Patch to data formats
used by external libraries

import dascore as dc

patch = dc.get_example_patch()

Access raw data and coordinates.
data = patch.data
time_array = patch.coords.get_array('time')
dist_array = patch.coords.get_array('distance

')

Convert a patch to an obspy stream.
stream = patch.io.to_obspy()

Convert a 2D patch to a pandas DataFrame.
df = patch.io.to_dataframe()

Convert a patch to an Xarray DataArray.
dar = patch.io.to_xarray()

ture. Listing 6 shows several such examples. First,
this example extracts the data of a patch, which is a 2D
NumPy array. The two coordinate arrays can also be ex-
tracted, resulting in two 1D NumPy arrays. Addition-
ally, the to_obspy() , to_pandas() , and to_xarray()
methods can be applied to a patch to convert these to
an ObsPy Stream , a Pandas DataFrame , or an Xarray
DataArray , respectively. The latter is particularly use-
ful as the Xarray/PanGeo ecosystem (Hamman et al.,
2018) is well equipped for large-scale cloud computing.

4 Future Plans and DASDAE

DASCore is the foundational library of a broader initia-
tive knownas the distributed acoustic sensing data anal-
ysis ecosystem (DASDAE), and is distributed through the
DASDAE GitHub organization. Similar to the Astropy
project (Price-Whelan et al., 2022), DASDAE aims to fos-
ter a community of compatible open-source packages
for a variety of fiber-optic sensing projects. We aim for
DASCore to have a relatively light set of dependencies,
to contain tools useful for many DAS projects across ap-

plication domains, and to maintain high standards of
testing and documentation. Other DASDAE packages
are expected to be compatible with DASCore, but may
focus on processing workflows with more dependen-
cies, specific applications such as near-surface imaging,
low-frequency DAS processing, machine learning, etc.
More information can be found at https://dasdae.org.
In addition to expanding the processing and IO sup-

port, we plan to implement a class for managing exper-
iment metadata, tentatively called an Inventory . The
Inventory will be a Pydantic model hierarchy which
extends the metadata included in the Patch . It will be
capable of capturing general information about DAS ac-
quisitions including fiber type, splice locations, inter-
rogator configuration, tap-tests, etc. The Inventory
will be based on the community-driven DAS meta-data
standards developed by the DAS research coordination
network (RCN) and the ProdML standard used in the oil
and gas industry (Shipley et al., 2008).

Acknowledgements

Although the information in this paper is correct at the
time of submission, the most up-to-date details can be
found at DASCore’s website (https://dascore.org). DAS-
Core development efforts are supported in part by the
NSF Geoinformatics Program, under grant #2148614,
NSF Earth Science Postdoctoral Fellowship award
#2053085, and sponsors of the Center forWave Phenom-
ena. In addition to the scientific libraries already men-
tioned, DASCore makes use of the following python li-
braries: Pooch (Uieda et al., 2020), h5py (Collette et al.,
2021), SciPy (Virtanen et al., 2020), Matplotlib (Hunter,
2007), Pydantic (https://docs.pydantic.dev/latest/), Rich
(https://github.com/Textualize/rich), PyTables (Alted and
Fernández-Alonso, 2003), Pint (https://pint.readthedocs.io/
en/stable/), SegyIO (https://segyio.readthedocs.io/en/latest/),
and NumPy (Harris et al., 2020). We would also like
to thank two anonymous reviewers whose comments
helped improve this work.
The findings and conclusions in this paper are those

of the authors and do not necessarily represent the of-
ficial position of the National Institute for Occupational
Safety and Health, Centers for Disease Control and Pre-
vention or any other affiliated organization of the au-
thors.

Data and code availability

DASCore’s documentation is found at https://dascore.org.
The code repository, issue tracker, and general devel-
opment occur on https://github.com/dasdae/dascore. As of
the submission of this manuscript, the latest version of
DASCore is 0.1.0 which was archived on 2024-01-11 with
the following DOI: 10.5281/zenodo.10494398.

Competing interests

The authors declare no competing interests and have
fully disclosed all financial support for this project.

5 SEISMICA | volume 3.2 | 2024

https://dasdae.org
https://dascore.org
https://github.com/Textualize/rich
https://pint.readthedocs.io/en/stable/
https://pint.readthedocs.io/en/stable/
https://segyio.readthedocs.io/en/latest/
https://dascore.org
https://github.com/dasdae/dascore

SEISMICA | SOFTWARE REPORT | DASCore

References

Alted, F. and Fernández-Alonso, M. PyTables: processing and an-
alyzing extremely large amounts of data in Python. PyCon2003.
April, pages 1–9, 2003.

Bauer, P. C. and Landesvatter, C. Writing a reproducible
paper with RStudio and Quarto. 2023. doi: https://-
doi.org/10.31219/osf.io/ur4xn.

Bloch, W. and Audet, P. PyRaysum: Software for Model-
ing Ray-theoretical Plane Body-wave Propagation in Dipping
Anisotropic Media. Seismica, 2(1), 2023. doi: https://-
doi.org/10.26443/seismica.v2i1.220.

Bueno, A., Zuccarello, L., Díaz-Moreno, A., Woollam, J., Titos, M.,
Benítez, C., Álvarez, I., Prudencio, J., and De Angelis, S. PI-
COSS: Python interface for the classification of seismic signals.
Computers & geosciences, 142:104531, 2020. doi: https://-
doi.org/10.1016/j.cageo.2020.104531.

Chamberlain, C. J., Hopp, C. J., Boese, C. M., Warren-Smith, E.,
Chambers, D., Chu, S. X., Michailos, K., and Townend, J. EQ-
corrscan: Repeating and near-repeating earthquake detection
and analysis in Python. Seismological Research Letters, 89(1):
173–181, 2018. doi: https://doi.org/10.1785/0220170151.

Chambers, D. J., Boltz, M. S., and Chamberlain, C. J. Ob-
sPlus: A Pandas-centric ObsPy expansion pack. Journal
of open source software, 6(60):2696, 2021. doi: https://-
doi.org/10.21105/joss.02696.

Collette, A., Kluyver, T., Caswell, T. A., Tocknell, J., Kieffer, J.,
Scopatz, A., Dale, D., Jelenak, A., VINCENT, T., Sciarelli, P.,
et al. h5py/h5py: 3.1. 0. Zenodo, 2021. doi: https://-
doi.org/10.5281/zenodo.7568214.

Hamman, J., Rocklin, M., and Abernathy, R. Pangeo: a big-data
ecosystem for scalable earth system science. In EGUGeneral As-
sembly Conference Abstracts, page 12146, 2018.

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Vir-
tanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., et al. Array programming with NumPy. Nature, 585(7825):
357–362, 2020. doi: https://doi.org/10.1038/s41586-020-2649-
2.

Heimann, S., Kriegerowski, M., Isken, M., Cesca, S., Daout, S.,
Grigoli, F., Juretzek, C., Megies, T., Nooshiri, N., Steinberg, A.,
et al. Pyrocko-An open-source seismology toolbox and library.
2017. doi: https://doi.org/10.5880/GFZ.2.1.2017.001.

Hoyer, S. and Hamman, J. Xarray: ND labeled arrays and datasets
in Python. Journal of Open Research Software, 5(1), 2017. doi:
https://doi.org/10.5334/jors.148.

Hunter, J. D. Matplotlib: A 2D graphics environment. Comput-
ing in science & engineering, 9(03):90–95, 2007. doi: https://-
doi.org/10.1109/MCSE.2007.55.

Jiang, C. and Denolle, M. A. NoisePy: A new high-performance
python tool for ambient-noise seismology. Seismological
Research Letters, 91(3):1853–1866, 2020. doi: https://-
doi.org/10.1785/0220190364.

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T.,
Caudron, C., and Wassermann, J. ObsPy: A bridge for
seismology into the scientific Python ecosystem. Computa-
tional Science & Discovery, 8(1):014003, 2015. doi: https://-
doi.org/10.1088/1749-4699/8/1/014003.

Lindsey, N. J. and Martin, E. R. Fiber-optic seismology. Annual
Review of Earth and Planetary Sciences, 49:309–336, 2021. doi:
https://doi.org/10.1146/annurev-earth-072420-065213.

Price-Whelan, A. M., Lim, P. L., Earl, N., Starkman, N., Bradley, L.,
Shupe, D. L., Patil, A. A., Corrales, L., Brasseur, C., Nöthe, M.,
et al. TheAstropyProject: sustainingandgrowingacommunity-

oriented open-source project and the latest major release (v5.
0) of the core package. The Astrophysical Journal, 935(2):167,
2022. doi: https://doi.org/10.3847/1538-4357/ac7c74.

Rocklin, M. Dask: Parallel computation with blocked algorithms
and task scheduling. InProceedings of the 14th python in science
conference, volume 130, page 136. SciPy Austin, TX, 2015. doi:
https://doi.org/10.25080/Majora-7b98e3ed-013.

Shipley, D., Weltevrede, B., Doniger, A., Klumpen, H. E., and
Ormerod, L. Production data standards: The PRODML busi-
ness case and evolution. In SPE Intelligent Energy International
Conference and Exhibition, pages SPE–112259. SPE, 2008. doi:
https://doi.org/10.2118/112259-MS.

Spica, Z. J., Ajo-Franklin, J., Beroza, G. C., Biondi, B., Cheng, F.,
Gaite, B., Luo, B., Martin, E., Shen, J., Thurber, C., Viens, L.,
Wang, H., Wuestefeld, A., Xiao, H., and Zhu, T. PubDAS: A PUB-
lic Distributed Acoustic Sensing Datasets Repository for Geo-
sciences. Seismological Research Letters, 94:983–998, 2023. doi:
https://doi.org/10.1785/0220220279.

Staněk, F., Jin, G., and Simmons, J. Fracture imaging using DAS-
recorded microseismic events. Frontiers in Earth Science, 10:
907749, 2022. doi: https://doi.org/10.3389/feart.2022.907749.

Uieda, L., Soler, S. R., Rampin, R., Van Kemenade, H., Turk, M.,
Shapero, D., Banihirwe, A., and Leeman, J. Pooch: A friend to
fetch your data files. Journal of Open Source Software, 5(45):
1943, 2020. doi: https://doi.org/10.21105/joss.01943.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., et al. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nature methods, 17(3):261–272, 2020.
doi: https://doi.org/10.1038/s41592-019-0686-2.

The article DASCore: a Python Library for Distributed Fiber
Optic Sensing©2024byDerrickChambers is licensedunder
CC BY 4.0.

6 SEISMICA | volume 3.2 | 2024

http://doi.org/https://doi.org/10.31219/osf.io/ur4xn
http://doi.org/https://doi.org/10.31219/osf.io/ur4xn
http://doi.org/https://doi.org/10.26443/seismica.v2i1.220
http://doi.org/https://doi.org/10.26443/seismica.v2i1.220
http://doi.org/https://doi.org/10.1016/j.cageo.2020.104531
http://doi.org/https://doi.org/10.1016/j.cageo.2020.104531
http://doi.org/https://doi.org/10.1785/0220170151
http://doi.org/https://doi.org/10.21105/joss.02696
http://doi.org/https://doi.org/10.21105/joss.02696
http://doi.org/https://doi.org/10.5281/zenodo.7568214
http://doi.org/https://doi.org/10.5281/zenodo.7568214
http://doi.org/https://doi.org/10.1038/s41586-020-2649-2
http://doi.org/https://doi.org/10.1038/s41586-020-2649-2
http://doi.org/https://doi.org/10.5880/GFZ.2.1.2017.001
http://doi.org/https://doi.org/10.5334/jors.148
http://doi.org/https://doi.org/10.1109/MCSE.2007.55
http://doi.org/https://doi.org/10.1109/MCSE.2007.55
http://doi.org/https://doi.org/10.1785/0220190364
http://doi.org/https://doi.org/10.1785/0220190364
http://doi.org/https://doi.org/10.1088/1749-4699/8/1/014003
http://doi.org/https://doi.org/10.1088/1749-4699/8/1/014003
http://doi.org/https://doi.org/10.1146/annurev-earth-072420-065213
http://doi.org/https://doi.org/10.3847/1538-4357/ac7c74
http://doi.org/https://doi.org/10.25080/Majora-7b98e3ed-013
http://doi.org/https://doi.org/10.2118/112259-MS
http://doi.org/https://doi.org/10.1785/0220220279
http://doi.org/https://doi.org/10.3389/feart.2022.907749
http://doi.org/https://doi.org/10.21105/joss.01943
http://doi.org/https://doi.org/10.1038/s41592-019-0686-2
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Library Description
	Data Structures
	Processing and Transformations
	Supported File Formats
	Visualization
	Software Engineering

	Additional Examples
	Processing and visualization
	Units
	Archive management
	Parallel processing
	Escape Hatches

	Future Plans and DASDAE

