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Abstract Documenting the interplay between slow deformation and seismic ruptures is essential to un-
derstand the physics of earthquakes nucleation. However, slow deformation is often difficult to detect and
characterize. Themostpervasive seismicmarkersof slowslipare low-frequencyearthquakes (LFEs) that allow
resolvingdeformationatminute-scale. Detecting LFEs is hard, due to their emergent onsets and lowsignal-to-
noise ratios, usually requiring region-specific template matching approaches. These approaches suffer from
low flexibility and might miss LFEs as they are constrained to sources identified a priori. Here, we develop a
deep learning-based workflow for LFE detection and location, modeled after classical earthquake detection
with phase picking, phase association, and location. Across three regions with known LFE activity, we de-
tect LFEs from both previously cataloged sources and newly identified sources. Furthermore, the approach is
transferable across regions, enabling systematic studies of LFEs in regions without known LFE activity.

Non-technical summary Earthquakes are caused by suddenmovements on tectonic faults. While
such suddenmovements have been documented for thousands of years, the last decades have revealed that
tectonic faults also host a wide range of slow deformation. Such slow slip happens over the scale of days to
years but is still substantially faster than regular plate convergence rates. Recent years have shown that slow
slip can play an essential role in the buildup of large earthquakes. Classically, slow deformation is detected
and characterised using geodetic observations, such as GNSS or InSAR. This limits the time and space resolu-
tion. An alternative is looking for seismic markers accompanying slow slip, among which the most pervasive
are low-frequency earthquakes (LFE). Due to their low signal to noise ratio and emergent onsets, such LFEs
are notoriously difficult to detect. Here, we develop a novel method for detecting LFEs using deep learning.
Our method successfully detects LFEs from both known and unknown sources. In contrast to previous ap-
proaches, our method can detect LFEs without prior knowledge of the region, which makes it promising for
LFE detection in regions where no LFEs have been found previously.

1 Introduction
Stress release on tectonic faults canhappen in twoways:
fast and slow. Fast deformation happens in the form
of earthquakes; slow relaxation is observed as creep or
episodes of accelerated slip, so-called slow slip events
(Dragert et al., 2001; Ozawa et al., 2002; Lowry et al.,
2001; Ide et al., 2007a). The complex interactions be-
tween fast and slowdeformationmight be at play during
the initiation of large earthquakes (Radiguet et al., 2016;
Socquet et al., 2017; Cruz-Atienza et al., 2021). However,
studying these interactions requires detailed catalogs of
both deformation types. While the impulsive nature of
earthquakes causes clear signatures on seismic record-
ings, detecting slow slip is substantially more challeng-
ing. Its detection commonly uses geodetic observations
with a limited spatial and temporal resolution (Michel
et al., 2019; Okada et al., 2022; Costantino et al., 2023).
An alternative way to map slow deformation is by

detecting and characterising its seismic markers. One
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such type of markers are low-frequency earthquakes
(LFEs), weak seismic signalswith adurationon the scale
of seconds. Recent research shows that the rate and
magnitude of LFEs track the slow deformation (Frank
and Brodsky, 2019; Mouchon et al., 2023). LFEs are sim-
ilar to regular earthquakes in some characteristics, e.g.,
distinct phase arrivals or predominantly double-couple
sources, but also have clear differences (Shelly et al.,
2007; Ide et al., 2007b; Royer and Bostock, 2014; Iman-
ishi et al., 2016; Supino et al., 2020; Wang et al., 2023).
First, they have an eponymous depletion of energy in
the high-frequency band (above a few Hz). Second,
in consequence of missing high frequencies, they do
not exhibit impulsive arrivals but are emergent, making
them hard to detect. Third, they often occur in intense
bursts with inter-event times of only seconds, leading
to superimposed waveforms commonly referred to as
tremors (Shelly et al., 2007).

To illustrate the challenges these characteristics
cause for LFE detection, it is worth contrasting LFE de-
tection with the identification of regular earthquakes.
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Detecting regular earthquakes traditionally relies on a
two-step procedure: (i) phase picking, i.e., identifying P
and S waves arrival times at seismic stations; (ii) phase
association, i.e., selecting sets of picks across stations
that are consistent with a common source location and
origin time. Downstream analysis can then determine
the event location and additional source parameters.
In this workflow, a side benefit of the phase associa-
tion step is that it acts as a quality control to remove
spurious phase picks. At the moment, such a work-
flow is usually not applicable to LFE detection, as the
low signal-to-noise (SNR) ratio and the emergent onsets
make it impossible for classical algorithms topickphase
arrivals. There are exceptions, notably the JMA cata-
log (Japan Meteorological Agency, 2023), but these rely
onhigh-quality andhigh-density data,manual interven-
tion, and high SNR LFEs. Instead, LFE detection usu-
ally relies onmanual identification (Shelly, 2010), beam-
forming (Frank and Shapiro, 2014), or phase coherence
(Gombert and Hawthorne, 2023). These approaches of-
ten suffer from high computational demand or require-
ment for manual labour. However, they can be used
to generate LFE template waveforms forming an initial
catalog for a subsequent matched filtering search on
long running recordings. As the initial approaches of-
ten fail to identify all existingLFE sources, such catalogs
will be biased towards certain sources.
Due to its high sensitivity, matched filtering, also

known as template matching, has become the de facto
standard for LFE detection (Shelly, 2017; Bostock et al.,
2015; Frank et al., 2014). Once initial templates are iden-
tified, the method identifies repeat occurrences of the
template events by correlating these with the continu-
ous waveforms. In addition to detecting occurrences,
this procedure groups the LFEs into families according
to their matching templates. This allows to stack wave-
forms and accurately locate the families. While highly
sensitive, matched-filtering presents several disadvan-
tages: templates are always region and station specific,
matched filtering does not provide locations for indi-
vidual events, and the model can not detect LFEs out-
side the initially detected families. Especially the last
limitation shapes our understanding of LFEs, as tem-
plate matching can only recover repeating events, po-
tentially skewing our view of overall LFE behavior by
themost repetitive sources. Furthermore, the grouping
into families is partially artificial, as template matches
often overlap, i.e., many detections can not be uniquely
assigned to one family.
A closely linked task to the detection of LFEs is the

detection of tectonic tremors. Typical methods lever-
age either coherency across station, through source
scanning (Kao et al., 2005), waveform coherency (Arm-
bruster et al., 2014), envelope correlations (Bombardier
et al., 2023), or repetitiveness of waveform motives
within or across stations (Rubin and Armbruster, 2013).
However, while the underlying processes are closely re-
lated, the tasks pose distinct challenges. Tremors are
usually severalminutes long, making them easier to de-
tect than LFEs. In addition, these longer waveforms
make it easier to locate them, as more characteristics,
e.g., envelopes, can be used for location. In contrast,

LFEs are short signals, with waveforms lasting atmost a
few seconds, making detection and location more dif-
ficult. However, the short duration of LFEs also im-
plies that they can monitor underlying processes at a
higher resolution than tremors, thereby providing ad-
ditional insights into slow deformation. In some cases,
waveform coherency methods similar to tremor detec-
tion can be applied for LFE detection, but the results are
usually restricted to high signal-to-noise ratio examples
(Savard and Bostock, 2015).
To build a flexible LFE detector addressing the disad-

vantages of templatematching, it would be appealing to
make amore traditional earthquake detectionworkflow
applicable to LFEs. The critical point for this is a viable
automatic phase picker for LFE arrivals. We borrow
from the recent breakthroughs in seismic phase pick-
ing with deep learning, where recent neural network
models have substantially improved earthquake detec-
tion (Zhu and Beroza, 2019; Ross et al., 2018; Münch-
meyer et al., 2022). These neural network models are
trained on millions of manually labelled phase arrivals
and thereby learn to accurately discern seismic phase
arrivals from noise and accurately determine arrival
times. The application of these models to continuous
data has allowed to substantially increase the complete-
ness of earthquake catalogs (Tan et al., 2021; González-
Vidal et al., 2023; Moutote et al., 2023).
For tremor and LFE detection with deep learning,

only few studies exist. Rouet-Leduc et al. (2020) iden-
tify tremor episodes in single-station records, but do
not attempt to detect or locate individual LFEs. Thomas
et al. (2021) focus on LFEs on the San Andreas fault
and test model configurations on cataloged events. The
preprint of Lin et al. (2023) presents an LFE detection
workflow similar to the one presented here but focus
exclusively on SouthernVancouver Island. Here, we de-
velop a deep learning based LFE picker and show its
applicability to three independent study regions: Cas-
cadia, Guerrero and Nankai. To train our picker, we
develop a novel strategy for synthetic data generation
that allows for fine-grained control of the training pro-
cess. Using this method, we set up a classical earth-
quake detection workflow and demonstrate how to au-
tomatically create LFE catalogs across different world
regions. Our model successfully identifies and locates
individual LFEs, even without using any training exam-
ples from the target region. The resulting catalogs are
coherent with classical catalogs but have been obtained
in a fully automated and region-agnostic manner. Fur-
thermore, the catalogs identify LFEs missing from the
reference catalogs, showing that our approach can un-
cover sources missed in the template matching proce-
dures. Wemake the trained picker availablewith a user-
friendly interface through SeisBench (Woollam et al.,
2022).

2 Training and validation of a deep
learning LFE phase picker

For detecting LFEs and determining their phase ar-
rival times, we build a deep learning network. Our
network is closely modeled after PhaseNet (Zhu and
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Beroza, 2019) due to the model’s simplistic architec-
ture and the excellent performance on earthquake data
(Münchmeyer et al., 2022). PhaseNet is a 1D U-Net,
i.e, a neural network consisting of convolutional en-
coder anddecoderbranches and skip connections (Ron-
neberger et al., 2015). We provide themodel with 60 s of
3-component waveforms sampled at 20 Hz, bandpass-
filtered between 1 and 8 Hz, the band in which LFEs
are typically observed. The model outputs probability
curves for P and S phase arrivals. We provide full details
on themodel and trainingprocedure in the supplement.
In contrast to traditional earthquake pickers, train-

ing the model on cataloged LFE waveforms is subopti-
mal. First, LFEs occur in bursts, i.e., around one LFE ar-
rival there are often further arrivalsmany ofwhich have
not been labelled. This leads to incorrect labelling and
in addition makes a quantitative analysis of the model
performance difficult. Second, most LFE catalogs are
based on template matching, i.e., individual arrivals
need to be inferred from arrival times on templates.
Due to the low SNR, these times are often highly inac-
curate, leading to high model uncertainties. Instead,
we train our model on synthetics. For this, we combine
LFE stacks with real seismic noise, allowing us to con-
trol the number and timing of LFEs and the SNR (Fig-
ure 1). We use up to three LFEs per trace to train the
model to recognise events with low inter-event times.
We use seismic noise from the INSTANCE dataset for
Italy (Michelini et al., 2021) as it contains no known
LFEs.
We train our model using four regions: Southern

Vancouver Island in Cascadia (Canada/USA) (Bostock
et al., 2015), the central section of the San Andreas
fault (USA) (Shelly, 2017), Guerrero (Mexico) (Frank
et al., 2014), and Nankai (Japan) (Japan Meteorologi-
cal Agency, 2023). Figure S1 shows the distribution of
events and stations in the reference catalogs. For Casca-
dia, San Andreas and Guerrero, we use templatematch-
ing catalogs and the previously described strategy for
generating examples. For Nankai, we apply the classi-
cal training scheme as used for earthquakes as individ-
ual picks are available. Further details on the datasets
can be found in the supplement.
We evaluate our trained models quantitatively on

synthetic examples generated with the previously de-
scribed noise plus stack strategy. The performance on
synthetic data can serve as a proxy for the expected per-
formance on real data. We exclude the Nankai catalog
from the analysis, because the catalog incompleteness
precludes the extraction of challenging yet guaranteed
LFE-free time windows. As this study focuses on the
generated LFE catalogs, we only provide a synopsis of
the analysis on synthetics here and refer to the supple-
ment for further details.
Overall, the models show excellent detection perfor-

mance for both P and S waves, with an area under the
curve (AUC) of the receiver operator characteristics of
0.97 to 1.00 in all regions for positive SNR in dB scale
(Figure 1). The performance degrades mildly at -2.5 dB
SNR and more sharply after, but all AUC values stay
above 0.88 even at -10 dB SNR. Models transfer well
across regionswith theworst results for amodel trained

exclusively on Cascadia (Figure S2). The best perform-
ing model is the one trained jointly on all four regions.
Therefore, we use the model trained jointly on all re-
gions in the subsequent analysis unless explicitly stated
otherwise.
Analysing the pick time residuals, clear regional dif-

ferences are visible, with lowest residuals in Cascadia
(Figure S3). In all regions, average residuals are about
0.3 s larger for P arrivals than S arrivals, indicating that
these are more difficult to pick. With standard devia-
tions between 0.3 and 1.3 s (at 0 dB), residuals are sub-
stantially higher than for traditional earthquake pickers
(Münchmeyer et al., 2022). Nonetheless, the residuals
expose only low or no bias across all regions. For the
regional differences in performance, we think that they
can primarily be attributed to the heterogeneity in data
quality and SNR. For example, the Cascadia stacks show
the highest SNR, leading to the lowest pick residuals. In
turn, this implies that no conclusions about inherent re-
gional differences in difficulty for picking LFEs can be
inferred.

3 Building deep learning LFE catalogs
Usingourphasepickingmodel, we set upanLFEcatalog
workflow similar to the classical earthquake detection
workflow. Herewe provide an overview of theworkflow
with further details in the supplement. First, we pick
P and S phases by applying the trained deep learning
model to continuouswaveformsusing SeisBench (Wool-
lam et al., 2022). Second, we use the PyOcto phase asso-
ciator (Münchmeyer, 2024) to identify coherent arrivals
across stations. Third, we use NonLinLoc (Lomax et al.,
2000) with a 1D velocity model to perform absolute lo-
cation of the events. To avoid false detections, we fil-
ter the events based on the number of phase picks and
the location residuals. For comparison,we create earth-
quake catalogs using the samewaveforms andworkflow
but using a PhaseNet model trained on INSTANCE im-
plemented in SeisBench as the picker (Zhu and Beroza,
2019; Michelini et al., 2021; Woollam et al., 2022).
As we observed a certain number of events detected

as both earthquakes (EQs) and LFEs, we remove these
events from the LFE catalogs (Figure S4). We note that it
is not clear whether these events should be classified as
LFEs or EQs. The level of overlap is dependent on the re-
gion, with almost no overlap in Cascadia and Guerrero,
a 5% overlap on the San Andreas fault, and a 40% over-
lap inNankai. While we are not certainwhat causes this
different behavior, we speculate that in Nankai, LFEs
and earthquakes showawide range of apparent spectra,
due to the diverse event distribution and frequency de-
pendent attenuation. This might lead to a higher num-
ber of overlapping detections.
We apply our workflow to compile LFE catalogs for

the four study regions. As we focus on studying the
performance of the model and its resulting catalogs,
we restrict ourselves to short study periods: 2003-02-26
to 2003-03-10, 2004-07-02 to 2004-07-27, and 2005-09-03
to 2005-09-25 for Cascadia; 2005-09-01 to 2005-11-30 for
Guerrero; 2014-07-01 to 2014-10-01 for San Andreas;
2012-05-25 to 2012-06-14 for Nankai. We chose the pe-
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Figure 1 Data generation procedure and evaluation results for synthetic data. The top panels show (top to bottom): the
combination of two LFE stacks from Cascadia, a 60 s noise segment from INSTANCE, the combination of signal and noise at
3dBSNR, and theGaussianpulse labels for thePandSarrivals. Thebottompanels showthe receiveroperatingcharacteristics
(ROC) at different SNR. The numbers in the legend indicate the area under the ROC curve (AUC). For all plots, we use the joint
model trained on all four datasets.

riods to contain both intense LFE activity and segments
without any identified LFEs.
Figure 2 shows the spatial event distributions. While

the overall event locations are scattered, we notice
strong similarities with the reference catalogs. For Cas-
cadia (10211 events detected), LFE activity is distributed

along a band underneath South Vancouver island. For
Guerrero (876 events detected), LFEs occur mostly in
a band between 100◦ and 99◦ West and around 18.25◦

North. For Nankai (2525 events detected), a clear band
of LFEs is visible in Southwestern Nankai. Further LFEs
around 135.5◦ E match the second band of LFEs com-
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Figure 2 LFE catalogs obtained from deep learning (top row) and the reference catalogs (middle row). For deep learning,
eachdot representsoneLFE. Thebottomsubpanels showdepthcross-sections, showing longitudeanddepthof events. Color
encodes event depth. The histograms on the left of the cross-section show the depth distribution of the detected events.
In the reference catalogs for Cascadia (Bostock et al., 2015) and Guerrero (Frank et al., 2014) each dot represents an LFE
family. For Nankai (Japan Meteorological Agency, 2023) individual LFEs are plotted. The bottom panels show waveforms of
associated LFE picks from deep learning in each region. Red lines indicate phase picks (dotted for P, solid for S).

monly observed in Nankai. For San Andreas (975 events
detected), the new catalog deviates from the previous
observations, with the detection broadly distributed in
space instead of along the fault (Figure S7). This is likely
caused by very poor locations due to the station geom-

etry. As many events are only detected by the Park-
field borehole arraywith very dense station spacing, the
aperture is small. Together with high pick uncertain-
ties, this makes determining accurate locations chal-
lenging. Therefore, we will exclude San Andreas from
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the following analysis.
In all catalogs, the event depth exposes high scatter.

Nonetheless, the largest density of events is around the
previous estimates of LFE source depths. For Cascadia,
events within the network show less scatter on depth
than outside the network. We suggest that this is caused
by the high timing uncertainty of the picks. In particu-
lar, a high P pick uncertainty will cause poor depth con-
straints as the P to S time is indicative of depth. Tem-
plate matching catalogs alleviate this problem by locat-
ing LFE families instead of single events. In Guerrero,
we observe an arc-shaped depth distribution. This is
most likely related to the station distribution that traces
out almost a straight line, leading to poor location con-
straints perpendicular to the station line (Frank and
Shapiro, 2014).
Figure S5 shows the event density of the detected

events. This visualisation further highlights the match
with the reference catalogs both in terms of latitude and
longitude and in terms of depth. For Japan, the high-
est event density occurs in the South-Western band of
LFE activity. For Cascadia, the fine structure of detected
LFEs is compatible with earlier publications, e.g., clear
overlap is visible with patches A and C in the visualisa-
tion of LFE density of Figure 7 by Savard and Bostock
(2015).
Even though the overall shape of the catalogs is con-

sistent with the previous catalogs, this alone does not
confirm that the identified events are indeed LFEs. We
therefore conduct additional analysis into the newly ob-
tained catalogs. Figure 3 shows spatial and temporal
patterns in the catalogs. In Cascadia, LFEs in all three
observed sequences show a clear North-Westward mi-
gration. This is consistent with the slow slip and tremor
migration patterns in the area during these episodes
(Wech, 2021). We conducted an additional analysis,
comparing the PNSN tremor catalog and LFEs detected
using ourmethod for a 31 day period in 2021 (Figure S6).
This analysis shows a high agreement between LFE and
tremor locations, density, and temporal development.
This holds even though for this time period we used a
less dense station coverage and considered a larger part
of Vancouver Island than in the 2003 to 2005 episodes.
For Nankai, we observe a migration in the North-

Eastward direction. Notably, the migration is not con-
tinuous but rather has a gap and an additional, earlier
cluster at the far North-West. This pattern matches ex-
actly the migration pattern in the JMA catalog. We do
not observe clear spatial migration patterns in Guer-
rero, however, such patterns have previously only been
identified with very precise location estimates (Frank
et al., 2014). In all regions, the evolution of daily event
rate between the deep learning and reference catalogs
is highly similar with Pearson correlation coefficients
between 0.74 and 0.93. In absolute numbers, the deep
learningmethoddetects substantially fewer events than
the template matching, but more events than the man-
ual detection procedure of the JMA. We note that the
number of events from deep learning is highly depen-
dent on the chosen quality control parameters, which
we set rather conservatively to avoid false positive de-
tections.

Figure 4 shows a comparison of the velocity spectra
of LFEs detected by ourmethod, earthquakes and noise
in the three regions. The spectra clearly show the char-
acteristics of the different event types. The earthquake
spectra show increasing or at least constant energy up
to about 10 Hz. In contrast, the LFEs show a continu-
ous decrease or at most constant levels of energy from
low frequencies onward. The LFEs only show substan-
tially higher energy than the noise in a small frequency
band, while the EQs show substantially higher SNR at
high frequencies. This depletion in energy at higher fre-
quencies is the key property of LFEs.

4 Increased diversity of LFE sources
through deep learning

We compare the detected events to the reference cata-
logs (Figure S8). In Cascadia, for 64% of the LFEs from
our workflow, we find an LFE in the reference catalog
within 10 s; for Guerrero for 81% of the events. For
Nankai, only 8% of our LFEs are in the reference cata-
log, however our catalog also substantially exceeds the
original catalog in the total number of events. Con-
versely, we recover 39% of the cataloged events. Note
that a loose threshold for matching is justified due to
uncertainties in the origin times due to inaccurate lo-
cations. On one hand, these results are another confir-
mation that the method correctly identifies LFEs. On
the other hand, the substantial fraction of uncataloged
events suggests that our method identifies previously
unidentified LFEs. In the following, we verify and anal-
yse these detections.
First, we rule out spurious detection. To this end, we

scramble the picked arrival times of each station by ap-
plying small random shifts. We choose constant shifts
for each station for every hour. This destroys the ex-
act times, while keeping the pick distribution, the P to S
times within a station, and the higher number of picks
within tremor bursts intact. We then build “catalogs”
by associating these scrambled pick times, using the
same associator settings as for the actual catalogs. The
scrambled “catalogs” only contain about 5% to 10% of
the number of events contained in the original catalogs
and show no spatial coherence (Figure S10). Even these
numbers are still likely an overestimation of the false
positive rate, as events recorded at many stations are
likely to be unperturbed by our scrambling procedure.
Therefore, at least 20% additional detections can not be
attributed to spurious associations.
Mapping the events withoutmatches in the reference

catalog (Figure S11) reveals that they follow the same
spatial extent and migration pattern as the full catalog.
Notably, for Cascadia and Mexico there are changes in
the temporal patterns. For Cascadia, the newly detected
events concentrate early and late in the LFE sequence,
coinciding with a spatial location around the southeast-
ern tip of Vancouver island and towards the northwest-
ern end of the LFE cluster. Nonetheless, there are ad-
ditional detections dispersed throughout the whole re-
gion including the central region with good coverage
in the reference catalog. For Mexico, the largest frac-

6 SEISMICA | volume 3.1 | 2024



SEISMICA | RESEARCH ARTICLE | Deep learning detects uncataloged low-frequency earthquakes

Figure 3 Spatial and temporal migration patterns of detected LFEs. Each dot represents one LFE. The time within the se-
quence is indicated by colour. The bottom panel shows the number of events per day for the LFEs from deep learning (blue)
and reference catalogs (orange). The numbers in the upper left corners indicate the Pearson correlation coefficient between
the daily number of events between the two catalogs.

tion of new detections clusters in time between days
30 and 50 of the analyses sequence. Visualising the in-
terevent time (Figure 4) confirms these observations.
Both the full deep learning catalogs and the catalog of
events without a match in the reference catalogs show
clear burst behaviour. In particular for Mexico, cer-
tain LFEbursts are contained virtually completely in the
template matching catalog, while others have not been
identified at all. This highlights that the newly detected
LFEs donot only uncover new sources but evennewLFE
bursts.
To further validate this finding, we correlate the un-

cataloged detectionswith the family stacks from the ref-
erence catalogs (Figure S12). For Cascadia, the distri-
bution of correlation values for these uncataloged de-
tections are identical to the noise distribution, i.e., the
new detections do not match known sources. For Guer-
erro, some events show systematically higher correla-

tions than the noise. Nonetheless, the vast majority
of our additional detections do not match the known
sources any better than the noise. This verifies that
these new detections are systematically different and
that these events can not be foundwith templatematch-
ing without identifying further, novel templates.
Extending upon the finding that the model can gen-

eralise from known families to LFEs outside these fam-
ilies, we investigate the ability to detect LFEs in regions
the model has not been trained on. For this analysis,
we trained leave-one-outmodels, i.e.,models trainedon
all but one region, and applied them on the left-out re-
gion. Figure S13 visualises the spatial and temporal mi-
gration patterns. Again, the clear migration patterns in
Nankai and Cascadia are retrieved. Furthermore, the
number of events correlates highly (Pearson correla-
tion between 0.69 and 0.82) with the reference catalogs.
The total size of the catalogs varies, with a substantially
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Figure 4 Spectra and interevent times in the different regions. The toppart shows velocity power spectral density for noise,
earthquakes (EQs), and LFEs detected using deep learning. For each region, all traces stem fromone reference station (Casca-
dia - MGCB, Guerrero - MAXE, Nankai - IIDH). Noise example have been extracted outside tremor episodes. Spectra have been
calculated from the horizontal components (20 s windows for noise, 11 s windows starting 1 s before the S arrival for events).
Thin lines show individual spectra, bold linesmedian spectra. EQs were selected at a similar distance and depth range to the
LFEs. Network averaged spectra are shown in Figure S9. The bottom part shows the development of interevent times during
the LFE sequences in the reference catalogs, the deep learning catalogs, and for the unmatched events, i.e., all events from
the deep learning catalogs that are not in the reference catalogs. Vertical stripes in the events indicate the occurrence of LFE
bursts. For Cascadia, we only visualise the 2005 sequence for simplicity. We visualise all events from the reference catalogs
without further declustering, leading to very low interevent times.

smaller catalog in Cascadia, a similarly-sized catalog in
Nankai, and a far bigger catalog in Guerrero. However,
these might be related to changes in the model confi-
dence values rather than their actual quality as we pro-
duced all catalogs with fixed picking thresholds. The
cross-regional analysis clearly illustrates that the mod-

els can be transferred across regions and recover LFEs
from families they have not been trained on.
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5 Conclusion
Our analysis shows that deep learning and template
matching are complementary in the way they detect
LFEs with specific advantages and disadvantages for ei-
ther method. The biggest strength of deep learning is
the flexibility. The model can be applied to additional
stations, including temporary stations, shows higher di-
versity in terms of event families, and can be trans-
ferred across regions. In addition, our method directly
allows to locate single LFEs, even though with substan-
tial uncertainties in terms of depth. In contrast, tem-
platematching requires a predefined set of sources that
is difficult to obtain and specific to each region and set
of stations. While rigid, this leads to a more sensi-
tive model, as evidenced by higher event counts. Fur-
thermore, it allows template matching to identify LFEs
with fewer stations than deep learning. For LFEs, com-
monly no individual location is performed after tem-
plate matching, due to the difficulties caused by the low
SNR ratio. However, it has been shown that relative lo-
cations of individual LFEs can be determined with clas-
sical methods as well (Shelly et al., 2009). A promising
avenue might be the combination of deep learning and
template matching, i.e., using deep learning to identify
a diverse set of templates and afterwards use template
matching to increase the completeness of the identified
families.
Lastly, the deep learning method extends our view

of LFEs by detecting previously unidentified sources.
Building a comprehensive set of templates for tem-
plate matching is challenging: the low bandwidth and
SNR makes it difficult to distinguish between closely
spaced sources, leading to a trade-off between missing
sources and redundant templates. In contrast, the deep
learning method is source-agnostic, i.e., no selection of
sources needs to be performed for detecting individual
events. Such a source-agnostic view is necessary to per-
formunbiased subsequent analysis that requires a com-
plete view of LFE sources, such as estimates of slow slip.
In addition, the fact that the model can be transferred
across regions shows that LFEs have universal, region-
independent properties similar to earthquakes. Given
our results, we expect that deep learning methods will
allow to map LFEs across world regions with high con-
sistency and diversity.
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