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1 Data and methods

1.1 Reference LFE catalogs and seismic datasets

In this manuscript, we work on four study regions: Cascadia (Canada/USA) (Bostock et al., 2015), the central section

of the San Andreas fault (USA) (Shelly, 2017), Guerrero (Mexico) (Frank et al., 2014), and Nankai (Japan) (Japan

Meteorological Agency, 2023). For each of these study regions, detailed LFE catalogs are available. For Cascadia, San

Andreas, and Guerrero, the catalogs are based on template matching on multiple seismic stations. For Nankai, LFEs

are determined in routine processing of the Japanese Meterological Agency (JMA) using a traditional workflow of phase

picking and phase association.

Machine learning based event detection and phase picking workflows for regular earthquakes have predominantly

been trained on hand-labeled catalogs with traditional processing pipelines (Zhu and Beroza, 2019; Ross et al., 2018;

Münchmeyer et al., 2022). This guarantees high quality training data with a very low fraction of false positive examples.

At the same time, hand picked catalogs are usually incomplete, i.e., miss a substantial number of events. In contrast,

template matching catalogs tend to be very complete, at least for events with corresponding templates, but come at

the cost of substantially more false positive detections (Scotto di Uccio et al., 2023). Especially for events with low

signal-to-noise ratio (SNR), such as LFEs, template matching is usually applied at multiple stations at once with events

only accepted if their correlation is sufficient across multiple stations (Shelly, 2017; Bostock et al., 2015; Frank et al.,

2014).

The different characteristics of classical and template matching catalogs have implications for training machine learning

models. Template matching catalogs do not provide picks for individual events but instead times where a templated

matched to the continuous waveforms. If picks on the templates are available, this allow inferring pick times on the

continuous data. However, template matches for LFEs are often non-unique, i.e., multiple templates match at the same

location. In our analysis, this lead to uncertainties in the inferred pick times > 1 s.
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Figure S1: Spatial distribution of LFEs from the reference catalogs (dots) and stations (red triangles) in the four study

regions. For Cascadia (Bostock et al., 2015), Guerrero (Frank et al., 2014), and San Andreas (Shelly, 2017), each dot

represents an LFE family. For Nankai (Japan Meteorological Agency, 2023) individual LFEs are plotted. The event

depth is encoded in color. We only show stations used for generating training data.

Another key difference between traditional earthquakes and LFEs is their temporal pattern. While EQs rarely occur

with interevent times below tens of seconds, at least outside intense aftershock sequences, LFEs usually occur in burst
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Figure S2: P and S phase detection performance within and across datasets at a signal-to-noise ratio of -2.5 dB. Each

panel shows the area under the curve (AUC) of the receiver operating characteristics (ROC). The evaluation has been

conducted on the synthetics generated from stacks and noise. No results are reported for evaluation on Nankai as the

real data does not allow to define a gold standard.

with temporal spacings of only few seconds. Unfortunately, not all of these events can be correctly identified with template

matching, leading to substantial numbers of missing annotations around existing annotations. This causes an issue for

training typical detection models as these unidentified events are wrongly labeled as noise. With the dense spacing of

events, this causes substantial amounts of label error and is detrimental to model performance. Therefore, we were not

able to train LFE detection and picking models based on events from template matching catalogs.

This challenge impacts even more significantly the evaluation of model results. Traditional picking and detection

algorithms are evaluated based on their detection performance and picking accuracy (Münchmeyer et al., 2022). Esti-

mating detection accuracy on template matching catalogs is not possible, as the missing detections make it impossible to

guarantee that windows do not contain LFEs. One option would be to select windows far outside LFE burst, however,

these are too easy to distinguish from windows around LFEs that do not contain arrivals and, therefore, do not offer an

appropriate metrics. We observed similar incompleteness issues for the Japan catalog, making an evaluation of detection

capability on this data impossible. For picking accuracy, the inaccuracy of the inferred picks on the continuous waveforms

makes it impossible to infer performance measures on the template catalogs. Given these difficulties in both training and

evaluating LFE detection and picking models, different strategies than for regular earthquakes are required. We outline

these in the subsequent sections.

1.1.1 Cascadia

The northern Cascadia subduction zone, beneath Canada and the United States, has long been known for hosting

subduction megathrust events, slow slip events, and LFEs (Satake et al., 1996; Rogers and Dragert, 2003). Due to its

low seismicity rate, the area is often employed as a natural laboratory for studying the connection between aseismic

deformation and their seismic signature (Rouet-Leduc et al., 2019).

For this study, we use the LFE catalog by Bostock et al. (2015). We use 21 seismic stations from the C8, CN and

PO networks. The catalog contains 129 LFE families, located underneath Southern Vancouver island and offshore to

the South. All families locate at depth between 35 and 50 km with a Northwest dipping distribution that is following

the subduction interface. We note that tremor observations suggest that further LFEs occur to the South and North of
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Figure S3: Pick accuracy at different signal-to-noise ratios. Number in the corner indicate mean absolute errors (MAE)

in seconds around the median prediction. Red vertical lines indicate the median values. Larger bars on the sides are

caused by windows in which no pick has been identified. For each 5 second window, we take the time of highest predicted

probability as the pick time.

the cataloged LFEs (Wech, 2021). These could likely not be tracked using the limited coverage of the stations used by

Bostock et al. (2015). The data spans the years from 2003 to 2012, with 80 % of the waveforms coming from the years

2003 to 2005, as these years have the best station coverage. The catalog only spans major slow slip events (M > 6) and

not the full duration from 2003 to 2012. In total, we extracted 2703 templates (1621 training / 271 development / 881

test) from the reference catalog.
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Figure S4: Spatial visualisation of the overlap between LFE and EQ detections. Blue dots denote exclusive EQ detections,

green dots exclusive LFE detections, red dots joint detections. Joint detections are visualised at the location determined

with the EQ picker as these locations are more accurate. The numbers of unique EQs/unique LFEs/overlapping events

are: 89/10211/8 (Cascadia), 612/876/12 (Guerrero), 2329/2525/1787 (Nankai), and 992/975/57 (San Andreas).
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Figure S5: LFE density plots (top) and reference catalogs (bottom). For both the horizontal and vertical cross sections,

the remaining axis is ignored.

1.1.2 San Andreas

The San Andreas fault runs along the West Coast of the United States and regularly causes major earthquakes (Peng

and Zhao, 2009; Ross et al., 2019). The fault exposes a strong segmentation along strike with intermittent locked and

creeping sections. The region stands in contrast to the other regions in this study, as the LFEs occur along a strike-slip

fault and not in a subduction zone as in the other examples. We still include this dataset to increase the diversity of

training data available to our models.

Shelly (2017) studied the central San Andreas fault and created a 15 year catalog of low frequency earthquakes. Using

templates for 88 individual LFE families, they detected more than one million individual LFEs. All LFE families are

located in close proximity to the fault line in a narrow depth band between 20 and 30 km. They employed data from 11

stations in the High-Resolution Seismic network (HRSN), a borehole network installed in the Parkfield area. Additional

stations have been employed on an ad hoc basis for locating LFE families but not for detection.

For our study, we created waveform templates by stacking the waveforms according to the families and event times
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Figure S6: Maps of LFEs detected with deep learning (left) and tremors from the PNSN catalog (right) in the period from

2021-01-15 to 2021-02-15. In the top plots, color indicates time within the sequence, from dark blue (early) to light green

(late). Black triangles indicate the stations used for generating the LFE catalog. All stations are from the CN network

and are used for the PNSN tremor catalog as well. We note that tremor and LFE catalogs are only partially comparable

because they map distinct, even though related, phenomena. In particular, LFEs are essentially point processes, while

tremors are extended in time. This makes tremor detection and location easier. Nonetheless, even high-quality tremor

catalogs tend to show artifacts, such as the gridding visible in the figure in both depth and latitude/longitude (rotated).

indicated in the catalog. For each families we created templates at the 11 HRSN stations used for template matching.

In addition, we included further stations on a family basis as employed for location by Shelly (2017). Templates with

insufficient data have been discarded. We use the original phase picks on the stack and manually picked missing arrivals.

In total, we extracted 3889 templates (2333 training / 389 development / 1167 test).

1.1.3 Guerrero

The Mexican subduction zone has long been known as hosting slow slip, tremor, and LFEs (Larson et al., 2007; Payero

et al., 2008; Frank et al., 2013). With the trench located close to the shore and an almost 200 km long, flat subduction
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Figure S7: LFE catalog obtained using the deep learning (left) and reference catalog (right) for San Andreas. For the

deep learning catalog, each dot represents one LFE. In the reference catalog (Shelly, 2017), each dot represents a family.

Color encodes event depth. The bottom panels show depth cross-sections, showing longitude and depth of events. The

histogram on the left of the cross-section shows the depth distribution of the detected events.

interface at a depth of around 45 km, the region is favourable for the observation of such phenomena. In this study, we

use the catalog of Frank et al. (2014). The catalog contains 1120 LFE families located around the subduction interface.

The families cover a range of roughly 0.5 by 1.0 degrees with the majority of families locating between 30 and 50 km

depth. Based on these families, Frank et al. (2014) identified ∼1.85 million individual LFE occurrences. However, many

events overlap, suggesting that there is overlap between the spatial coverage of individual template events.

For training, we use the same 10 stations from the MASE deployment of the TO network as Frank et al. (2014). We

note that the MASE deployment is a line array, which limits the location precision perpendicular to the array. In total,

we extracted 11200 templates (6720 training / 1119 development / 3361 test).

1.1.4 Nankai

The Nankai trough offshore Southern Japan is the first region worldwide where NVTs and LFEs have been described

(Shelly et al., 2006). The region is known for hosting the full range of slow earthquakes, including VLFEs, LFEs and SSEs

(Araki et al., 2017; Nakano et al., 2018). Along two elongated bands of roughly 200 and 300 km extent along strike, intense

LFE activity has been observed. The events are distributed between 30 and 50 km depth and dip towards the North-West

in accordance with the subduction. The majority of events occurs underneath land, leading to an exceptionally good

station coverage and small azimuthal gaps.

We use the LFE catalog from the JMA, including all events between 32.5◦ and 36◦ North and 132◦ and 138.5◦ East

(Japan Meteorological Agency, 2023). We use all events from 05/2008 to 04/2010. For each event, we include waveforms

8



Figure S8: Temporal matching between events from the deep learning and the reference catalogs. Each panel shows the

cumulative distribution function of the time difference between an event in one catalog and the closest catalog in the

other catalog. The top row matches events from the deep learning catalog to the reference catalog, the bottom row the

other way around. The numbers in the top left corners indicate the fraction of events with a reference event within 10 s.

Note that these statistics are influenced by the total size of the catalogs. As the template matching catalogs usually do

not report origin times but instead the time the template aligns, origin times for these catalogs have been estimated and

carry higher uncertainties.

Figure S9: Velocity power spectral density for noise, earthquakes, and LFEs detected using deep learning. In contrast to

Figure 4, spectra have been extracted from all stations available. See the caption of Figure 4 for further details.

from all FNet stations with at least one pick for the event. The resulting dataset consists of 57,702 traces of 7,996

events. There are 1,550 labeled P phases and 57,564 labeled S phases. We discuss mitigation strategies for the strong

label incompleteness for P waves in the subsequent description of the model training. We split the dataset into training,

development and test set between events, i.e., all traces for one event go into the same subset. We employ a chronological

split with ratios 0.6 / 0.1 / 0.3 (training / development / test).
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1.2 LFE picking model

For detecting LFEs and determining their phase arrival times, we build a deep learning network. Our network is a minor

modification of PhaseNet (Zhu and Beroza, 2019). PhaseNet has a simple architecture and showed excellent performance

in a recent benchmark on earthquake picking (Münchmeyer et al., 2022). We retain the basic original architecture of

PhaseNet: a U-Net consisting of an encoder branch, a decoder branch, and residual connections. Compared to the

original model, we modify the input shapes and the number of layers. Our input trace consists of 60 s of waveforms at

a sampling rate of 20 Hz for a total of 1200 samples. Input waveforms are bandpass-filtered between 1 to 8 Hz as this

is traditionally the main frequency band for LFE detection. Our output consists of 1200 samples as well, covering the

same time range and representing P and S arrival probabilities. In contrast to the original PhaseNet, we remove the

noise probability trace in the output and replace the final softmax layer by a sigmoid layer. This enables the labelling of

overlapping P and S phases. We base our implementation on SeisBench (Woollam et al., 2022) and make our datasets,

model and trained weights available through the software.

For training the model, we encode the phase arrivals as Gaussian peaks in the probability curves with a standard

deviation of 0.5 s. We train the model using a binary-cross entropy loss independently for P and S phase. In the Japanese

data, substantially fewer P than S picks were annotated. To reduce the impact on the probability curves, we down-weight

the loss for the P wave curve to 20 % for the time from 10 s to 1.5 s before the S wave arrival, if no P wave has been

annotated. This incentivises the model to pick more P arrivals based on the annotated ones and leads to higher confidence

scores. Keeping the loss at a lower weight is beneficial over zeroing out the loss, as zeroing leads to high numbers of

incorrect P picks.

We use two different data generation procedures. For Nankai, we select a random window of 60 s as input and label

all contained P and S phases. To increase the diversity and train the model for lower SNRs, we mix the traces with noise

traces. Noise weights are drawn from a Gamma distribution with shape parameter a = 0.3. The Gamma distribution

will produces a similar level of noise for many examples, while including high noise examples according to its exponential

tail. For the template matching datasets, we create synthetic examples from the waveform stacks. First, we randomly

take up to three stacks. The stacks can originiate from different stations and even regions. Second, we sum these stacks

with random time offsets and select a random window of 60 s duration. Third, similar to Nankai we mix the stacks with

noise. All noise traces are taken from the INSTANCE noise dataset (Michelini et al., 2021). We use these waveforms

from Italy as there are no known tectonic tremors or LFEs in Italy, making labelling errors unlikely. Noise scales are

drawn from a Gamma distribution, the shape parameter a is increased from 0.1 to 5 during training with a geometric

spacing of intermediate values. This means that the model training starts with easier high SNR examples before training

on harder examples with low SNR. In addition to these two data generation procedures, for 20 % of the examples we

provide the network with pure noise traces. We use the same data generation procedure for the validation dataset but

keep the scale parameter of noise distribution constant at a = 0.3 for Nankai and a = 2 for the stack datasets. This

makes the validation loss values comparable across epochs. Figure 1 shows an example of the combined stacks, the noise,

the mixed stack and noise, and the labels. Even though we use a low noise level of 0.5, the LFE arrivals are already

hardly identifiable by eye.

To further increase the diversity of our data, we use data symmetries. Phase picks should be invariant to the orientation

of the sensor’s horizontal components, i.e., to rotation around the Z axis. Similarly, they should be invariant to sign

changes of the horizontal components. We therefore randomly rotate each training example around the Z axis. We further

create five copies of the data: rotated by 2
3π and by 4

3π, and mirrored versions of the three rotated copies. We feed all

copies to the model at once, increasing the effective batch size by factor 6. This has the side benefit of substantially

improving GPU utilisation and thereby reducing training times. As it is not the main focus of this paper, we do not

study the effect of these augmentations in detail.
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We train the model jointly on all four dataset for 250 epochs. We use the model weights from the epoch with lowest

validation loss. We use the Adam optimizer with a learning rate of 10−2 or 10−3 and a batch size of 1024. We optimized

the hyperparameters using a grid search and selected the parameters with minimum validation loss. While validation loss

is a good proxy for model performance, it is usually not the first choice for model selection. However, in this case we do

not have access to a more suitable performance metric due to the data issues discussed above and, therefore, resort back

to the validation loss. As we discovered systematic picking offsets between the datasets, for the joint model, we introduce

constant shifts for all picks to homogenize the arrival times.

1.3 LFE catalog workflow

To build LFEs catalogs from continuous data, we integrate the picking model into a pipeline. First, we use the model to

generate candidate picks. To apply the model to continuous data, we use a sliding window approach. We use an overlap

of 600 samples, i.e., each sample is covered by exactly two windows. The windowed predictions are merged using the

average prediction for each sample.

For declaring picks, we use fixed thresholds and use the local maximum of the pick probability curve as pick time.

To identify LFEs, we associate the picks using the PyOcto associator (Münchmeyer, 2023). We conducted additional

experiments with the REAL (Zhang et al., 2019) and GaMMA (Zhu et al., 2022) associators that gave viable catalogs as

well but showed overall worse performance. We set region-specific requirements on the minimum number of picks. All

events are relocated using NonLinLoc (Lomax et al., 2000) with 1D velocity models. Events with too high RMSE are

discarded. We use station travel time residuals for PyOcto and NonLinLoc to improve the association and location. To

infer the station residuals, we calculated earthquake catalogs using the same pipeline but with a PhaseNet picker (Zhu and

Beroza, 2019) from SeisBench (Woollam et al., 2022) trained on INSTANCE (Michelini et al., 2021). The region-specific

parameter settings for the catalog generation and quality control are detailed in Table S1. We parallelise the pipeline

using the dask workflow management system (Dask Development Team, 2016) and execute it on a high performance

cluster.

2 Performance evaluation on synthetics

For a quantitative evaluation, we test our model on synthetic data compiled from stacks and noise. For each dataset, we

generated a test set of 20480 examples that we kept fixed across all evaluations. These example were generated using

a set of stacks not employed in training. All results presented are from these independent test sets, while parameters

have been selected on another independent development set with 20480 traces based on distinct stacks. As no stacks are

available for the Nankai model and the data therefore lacks a reliable ground truth, we do not report results for Nankai

here.

We design our synthetic evaluation after Münchmeyer et al. (2022). In addition to the traces, we define a collection

of target windows. For each window, we extract the maximum predicted probability for the window being a P or S wave.

For true examples, i.e., examples containing a P or S wave, we use a window of 5 s centered around the arrival. We use

two types of noise examples. First, we select 5 s windows consisting exclusively of noise from INSTANCE. Second, we

select 5 s windows of the synthetic stack plus noise waveforms that do not contain any arrival. These are substantially

more challenging than the pure INSTANCE noise windows as they are usually in the coda of other LFEs. At the same

time, these windows need to be included for a realistic evaluation. We analyse our results using receiver operating

characteristics (ROC) and the area under the ROC curve (AUC). These metrics are threshold-independent and therefore

do not require a choice of detection threshold for the evaluation.

We conduct evaluations at different noise levels. We define the signal-to-noise ratio (SNR) as the ratio between the
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standard deviation of the stacks without noise to the standard deviation of the noise example. We use SNR values from

+10 dB (signal is factor 10 above the noise) to -10 dB (noise is factor 10 above the signal).

Figure 1 shows the ROC curves for P and S waves in all regions using the model trained jointly on all 4 datasets.

At high SNR values, all regions have SNRs of 0.98 to 1.00, indicating excellent performance. However, we note that the

dataset for evaluation is balanced between signal and noise classes, while in continuous waveforms, noise is substantially

more common. In this light the absolute values of the AUC should be interpreted with caution. The detection performance

for both P and S waves stays almost constant until roughly -2.5 dB and degrades afterwards to values between 0.88 (San

Andreas) and 0.93 (Cascadia) at -10 dB. This means, that event at low signal to noise conditions, the model still performs

substantially above chance. We do not observe a systematic difference between P and S phase detection capabilities.

Seismic phase pickers for regular earthquake transfer well across regions (Münchmeyer et al., 2022). To identify if

a similar transferability exists for LFE pickers, Figure S2 shows the AUC values in a cross-domain setting, i.e., with

different training and test regions. Overall, while the in-domain models generally perform best, the off diagonal elements

show good performance too. In particular, the models trained on Guererro and San Andreas show performance similar to

the in-domain model when applied to Cascadia. In contrast, the models trained on Cascadia perform worse when applied

to the other regions. The joined model, trained on all four datasets performs for every region similarly good, sometimes

better than the models from single regions. We further suspect that this model has better generalisation performance,

which can, however, not be analysed based on the templates. For reference, we include the performance of the model

trained exclusively on real LFEs waveforms from Nankai. The model performs substantially inferior, however, this is

likely caused by the model not being trained towards the specificities of the synthetic data.

In addition to the sensitivity of the phase picker, we are interested in the picking accuracy, i.e., whether the automat-

ically picked times match the manual pick times. Figure S3 shows the pick timing of the joint model on the three stack

datasets at different noise levels. Performance varies substantially between the datasets, with the lowest residuals for

Cascadia, followed by the other two datasets. In all cases, residuals for S waves are lower than for P waves by a margin of

about 20 to 50 %. This is consistent with the traditional understanding that LFE P arrivals are harder to pick than LFE

S arrivals due to their lower SNR. Arrival time precision degrades noticable with the SNR, with substantial degradation

setting in around -2.5 dB, similar to the observations for detection. Nonetheless, across all noise levels and datasets, the

median prediction is always close to zero, i.e., the picks are always unbiased or only have little bias. Comparing the mean

absolute error (MAE) of the LFE picker for LFEs to those of a deep learning earthquake picker for regular earthquakes,

the MAE is higher by a factor of at least three (compared to INSTANCE from Münchmeyer et al. (2022)), but can even

go up to more than 10 (compared to STEAD). Therefore, any downstream workflow needs to be tolerant to substantially

higher pick uncertainties.
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Table S1: Parameters for the LFE detection workflow. The parameters are grouped into the velocity model, picking pa-

rameters, and association parameters. Parameter names follow the naming in the underlying tools SeisBench and PyOcto.

Parameter Cascadia Guerrero Nankai San Andreas

Velocity model Bostock et al. (2015) Domínguez et al. (2006) JMA2001 Small et al. (2017)

P_threshold 0.1 0.1 0.15 0.1

S_threshold 0.1 0.1 0.15 0.1

overlap 600 600 600 600

minimum number picks 13 14 12 10

minimum number p and s picks 2 3 3 2

maximum std nonlinloc 0.85 1.0 0.75 0.85

pick match tolerance 2.5 2.0 2.0 2.0

velocity model tolerance 2.0 2.0 2.0 2.0

association cutoff distance - - 150 -

min pick fraction 0.25 0.25 0.4 0.25
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Figure S10: Example catalogs with scrambled pick times. For each region, the original raw picks from the LFE picking

model have been scrambled. For this, all picks at a station within one hour are shifted by the same offset. Offsets differ

between hours and stations. Offsets are drawn randomly from a Gaussian distribution with 30 s standard deviation. This

strategy ensures that P to S times, the number of picks per station, and higher numbers of picks within tremor sequences

are preserved. The scambled picks are processed using the same association and location pipeline as before, including

the same quality control criteria. The higher number of detections in Japan is related to the very high station number,

making associations even after scrambling likely.
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Figure S11: Spatial migration patterns of all LFEs without a match in the reference catalogs. A match to the reference

catalog is defined as a reference event occuring within 10 s of the detected event. Note that the substantially lower

correlation values between the number of events here and the reference catalogs are expected: here we only count events

not in the catalog and it is likely that the fraction of such event changes over time with the migration of the events.
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Figure S12: Cross correlation distribution between the family waveform stacks from the reference catalog and short times

around the new detections from the catalog. Only detections without a temporal match to the reference catalog are

shown, i.e., only uncataloged events. We correlate each detection to each template from the reference catalog, reporting

the correlation with the best matching template for each detection. We correlate 6 s windows around the picked S waves

on the template. We consider the mean of the correlations for the two horizontal components. Each correlation value

is the mean of the five stations with highest correlation. We allow time offsets of up to 25 seconds between templates

and new detections but keep the moveout fixed to the values from the reference catalog. The background shows the

correlation for noise examples using the same procedure as for the LFEs. Noise waveforms were selected from days with

low LFE activity. As the JMA catalog is not based on templates, this analysis is not applicable here.
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Figure S13: Spatial migration patterns of LFEs detected using a cross-domain approach. For each region we trained the

model using a leave-one-out approach, i.e., on all regions except the one we later applied it to. The substantially higher

number of events for Mexico is related to variabilities in the absolute confidences values and could be adjusted using

fine-tuned thresholds.
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