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Statistical distribution of static stress resolved onto
geometrically-rough faults
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Abstract The in-situ stress state within fault zones is technically challenging to characterize, requiring
the use of indirect methods to estimate. Most work to date has focused on understanding average properties
of resolved stress on faults, but fault non-planarity should induce spatial variations in resolved static stress
on a single fault. Assuming a particular stochastic model for fault geometry (band-limited fractal) gives an
approximate analytic solution for the probability density function (PDF) on fault stress that depends on the
mean fault orientation, mean stress ratio, and roughness level. The mean stress is shown to be equal to the
planar fault value, while deviations are described by substituting a second-order polynomial expansion of
the stress ratio into the inverse distribution on fault slope. The result is an analytical expression for the PDF
of shear-to-normal stress ratio on 2-D rough faults in a uniform background stress field. Two end-member
distributions exist, one approximately Gaussian when all points on the fault are well away from failure, and
one reverse exponential, which occurs when the mean stress ratio approaches the peak. For the range of
roughness values expected to apply to crustal faults, stress deviations due to geometry can reach nearly 100%
of the background stress level. Consideration of such a distribution of stress on faults suggests that geometric
roughness and the resulting stress deviations may play a key role in controlling earthquake behavior.

1 Introduction
Fault stress is difficult to measure in the earth’s crust
and is affected by many factors, including slip both lo-
cally and on nearby faults, variations in material prop-
erties along faults, and geometric complexity. The dis-
tribution of prestress, i.e., stress prior to an earthquake
mainshock rupture occuring, likely has a strong impact
on both the rate and magnitude of earthquake ruptures
that occur (Day, 1982; Oglesby, 2005; King and Nábělek,
1985; Fang and Dunham, 2013; Bruhat et al., 2016; Cat-
tania and Segall, 2021; Dieterich et al., 2015; Dempsey
et al., 2016; Maurer et al., 2020; Romanet et al., 2020).
Geometric complexity in particular has been shown to
affect the mechanics of slip on faults and may also im-
pact the prestress (e.g., Duan and Oglesby, 2007; Fang
and Dunham, 2013; Tal et al., 2018; Cattania and Segall,
2021). All faults present some degree of geometrical
complexities, including at both long and small length
scales (Power et al., 1987; Sagy et al., 2007; Candela
et al., 2009, 2012; Brodsky et al., 2016; Thom et al., 2017;
Zielke et al., 2017; Kirkpatrick et al., 2020; Tal et al.,
2020). Geometry impacts the slip tendency and the evo-
lution of stress during slip, through which it plays a role
in controlling eventual earthquake size and character-
istics (e.g., Oglesby, 2005; King and Nábělek, 1985; Fang
and Dunham, 2013; Bruhat et al., 2016; Maurer et al.,
2020). Obvious examples are restraining and releasing
bends, whichboth act as barriers and as potential nucle-
ation sites (e.g., Oglesby, 2005; King and Nábělek, 1985;
Bhat et al., 2004; Duan and Oglesby, 2007; Ando and

∗Corresponding author: jmaurer@mst.edu

Kaneko, 2018).

The distribution of pre-stress on faults has been ex-
plored in the context of the size distribution of seismic-
ity (e.g., Andrews, 1980), with regards to fault slip dur-
ing earthquakenucleation (Tal et al., 2018) andpropaga-
tion (Dieterich et al., 2015; Dempsey and Suckale, 2016),
and for induced seismicity, with regard to themaximum
magnitude of induced events (Kroll and Cochran, 2021).
Even for the same geometry, fault prestress has a strong
impact on dynamic rupture outcomes (Tarnowski et al.,
2022). Studies of dynamic earthquake rupture on rough
faults has shown that roughness impacts ruptures in
several ways. Dynamic simulations have showed that
geometric roughness and the resulting stress variabil-
ity has a strong impact on rupture size, speed, loca-
tion, and even whether faults slip seismically or aseis-
mically (e.g., Fang and Dunham, 2013; Bruhat et al.,
2016; Tal et al., 2018; Allam et al., 2019). Fault prestress
becomes heterogeneous over multiple earthquake cy-
cles near branches in earthquake simulations (Duan
and Oglesby, 2007), and in some cases earthquakes nu-
cleate specifically due to stress concentrations resulting
from geometric features such as restraining bends (Al-
lam et al., 2019). Futhermore, fault roughness may in-
duce slow slip and foreshocks due to normal stress vari-
ability occurring on faults that have orientations that
vary from optimal along strike (Tal et al., 2018; Catta-
nia and Segall, 2021). Earthquake cycle simulations in-
corporating roughness have shown that it has an im-
portant influence on individual ruptures and on the
magnitude-frequency distribution of events, and that
stress variability controls earthquake size over multiple
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Figure 1 Seismicity (black dots) in Oklahoma from Schoenball and Ellsworth (2017). Rose diagrams show the orientations
of fault segments inferredbySchoenball andEllsworth (2017). Diagram for theentire region is shown in the lower right corner,
while rose diagrams for each 1x1 degree cell are shown in each box or by arrows pointing to the appropriate box.

cycles (Heimisson, 2020). Observations of real earth-
quakes, such as El-Mayor Cucupah and Kaikoura, re-
quire mechanisms for both maintaining fault stability
at high slip tendency and destabilizing faults with low
slip tendency (Fletcher et al., 2016), which can only be
accomplished through fault roughness. Taken together,
these models and observations suggest that variability
in fault prestress due to geometric roughness influences
the location, timing and size of earthquakes, and that
the interaction between fault geometry and fault load-
ing will determine how ruptures propagate and earth-
quake cycles develop on faults.

A recent oppurtunity for learning more about in situ
crustal stresses is induced seismicity. Observations
of anthropogenically-induced earthquakes in relatively
uniform stress conditions (e.g., induced seismicity in
cratons) has shown that although fault orientations acti-
vated by fluid injection are generally seen to be consis-
tent with the inferred regional stress field (Lund-Snee
and Zoback, 2022), there are a range of orientations that
activate, including some orientations well away from
the regional mean SHmax direction (Schoenball and
Ellsworth, 2017; Skoumal et al., 2019). This is true even
when looking at smaller sub-regions of an area experi-
encing induced seismicity (Figure 1). Classical Ander-
sonian faulting theory defines the strength of a fault as

related to its orientation relative to the regional max-
imum principal stress direction. The theory assumes
that optimal faults are uniformly stressed at failure just
prior to an earthquake, with a ratio of shear to nor-
mal stress τ/σn equal to the static friction coefficient
µf everywhere along the fault. These simple assump-
tions require an active fault to be weak (i.e., have a
low value for µf ) if its orientation differs from the op-
timal orientation in the present-day stress field. How-
ever, this neglects the reality that faults are geomet-
rically complex, and may experience stress deviations
that would allow limited areas of the fault to reach fail-
ure locally, at which point dynamic weakening mecha-
nisms may occur that would allow rupture to continue
outside the highly-stressed region (e.g., Dunham et al.,
2011; Dempsey and Suckale, 2016; Lambert et al., 2021).
Fault geometry follows a power-law distribution, and
studies have suggested that faults are likely to be fractal
or near-fractal over a large range of wavelengths (e.g.,
Dunham et al., 2011; Candela et al., 2012; Shi and Day,
2013). Such geometrical complexity should impact the
along-strike distribution of pre-stress on faults as well
as rupture behavior.

Given this situation, determining the distribution of
prestress on faults becomes critical for understanding
earthquake behavior. Although a number of studies
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Figure 2 (a) 2D Geometry used for this study. The global coordinate system is parallel to the principal stress directions, and
the fault is at angle Ψ to SHmax. (b) Resolved stress ratio on a flat fault (RP ) as a function of γ and Ψ.

have investigated the geometric roughness of faults and
the impact on seismicity and ruptures (e.g., Day, 1982;
Duan and Oglesby, 2007; Candela et al., 2012; Fang and
Dunham, 2013; Brodsky et al., 2016; Bruhat et al., 2016;
Goebel et al., 2017; Thom et al., 2017; Zielke et al., 2017;
Tal et al., 2018; Kirkpatrick et al., 2020; Cattania and
Segall, 2021, and many others), no studies to date of
which I am aware have considered the statistical prop-
erties of pre-stress that arises from realistic geometric
roughness. Development of the characteristics and dis-
tribution of stress may allow for comparison to obser-
vations and provide constriants on in situ stress. In this
paper, I develop expressions for the statistical distribu-
tion of stress by 1) assuming a statistical distribution
for fault roughness, that of a fractal geometry, 2) re-
solving a uniformpre-stress background field onto such
fractal faults, and then 3) propagating an approximate
formof the stress ratio through the transformation from
the distribution for fault geometry to that for the stress
ratio. This analysis assumes no slip occurring on the
fault (i.e., does not account for stress changes due to
slip). Doing this allows me to derive the probability dis-
tribution function (PDF) of resolved shear-over-normal
stress on the fault prior to slip, which can be compared
to those used in previous studies. I develop a formula-
tion for the change in stress ratio given a change in pore
pressure. Finally, I discuss some of the implications for
earthquake ruptures and conclude with potential ways
that the results could potentially be used to further con-
strain stress in the Earth’s crust.

2 Analytic derivation of prestress on
rough faults

2.1 Resolving a uniform remote stress field
onto

Consider a 1-D flat fault embedded in a 2-D medium
(Figure 2a) with a uniform background stress field (hor-
izontal dashed line in Figure 3a). Define the global coor-
dinate system parallel to the principal stress directions
in 2-D; i.e. the x-axis is parallel to SHmax direction and
the y-axis parallel to the SHmin direction. The orien-
tation of the fault with respect to SHmax is given by

Ψ. Note that under this convention, Ψ varies between
±π/2. In terms of the angle θ traditionally used with
Mohr circles, Ψ and θ are related by 2θ = π − 2Ψ.
In the global coordinate system with a uniform back-

ground stress field, the 2-D stress tensor σij can be writ-
ten directly using the principal stresses σ1 and σ3:

(1)
σij(x) = σij

=
[
σ1 0
0 σ3

]
SHmax is equivalent to σ1 and Shmin to σ3. Param-
eterizing this expression in terms of the mean stress
σ̄m = (σ1 + σ3)/2 and maximum shear stress τmax =
(σ1 − σ3)/2 (Figure 3b) gives:

(2)σ̄rem
ij = σ̄mI + τmax

[
1 0
0 −1

]
where I is the identity matrix. To put the stress ten-

sor into the local coordinate system (i.e., relative to the
fault), rotate by Ψ using the rotation matrix Q :

(3)Q =
[

cos Ψ sin Ψ
− sin Ψ cos Ψ

]
.

Applying the coordinate rotation to Equation 2 gives:

(4)
σ̄local

ij =σ̄mQQT + τmaxQ
[
1 0
0 −1

]
QT

=σ̄mI + τmax
[

cos(2Ψ) − sin(2Ψ)
− sin(2Ψ) − cos(2Ψ)

]
This gives the three components of the local stress ten-
sor as:

(5)

σlocal
11 =σ̄m + cos(2Ψ)τmax

σlocal
33 =σ̄m − cos(2Ψ)τmax

σlocal
13 = sin(2Ψ)τmax

where the convention is that σlocal
11 is parallel to the

fault, and σlocal
33 is stress normal to the (flat) fault. Shear

stress σlocal
13 = sgn(Ψ) sin(2Ψ)τmax (taking the conven-

tion that right-lateral slip is positive), where sgn is the
sign operator and sgn(0) = 1. The local stress state is
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Figure 3 Geometry for resolving stress onto rough faults.
(a) Global and local coordinate systems relative to a partic-
ular fault are related through an angleΨ, the angle between
the corresponding flat fault and SHmax. σ1 and σ2 are the
maximumandminimumprincipal stresses in 2-D, τ b andσn

are the resolved shear and normal stresses on the flat fault
of orientation Ψ relative to SHmax (σ1). (b) Mohr circle di-
agram illustrating the various stress-related quantities and
their relation to each other. C is cohesion, µf is friction co-
efficient, σ̄m is the mean stress, and τmax is the peak shear
stress. (c) Cartoon illustrating the relation between the unit
normalz n, unit slip direction s, local fault slope m, and the
local angle of deviation θl.

written in terms of τmax, the maximum possible shear
stress for a given crustal stress state, and the mean
stress σ̄m. The local shear stress vanishes on faults par-
allel or perpendicular to the direction of SHmax (i.e.
Ψ = 0 or ±90 degrees, and is maximum for Ψ = ±45◦,
as expected.

2.2 Shear-over-normal stress ratio on 2D pla-
nar faults

Resolved shear and normal stresses are given in terms
of the local unit slip vector si and the local unit normal
ni (Jaeger et al., 2007):

(6)
σn = niσijnj = n2

1σ11 + n2
2σ22 + 2n1n2σ12

τ = siσijnj = s1n1σ11 + s2n2σ22

+ (n1s2 + s1n2)σ12

in the local coordinate system (Figure 3). In this co-
ordinate system, the fault is parallel to the (local) x1
axis, so si = [sgn(Ψ), 0], and ni = [0, 1]. The resolved
shear stress is, as noted above, sgn(Ψ) sin(2Ψ)τmax, and
resolved normal stress is σ̄m − cos(2Ψ)τmax. Then the
shear-over-normal stress ratio on a flat fault (Rp) is

(7)Rp(Ψ, γ) = sgn(Ψ) sin(2Ψ)
γ−1 − cos(2Ψ)

where γ = τmax/σ̄m is the ratio of themaximumshear
tomean stress. Figure 2b shows the resolved stress ratio
as a function of γ and Ψ. In the special case that that
Ψ = ±π/4 (i.e., 45◦ from SHmax), Rp = γ, as expected.

Taking thederivative of Equation 7with respect toΨ and
setting it equal to zero gives the optimal orientationΨopt

as a function of γ:

(8)Ψopt = ±1
2 cos−1 γ = ±1

2 cos−1 τmax

σ̄m

In comparison to this analysis involving the ratio of
the mean stress and maximum shear stress, traditional
Mohr-Coulomb theory (Jaeger et al., 2007) states that
failure will occur at the point where the Mohr circle
with origin σ̄m and radius τmax is just tangent to the fric-
tion line with slope equal to the friction coefficient µf

and y-intercept equal to cohesion C, which is often as-
sumed to be zero for a pre-existing plane of weakness.
This is equivalent to (assuming C = 0 and friction angle
φ = π/2 − 2Ψ):

(9)

τmax =σ̄m sin (π/2 − 2Ψ)

→ Ψopt =1
2

[
π/2 − sin−1 γ

]
→ Ψopt =1

2 cos−1 γ

and plugging in φ = arctan µf shows that τmax/σ̄m =
µf /

√
1 + µ2

f , consistent with standard arguments.

2.3 Resolved stress ratio on 2-D
geometrically-rough faults

Todetermine the resolved stress on rough faults, use the
relations for resolved shear and normal tractions writ-
ten in terms of the local unit normal (n̂) and tangential
(ŝ) vectors:

(10)
σl

n(ξ) =n̂i(ξ)σij n̂j(ξ)
τ l(ξ) =ŝi(ξ)σij n̂j(ξ)

where ξ is position along the fault and ŝ is the unit
vector parallel to the fault pointing in the direction of
slip (note that this analysis is for static stress so no slip
occurs; slip direction refers to right- or left- lateral and
is based on the orientation of SHmax). The local normal
and slip vectors can be written in terms of local “slope”
m, defined as the local orientation of a point on the fault
in relation to the overall fault orientation (Figure 3c).

(11)

n =
[
n1
n2

]
=

[
− sin

(
tan−1(m)

)
cos

(
tan−1(m)

) ]
= 1√

m2 + 1

[
−m

1

]
and

(12)
s =

[
s1
s2

]
= sgn(Ψ)√

m2 + 1

[
1
m

]
.

where s·n = 0 due to orthogonality (see Figure 3). Lo-
cal resolved normal and shear stresses are calculated by
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substituting Equations 11 and 12 into Equation 10. The
resolved normal stress is:

(13)
σl

n = σ̄m

m2 + 1×[(
1 + m2)

− cos(2Ψ)(1 − m2)γ − 2m sin(2Ψ)γ
]

and the corresponding shear stress is:

(14)
τ l = sgn(Ψ)τmax

m2 + 1 ×(
−2m cos(2Ψ) + sin(2Ψ)

[
1 − m2])

.

Taking the ratio gives the expression for the local re-
solved shear over normal stress ratio Rl as a function
of the overall fault orientation, the local slope, and the
stress state encapsulated by γ:

(15)
Rl(σij , Ψ, m) =

sgn(Ψ)
[(

1 − m2)
sin(2Ψ) − 2m cos 2Ψ

]
(1 + m2)γ−1 − 2m sin(2Ψ) − (1 − m2) cos 2Ψ

Note that only fault slope m varies with position on
the fault ξ.

2.4 Statistical description of fault roughness
Everything to this point has been done without any as-
sumptions made about the statistical properties of fault
geometry. Now suppose that fault slope, m, follows a
Normal distribution; i.e., ϕ(m) ∼ N (0, σ2

m). ϕ(m) is
the (Gaussian) probability distribution for m, and Rl =
g(m) is the resolved stress as a function of slope. This
is consistent with previous work (Dunham et al., 2011)
that showed fault slope is Gaussian for self-similar (frac-
tal) faultswith average amplitude-to-wavelength ratioα.
Such faults are characterized by a power spectral ratio
of the form

(16)P (k) = (2π)3α2|k|−3

where k is wavenumber (see Discussion) (Dunham
et al., 2011). For 1-D band-limited self-similar faults, m
is Gaussian-distributed with zero mean and a standard
deviation proportional to α (Dunham et al., 2011; Fang
and Dunham, 2013):

(17)σ2
m ≈ 8π2α2 ln (kmax/kmin)

where kmax and kmin are themaximum andminimum
roughness wavenumbers, respectively. As an example,
for faults 30 km long and minimum roughness wave-
length of a few meters, kmax ≈ 1, kmin ≈ 10−4, and
σm ≈ 25α.
At higher roughness (larger α), two differences occur

compared to the smooth fault case. First, the average
stress ratio required for 5% of points to reach failure
(arbitrarily assumed 0.7) is now much lower, 0.552 in
Fig. 4b and 0.517 in Fig. 4c. In other words, for fixed
peak stress the background or average stress level re-
quired to reach peak stress is inversely proportional
to the roughness level. Second, much of the fault is
also further away from failure than the background.
These effects do depend on the minimum and maxi-
mumwavelength, but likelywould bemorepronounced

for natural faults, as roughness extends down to nucle-
ation wavelengths (Dunham et al., 2011; Fang and Dun-
ham, 2013; Heimisson, 2020). The fact that fault slope
is normally distributed can be exploited to determine
the statistical distribution of fault stress using Equa-
tion 15. To do this, we note that for a random vari-
able m with probability density function Ψ(m), and a
monotonic and one-to-one transformation Rl = g(m)
between m and Rl, the inverse transformation g−1(Rl)
can be used to derive the distribution of the random
variable Rl, ϕ(Rl). The general expression is:

(18)ϕ(Rl) = Ψ
(
g−1(Rl)

) ∣∣∣∣dg−1(Rl)
dRl

∣∣∣∣
Substituting a Guassian distribution with variance σ2

m

for Ψ(m) gives:

(19)ϕ(Rl) = N
(
g−1(Rl), σ2

m

) ∣∣∣∣dg−1(Rl)
dRl

∣∣∣∣
Approximations of various orders can be derived us-

ing a polynomial expansion of Equation 15:(
1 − m2)

sin(2Ψ) − 2m cos 2Ψ
(1 + m2)γ−1 − 2m sin(2Ψ) − (1 − m2) cos 2Ψ

= sin(2Ψ) − 2 cos 2Ψm − sin(2Ψ)m2

(γ−1 − cos 2Ψ) − 2 sin(2Ψ)m + (γ−1 + cos 2Ψ)m2

= A − 2Bm − Am2

C − 2Am + Dm2 =
∞∑

k=0
akmk

(20)

which, after multiplying through by the denominator
and expanding out and collecting terms proportional to
powers of m, gives:

(21)

A − 2Bm − Am2 = a0C + (−2a0A + a1C)m

+
∞∑

k=2
(ak−2D − 2ak−1A + akC)mk

for A = sin 2Ψ, B = cos 2Ψ, C = γ−1 − cos 2Ψ, and
D = γ−1 +cos 2Ψ, and coefficients ak to be determined.
Eq. 21 can be recursively solved for as many coefficient
terms as desired. Keeping only first order terms and
substituting the result back into Equation 15 gives the
first-order expression for the resolved stress on faults:

(22)

Rl ≈ sgn(Ψ) [a0 + a1m]

= sgn(Ψ)
[

sin 2Ψ
γ−1 − cos 2Ψ + 2

γ

γ − cos 2Ψ
(γ−1 − cos 2Ψ)2 m

]
Note that a0 is simply the planar fault value, and also

the mean of the distribution (because m has a zero
mean). Note that Ψ and γ are not independent; they are
related through the local stress tensor. Therefore, not
all possible combinations of Ψ and γ are valid for con-
sistent stress tensors.
The next step is to invert Equation 22 for m, calculate

the absolute derivative with respect to Rl, and substi-
tute the inverse transformation into the distribution of
m. Inverting Eq. 22 gives:

(23)
m = γsgn(Ψ)

2
(γ−1 − cos 2Ψ)2

γ − cos 2Ψ ×[
Rl − sin 2Ψsgn(Ψ)

(γ−1 − cos 2Ψ)

]
5
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and the derivative term is:

(24)

∣∣∣∣dg−1(Rl)
dRl

∣∣∣∣ =

∣∣∣∣∣−γ

2

(
γ−1 − cos 2Ψ

)2

γ − cos 2Ψ

∣∣∣∣∣
= γ

2

(
γ−1 − cos 2Ψ

)2

|γ − cos 2Ψ|

and so (noting that m has zero mean)

(25)
ϕ(Rl) = 1√

2πσ2
Rl

e
− 1

2σ2
Rl

([
Rl−µ

Rl

])2

= N
(
µRl , σ2

Rl

)
where the mean is

(26)µRl = sgn(Ψ) sin 2Ψ
γ−1 − cos 2Ψ

and the standard deviation is proportional to σm:

(27)σRl = (1 − γ cos 2Ψ)2

2γ|γ − cos 2Ψ|
σm.

Thus, to first order, stress on a rough fault is Gaussian,
with a mean equal to the stress on a planar fault of the
same orientation and deviations proportional toα. Also
note that, as γ → 1 (i.e. larger differential stress), σRl →
0, and if γ → 0 (more uniform stress state), σRl becomes
large.
Although thederivation so far is helpful for abasic un-

derstanding, it is limited because the first-order approx-
imation breaks down if the fault is close to optimally-
oriented. Keeping the second-order term:

(28)a2 = 2 sin 2Ψ
γ

2γ − cos 2Ψ − γ−1

(γ−1 − cos 2Ψ)3

provides amore accurate but non-Gaussian approxima-
tion of the distribution of on the resolved stress ratioRl.
Keeping three terms and then transforming as above re-
quires solving a quadratic equation for m:

(29)

Rl = sgn(Ψ)
(
a0 + a1m + a2m2)

→ 0 = a2m2 + a1m +
(
a0 − Rlsgn(Ψ)

)
→ m = −a1 ±

√
a2

1 − 4 (a0 − Rlsgn(Ψ)) a2

2a2

= −a1 ± Γ
2a2

where Γ2 is the term inside the square root: a2
1 − 4(a0 −

Rlsgn(Ψ))a2. The gradient is also needed:

(30)
dg−1

dRl
= 1

Γ

Then, plugging the above expressions into the Normal
distribution gives:

(31)ϕ(Rl) = 1√
2πσ2

m

1
Γe

− 1
2σ2

m

(
Γ−a1

2a2

)2

where the positive solution in the quadratic is the cor-
rect one.

3 Results

Figure 4 shows three plots with the same fault orien-
tation (Ψ) and geometry and three different values of
α: .001, 0.005, and 0.01. I.e., scaling these faults to the
same roughness level would result in identical fault ge-
ometry. For these three examples, Rp is chosen differ-
ently for each case such that approximately 5%of points
on the fault have Rl ≥ 0.7. This represents in each case
a scenario where some points are just at failure, assum-
ing a friction coefficient of 0.7. Note that the fault pro-
files are shown in the lower-right corner of each sub-
plot at true (i.e., non-exaggerated) scale. The faults are
band-limitedwith aminimum roughness wavelength of
30 m and the resolved stress ratio calculated for each.
Resolved stress in Fig. 4 varies by about 15% of Rp for

α = 0.001, ranging from approximately 0.6 to 0.7. For
α = 0.005, variability is about 82% of Rp ( 0.35-0.8), and
forα = 0.01 is about 116%ofRp (0.1 - 0.7). As roughness
level increases, the mean stress value required to have
5%of points at the failure level (assumed 0.7) decreases.
At the highest roughness level, the peak stress ratio can
be seen to be about 0.7, while at lower roughness levels
and higher values of Rp, resolved stress does not reach
the peak ratio value, showing that the fault is further
from optimal orientation. This occurs because keeping
the orientation of SHmax fixed and changing τ b/σm re-
quires that the absolute stress magnitudes change. The
result is that a rougher fault having a peak stress ra-
tio at failure is, on average, farther from failure than a
smoother fault also having peak stress at failure. Since
the geometry of each of the faults is the same and only
the roughness level varies, the stress profiles are also
similar, with the exception of the truncated values at the
peak stress ratio for case (c).
Fig. 5a shows the power spectral densities (PSDs) of

fault geometry, fault slope, and resolved fault stress,
while Fig. 5b shows the PSDs of stress ratio for each of
the fault cases shown in Fig. 4. The PSD for a fractal
(i.e., self-similar) fault profile such as I have adopted
here will have a spectrum proportional to |k|−3. The
slope is the first spatial derivative of the profile and will
thus have a spectrum proportional to |k|−1. From Equa-
tion 15, resolved static stress is a polynomial function of
slope m, and so can be written as a linear combination
of powers of m. This implies that the spectrum is also a
linear function of the transform variable m̂ and has the
same slope (Dunham et al., 2011) (Fig. 5a). The differ-
ence between faults of different roughnessmanifests as
a vertical offset on the PSD plot (Fig. 5b).
Figure 6 compares numerically-simulated and analyt-

ical probability distributions (utilizing the second-order
approximate solution) of resolved stress ratio. For each
subplot, parameters that are not the focus of the plot are
kept constant, with Ψ = 50◦, Rp = 0.5, and α = 0.01.
The numerical distributions in each plot are normal-
ized to unit area to represent probabilities; the analyt-
ical solutions are normalized by definition. Distribu-
tions vary in shape depending on how close the mean
stress ratio is to the peak stress ratio (i.e., the value of
the stress ratio at the optimal fault orientation) and how
spread thedistribution is. Distributionswhere all points
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Figure 4 Resolved shear/normal stress ratio for the same fault profile at three different roughness values (profiles shown in
the lower-right corners) using Equation 15. The fault in each case is 30 km long, with aminimum roughness wavelength of 30
m, oriented at Ψ = 50◦. Note that the fault profiles are at true scale relative to each other but not on the same scale as the
stress profiles. In each panel the background stress tensor is chosen such that 5% of points have Rl ≥ 0.7. γ is the flat-fault
stress ratio and also the mean stress on each fault.

have ratios far from the peak value are approximately
Gaussian, while distributions where the mean is close
to the peak appear exponential decaying to lower val-
ues. Distributions intermediate to these end-members
are approximatelyGaussian away from thepeak, but are
truncated with extra probability at the peak. The lat-
ter cases arewhere the second-order approximation de-
rived above breaks down the most.

Fig. 6a shows how stress changes while increasing
the planar-fault static stress ratio Rp from 0.2 to 0.6.
The main point to note here is that both the shape and
the spread of the distribution changes, and in particu-
lar the peak stress ratio (max Rl) increases faster than
the mean of the distribution (which equals Rp). (Note
that I have not truncated the distributions at the friction
value.) Static stress on a rough fault may locally be well
above the value expected based on the overall orienta-
tion with respect to the stress orientation. Assuming
that a planar fault at optimal orientation with friction
equal to 0.6 would fail in the prevailing stress regime,
a fault non-optimally oriented with a background stress
ratio of only 0.5 has some segments at failure.

Fig. 6b shows how the distributions change with the
orientation of the fault with respect to the maximum
principal stress, Ψ. Of particular note is that faults

that are well away from optimally orientated have a
very broad range of resolved stresses, with some points
on the fault likely exceeding fault friction, while some
points have nearly zero resolved shear stress. At the
other extreme, faults with optimal orientation are al-
most entirely at or very close to the peak stress ratio.

Fig. 6c shows how the distributions vary with fault
roughness level. As expected, increasing roughness
leads to increasing variance in the resolved stress ratio.
At low roughness, and for faults not optimally-oriented,
the stress ratio is Gaussian with a mean at the planar
fault value. At higher roughness, some points on the
fault become optimally oriented, leading to truncation
of the distribution, and at the highest roughness the dis-
tribution is clearly non-Gaussian. The distribution for
α = 0.01 is skewed right and long-tailed to the left, re-
sulting in much more complex fault stress, as can be
seen by comparing back to Fig. 4c.

The difference between the analytical approximation
(Eq. 31) and the numerically-simulated results is gen-
erally quite small. The exceptions are for those cases
where the shape of the stress ratio distribution is inter-
mediate between the two end-member distributions: a
shape close to Gaussian and a shape close to a reverse
exponential distribution. As noted above, this occurs as
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Figure 5 (a) Comparing PSDs for fault profile h(x), fault slope m(x), and resolved shear-to-normal stress ratio Rm(x), as-
suming a minimum roughness wavelength of 300 m and total fault length of 60 km. α = 0.005 here. (b) Comparing PSDs of
resolved stress ratio for three different levels of roughness. In both plots, the x-axis limits are kmin and kmax.

the mean stress ratio approaches the peak stress ratio
but is still below it. Examples of this include Fig. 6a,
Rp = 0.4 and .5, Fig. 6b, Ψ = 50, and Fig. 6c, α = 0.01.
In these cases, the second-order approximation starts
to break down and the approximate solution becomes
less accurate.

4 Discussion

4.1 Reaching frictional failure on
geometrically-rough faults

From the results presented here, one first-order effect
of geometric roughness is to reduce the stress required
to achieve the failure stress ratio at some locations on
the fault. A planar fault obviously has only one value
for the shear over normal stress ratio along the en-
tire length of the fault, and many studies that consider
fault stress take this as a starting assumption, includ-
ing Andersonian faulting theory. A geometrically rough
fault, however, may have significant portions of the
fault that are well away from failure (for a fault near op-
timal orientation) that could pin the well-oriented seg-
ments of the fault until it reaches the failure threshold;
this has previously been proposed for fault networks
with faults of various orientations (Fletcher et al., 2016).
The concept of a keystone fault may thus extend not
only to fault networks but also to a single rough fault.
The converse point is that some fault segments may be
well-oriented for failure even on an overall misoriented
fault: in Fig. 4, the background stress ratio required on
amoderately rough fault for 5% of points to reach a fail-
ure threshold is only 79% of that required for the cor-
responding planar fault (i.e., a fault having the exact
same overall mean stress ratio), and only 74% for the
very rough fault (Fig. 4). Another possibility is that fault
segments with lower resolved stress due to geometry
may rupture as small earthquakes in thewell-orientated
segments, until stress builds up enough on the misori-
ented segments to allow rupture to propagate through

the entire fault. Such a scenario would imply that seg-
ment boundaries may be persistent for multiple earth-
quake cycles, but then break in large penultimate earth-
quakes. All of these issues are tied to the overall rough-
ness level, implying that the overall behavior of a fault
may be closely related to its degree of roughness.

4.2 Characteristics of geometric rough stress
Andrews (1980) found using two different approaches
that stress on faults should have a 1/k spectrum. The
first assumes that earthquakes are self-similar and that
stress changes during rupture reflect spatial fluctua-
tions in the initial stress field stemming fromslip in past
earthquakes. Mean square stress decays as |k|−2δ−1,
where earthquakes with radius a produce stress drops
aδ. Assuming that stress drop is independent of size
results in a power spectral density (PSD) proportional
to |k|−1. The second argument is based on an approxi-
mate stochastic model of fault energetics, wherein slip
during an earthquake is the sum of a smooth long-
wavelength coherent part and a shorter-wavelength
(shorter than rupture size∝ a) randompart which is as-
sumed self-similar between the wavelength of the event
size (a) and grain size. Adding the smooth and coher-
ent slip, the resulting stress change also has coherent
and stochastic components. Summing the contribu-
tions from all past events results in a spectrum propor-
tional to k−1 if stress drop is independent of size. Ex-
perimental measurements of fault geometry overmany
orders of magnitude suggest that roughness on faults in
the crust are close to self-similar (e.g., Sagy and Brod-
sky, 2009; Candela et al., 2009, 2012; Shi and Day, 2013;
Fang and Dunham, 2013; Thom et al., 2017; Kirkpatrick
et al., 2020). In this study, we assume fractal fault ge-
ometry, and Fig. 5 shows that power spectrum of the re-
solved stress ratio obeys the 1/k rule.
In contrast to some previous studies (e.g., Dieterich

et al., 2015; Dempsey and Suckale, 2016; Kroll and
Cochran, 2021), resolved stress due to geometric rough-
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Figure 6 Comparison between numerical and analytical distributions of resolved shear-to-normal stress ratio for the
second-order approximation. Parameter values unless specified in the plot are Rp = 0.5, Ψ = 50◦, and α = 0.01. The
black vertical line in (b) and (c) denotes the background stress ratioRp. (a) Increasing the background stressRp. The change
in the shape of the distribution reflects the fact that the maximum possible stress ratio and the highest resolved stress ratio
both increase faster than the background. (b) Changing the orientation of SHmax. At this particular value of the background
stress, orientations closest to optimal have the lowest variance. (c) Changing α. Faults with larger roughness have larger
deviations in slope, which translates to larger deviations in resolved friction. (d) PDFs on fault slope for several values of α,
using a Gaussian distribution with σm ≈ 25α. Slopes in the roughest case can be rather large; slopes slightly above 1 are
possible.

ness does not have long upper tails. While this may
seem intuitive (stress is maximum at the optimal orien-
tation), studies of heterogeneous fault stress sometimes
adopt distributions with upper tails (Dieterich et al.,
2015; Dempsey and Suckale, 2016). Upper tails can only
occur if external sources of stress act on a fault that is far
from failure; e.g. perturbations from nearby slip or lo-
cal pore pressure increase. Note that “far from failure”
will depend somewhat on fault roughness level. The
faultmust be far from failure or presumably an increase
in stresswould immediately trigger an earthquake to oc-
cur. For stress changes, e.g. fromporepressure, that act
over the length scale of the entire fault, an expression
for the rate of change of resolved stress can be derived
by differentiating Eq. 15 with respect to the perturba-
tion. The resolved effective stress ratio given a change
in pore-pressure (only accounting for the impact on ef-
fective normal stress) is

(32)
Rl(σij , Ψ, m, ∆P ) =

sgn(Ψ)
[(

1 − m2)
sin(2Ψ) − 2m cos 2Ψ

]
(1 + m2)γ̄−1 − 2m sin(2Ψ) − (1 − m2) cos 2Ψ

where γ̄ = τmax/(σ̄m − ∆P ). Taking the partial deriva-

tive of Eq. 32with respect to∆P gives the rate of change
in the resolved stress ratio (again assuming that thepore
pressure change acts uniformly over the entire fault):

(33)

∂Rl

∂∆P
= Rl

τmax ×

−(1 + m2)
[(1 + m2)γ̄−1 − 2m sin(2Ψ) − (1 − m2) cos 2Ψ]

Equation 33 implies that perturbations to the nor-
mal stress result in stress ratio changes that (1) im-
pact optimally-oriented fault segments more than non-
optimal segments (i.e. are proportional to the stress ra-
tio Rl), and (2) are inversely proportional to the peak
shear stress. Note that even though Rl does not de-
pend on the absolute background stress state, the rate
of change in the local ratio does depend on the abso-
lute stress (τmax in Eq. 33). Such a situation creates po-
tential for future studies to consider whether controlled
changes in pore pressure could be used to probe the
state of stress on crustal faults by monitoring the rate
of earthquakes and the pore pressure change.
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4.3 Fault roughness and earthquakes
Stress heterogeneity arising from geometric roughness
is known to play an important role in how earthquakes
start and stop (Fang and Dunham, 2013; Dieterich et al.,
2015; Tal et al., 2018). Spatial variability in the re-
solved stress ratio impact ruptures in dynamic simu-
lations (Fang and Dunham, 2013; Maurer et al., 2020;
Bruhat et al., 2016; Cattania and Segall, 2021; Kroll and
Cochran, 2021). This effect is consistent with the ob-
servation of the large stress changes that result from
fault bends, even slight ones (Figure 4), and suggests
that dynamic characteristics of earthquakes, including
size and rupture speed, may be influenced or even
controlled by fault roughness (e.g., Fang and Dunham,
2013). Considering Figure 4, it seems likely that the na-
ture and size distribution of earthquakes on the three
faults would likely be very different. Since fault geom-
etry is easier to constrain than in situ fault stress, sys-
tematic study of fault geometry across scales and how
earthquakes correspond to various roughness levels on
natural faults could provide valuable insight into future
earthquake characteristics of a given fault. The results
presented here provide analytic expressions for stress
distributions that could be incorporated into studies on
fault stress and slip, particularly in laboratory settings
where background loading is well known.

5 Conclusions
I provide analytic solutions for stress on rough faults
under 2D conditions, under which there are only three
parameters to consider for a given fault: fault orienta-
tion relative to SHmax, background or average stress ra-
tio, and roughness level. From these, and assuming that
fault slope is Gaussian distributed, which is true for self-
similar faults, I derive the statistical distribution of the
stress ratio on rough faults. Stress variations due to fault
roughness has the following characteristics:

1. The mean stress is always equal to the planar-fault
value.

2. To first order, the distribution of stress is approxi-
mately Gaussian with a standard deviation propor-
tional to fault roughness level α.

3. To second order, the stress distribution truncates
at the optimal orientation and is skewed to lower
values, rather than having long upper tails.

The distribution varies between two end-member dis-
tributions, Gaussian and reverse exponential (i.e., ex-
ponential decrease to lower values). A simple criteria
for the two end-members is using the first-order ap-
proximation for the stress distribution; when the peak
stress ratio is more than two standard deviations from
the mean stress ratio, the distribution is approximately
Gaussian, and when the mean stress ratio is approx-
imately equal to the peak stress, the distribution is
reverse exponential. Intermediate to these two end-
members are distributions that look like a truncated
Guassian, where the shape of the distribution depends
on how close the mean stress is to the peak stress. The

resolved fault stress ratio does not have long upper tails.
For faults near optimal orientation, the stress distri-
bution has a reverse exponential shape, and is skewed
towards lower stress values. Faults that are not opti-
mally orientated may still have significant areas near
the failure stress, and vice-versa. The implication is that
for any given background stress field, there may be a
range of fault orientations that have at least some seg-
ments near the failure stress, depending on the rough-
ness level of the faults, and optimally-oriented faults
may have segments well away from failure. This is con-
sistent with the idea of a keystone fault, where a fault
may be overall well-oriented for failure with respect to
the background stress field, but have some segments
which pin the fault in place and prevent it from slip-
ping until the stress reaches a high enough level to al-
low ruptures to propagate through those misoriented
segments. The distribution of stress on rough faults is
likely to have strong impacts on seismicity, and could
potentially be used to probe the absolute stress level un-
der certain conditions. Future work should investigate
these possibilities and utilize more realistic stress dis-
tributions in order to better simulate rupture dynamics
and investigate crustal seismicity.
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