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Abstract We introduce a data-driven method and software for detecting and locating earthquakes in
large seismic datasets. By combining seismic phase arrival annotations, delivered by neural network phase
pickers, and waveform stacking with an adaptive octree search, we can automatically detect and locate seis-
mic events even in noise-dominant seismic data. The resolution of the search volume is iteratively refined to-
ward the seismic source location; this strategy facilitates an efficient, fast, and accurate search. We present a
user-friendly and high-performance open-source software framework based on established frameworks, fea-
turing event detection in layered1Dand complex 3Dvelocitymodels andevent feature extraction capabilities,
suchasmomentand localmagnitudecalculation frompeakgroundmotions. We incorporatedstation-specific
corrections and source-specific station terms into the search to enhance the location accuracy. We demon-
strate and validate our approach by extracting extensive earthquake catalogs from large seismic datasets in
different regions and geological settings: (1) Reykjanes Peninsula, Iceland; (2) Eifel volcanic region, Germany;
and (3) Utah FORGE, USA. We capture seismic events from tectonic activity, volcanic swarms, and induced
microseismic activity with magnitudes ranging from -1 to 5. Such precise and complete earthquake catalogs
contribute to the interpretation and understanding of otherwise hidden subsurface processes.

Non-technical summary We present a new method and open-source software for automatically
detecting and localizing earthquakes and microseismicity in large seismic datasets recorded by seismome-
ters. The technique can detect natural earthquakes, such as tectonic faulting events, volcano-tectonic swarm
activity, and induced seismicity from well operation in oil and gas or geothermal exploitation. Our method
uses machine learning and an adaptive focusing mechanism to efficiently search through large amounts of
continuous seismic data and detect and locate earthquake events. We present an open-source software writ-
ten in Python, qseek, for this purpose. To test and showcase the method, we look at seismic data from (1)
Iceland, where a volcano-tectonic sequence was recorded, (2) a large dataset from the Eifel Volcanic Region,
Germany, and (3) microseismicity recorded at Utah FORGE, USA, a field-scale geothermal lab. By detecting
and locating the small seismicity underground, we make otherwise hidden processes within the Earth visi-
ble. Our robust and easy-to-use method contributes to understanding natural seismic activity andmanmade
seismicity.

1 Introduction
The detection and localization of seismic events pro-
vide information about deformation processes and rock
volumes under high elastic stress in the Earth’s brit-
tle crust. The (micro)seismicity often stems from tec-
tonic and volcanic processes but can also occur in re-
sponse to human activities such as fluid extraction or
injection (Ellsworth, 2013; Vasyura-Bathke et al., 2023;
Niemz et al., 2024). By accurately mapping seismic ac-
tivity in space and time, we gain deeper insights into

∗Corresponding author: marius.isken@gfz.de

these dynamic processes, subsurface structures, and
the state of stress in the Earth (e.g. Cesca et al., 2020;
del Fresno et al., 2023; Greenfield et al., 2022; Wilding
et al., 2023).
The advent of dense permanent and large-N tem-

porary seismic monitoring networks has markedly en-
hanced our observational capabilities, resulting in a
growing influx of seismic data, capturing a spectrum of
seismic events (e.g. Dougherty et al., 2019; Obermann
et al., 2022; Dahm and The Eifel Large-N team, 2023).
Among these are faint microseismic events, often ob-
scured by seismic noise and characterized by a low
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signal-to-noise ratio (SNR). Traditional seismic detec-
tion and localization methods, as well as recently pre-
sentedphase associators for largenumbers of picks (e.g.
Zhu et al., 2022; Münchmeyer, 2024) often struggle with
noise-dominant micro-seismic events or massive con-
current occurrences (e.g. Grigoli et al., 2013; Li et al.,
2020).
To address the challenge of detecting and locating

weak seismic events, waveform-stacking methods have
emerged that enable robust event detection and local-
ization through energy stacking (Gharti et al., 2010;
Cesca and Grigoli, 2015; Grigoli et al., 2013). Several
adapted versions of this backprojection method have
been suggested and applied to various purposes, such
as observing natural tectonic sequences and monitor-
ing of volcano-tectonic (VT) swarms or induced seismic
activity (Greenfield et al., 2020; Cesca et al., 2020; del
Fresno et al., 2023; Wilding et al., 2023; Flóvenz et al.,
2022). The key benefit of these data-driven methods is
their ability to produce reliable localizations (e.g. Kao
and Shan, 2004; Drew et al., 2013; Poiata et al., 2016;
Grigoli et al., 2013; Winder et al., 2021). Notable estab-
lished software frameworks for stacking and migration
are QuakeMigrate (Winder et al., 2021), LOKI (Grigoli
et al., 2013), its companionMALMI (Shi et al., 2022) and
BPMF (Beaucé et al., 2023). Some older frameworks
suffer performance issues when confronted with large
datasets and extensive search volumes. These scaling
issues are one of themainmotivators for developing the
method presented here.
We introduce a fast, fully automatic method and a

scalable, high-performance software framework driven
by waveform data andmachine learning (ML) to detect,
locate, and characterize seismic events in large, contin-
uous seismic datasets. The method is based on stack-
ing and migration, which capitalizes on the coherency
of seismic arrivals to reveal obscured low-magnitude
events. Seismic energy arrivals at individual stations
are annotated by neural networks (NN) trained to iden-
tify phase arrivals in seismograms (Zhu and Beroza,
2018; Münchmeyer et al., 2022). A volume grid search
is used to stack and correlate individual arrivals of seis-
mic energy based on a travel timemodel. To further en-
hance the efficiency and convergence of the search, we
replace the regular grid with a hierarchical octree. The
octree can be adaptively refined towards the seismic
source region, resulting in an efficient search andmore
precise event locations while reducing computational
effort. Subsequently, station-specific correction terms
(SST) can be obtained by extracting time delays between
calculated and observed phase arrivals. Source-specific
station terms (SSST) can also be computed to account
for subsurface heterogeneities. These SST and 3D SSST
station corrections can subsequently be applied in a sec-
ond detection and localization search to augment the
travel time model, resulting in more precise localiza-
tions and more event detections (Nooshiri et al., 2016;
Grigoli et al., 2016; Lomax and Savvaidis, 2022).
Along with the method, we present the modular

open-source, high-performance software framework
qseek, written in the Python and C programming
languages for handling and analyzing large continu-

ous seismic waveform datasets. It features forward-
modeling of seismic travel times in layered 1D and com-
plex 3D Earth velocity models. It utilizes SeisBench
(Woollam et al., 2022), which provides a uniform in-
terface to different pre-trained neural-network-based
phase annotators. Moreover, the software framework
enables the automatic extraction of event features, such
as local and moment magnitudes from peak ampli-
tudes, and station corrections in the form of SST and
SSST. The framework is flexible to different use cases
and seismological applications.
To demonstrate the effectiveness of this approach, we

present the earthquake catalogs extracted from three
distinct seismic datasets: (1) a volcano-tectonic dataset
from the Reykjanes Peninsula, Iceland, featuring VT
swarm seismicity during a period of episodic magmatic
unrest in 2020, (2) a large-N seismic dataset from the
Eifel Volcanic Region, Germany, where both tectonic
earthquakes and seismic swarm activity–evidence of
the volcanic activity in the region–are recorded, and (3)
an example from Utah FORGE, covering a case of in-
ducedmicroseismic activity causedby the circulation of
fluids within the subsurface, monitored by a small seis-
mic network.
Thiswork focuses onmethoddevelopment and leaves

the detailed geological interpretation of the obtained
seismic catalogs to future studies. The reader is directed
to further publications that provide an in-depth analysis
of the seismicity catalogs presented here.

2 Method
The earthquake detection and localization method and
software framework consist of six key components: (1)
thewaveform image function annotatingphase arrivals,
(2) the seismic travel time model, (3) stacking and mi-
gration, (4) the octree volume, (5) station corrections,
and (6) event feature extraction. Some components will
receive more significant focus, while others are only
briefly introduced with references to existing founda-
tional works.

2.1 Waveform Image Function: Machine
Learning First Arrival Annotation

The recorded waveforms are transformed into non-
negative image functions (or characteristic functions) to
stack the detected P and S wave arrivals constructively.
These image functions (IF) require sensitivity to P and S
wave onset energy to image the first arrivals (i.e., phase
picks). This can be achieved by analytical characteristic
functions (CF), typically variants of the STA/LTA func-
tion or the waveform envelope (Cesca and Grigoli, 2015;
Grigoli et al., 2014; Lomax et al., 2012). In this study,
we replace the conventional analytical image functions
with a neural network (NN) trained to identify P and S
wave onsets. These establishedmachine learning anno-
tators havehigher specificity and sensitivity than simple
analytical CFs (Shi et al., 2022).
The emergence of user-friendly machine learning

frameworks such as TensorFlow and PyTorch has facil-
itated the design and efficient training of neural net-
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works for seismic phase detection and arrival picking
(Zhu and Beroza, 2018; Paszke et al., 2019). These net-
works are trained on large volumes of labeled datasets
from global seismological entities and observatories.
They can detect phase arrivals in single station seis-
mograms D with high sensitivity and pick precision
(Zhu and Beroza, 2018; Mousavi et al., 2020; Münch-
meyer et al., 2022). We utilize the neural networks
annotated output (NN) as an image function I for P
and S wave arrivals (Fig. 1, Shi et al., 2022). Seis-
Bench (Woollam et al., 2022) is used as a uniform and
performant software framework to access various pre-
trained neural networks for seismic phase annotation,
such as PhaseNet, EQTransformer, and GPD (Zhu and
Beroza, 2018; Mousavi et al., 2020; Ross et al., 2018).
Münchmeyer et al. (2022) have comprehensively evalu-
ated and compared various NN architectures and train-
ing datasets.
The image function I(t) implemented in qseek is

given by

Iθ(t) = NNθ (D(t)) θ ∈ {P, S} (1)

where NN is the annotating neural network, θ is the
seismic phase and D(t) is the recorded seismogram.
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Figure 1 (a) Single station seismic waveforms from a lo-
cal earthquake recorded on Reykjanes Peninsula, Iceland.
The three-component seismogramD(t) is input to the neu-
ral network image function. (b) The neural network’s (Seis-
Bench/PhaseNet) annotations of P and Sphase arrivals, i.e.,
the image function I(t) and peak-detections (pick times;
dashed lines). The annotated output has a Gaussian shape
with a half-width of 0.2 seconds; the maximum value rep-
resents the confidence of the annotated pick. The analyti-
cal P- and S-STA/LTA characteristic functions for the vertical
(window ratio 1:5) and horizontal traces (10:30) are shown
in the background. Following the calculation of Grigoli et al.
(2014).

The image function produced by the neural network

presents the advantage that phase arrival annotations
are represented as peaks with a Gaussian-like shape
with a standard deviation of 0.2 seconds (e.g. Münch-
meyer et al., 2022). The peak value provides a measure
of phase identification certainty, while the shape pro-
vides certainty in time. The peak value max(I(t)) is a
qualitative indicator and can be interpreted as a con-
fidence measure p, ranging from 0 to 1 (Fig. 1). The
NN image function’sGaussian-like shape andmaximum
value are less ambiguous than the erratic STA/LTA trig-
ger (Allen, 1982). Empirical observations suggest that
NN residuals are symmetric around the actual pick,
while STA/LTA characteristic functions usually have
higher values after the true arrival. Notably, neural net-
works are commonly trained with 100 Hz input data,
resulting in 100 Hz annotation functions. (Zhu and
Beroza, 2018; Mousavi et al., 2020). To improve the
annotation sensitivity for, e.g., microseismic events,
the self-similarity character of earthquake signals can
be exploited by stretching and compressing the wave-
forms, thereby shifting (or rescaling) the effective fre-
quency content of the input waveform data D(t) with a
constant factor Si (Shi et al., 2022).

2.2 Seismic Travel TimeModel

Calculation of seismic travel times τθ
mod from potential

event locations x to the receiving station s is required
to accurately shift phase arrival times for stacking and
subsequently detect and locate event hypocenters (e.g.
Drew et al., 2013). The calculation of travel times re-
lies on an apriori velocity model. This model can be
approximated as a layered 1D or a 3D model and in-
ferred from wave travel time analysis, seismic tomog-
raphy, and stratigraphic information. In the following,
we limit the explanations to direct P and S phases since
the image functions (eq. 1) identify P and S phase arrival
times. The wave travel time τ from an event with origin
time T0 to a station s can be described as:

τθ
s (x) = Aθ

s(x) − T0(x) θ ∈ {P, S}, (2)

where As is the absolute arrival time of the seismic
phase θ (P and S direct phases) at the station s (Stein and
Wysession, 2002).

2.2.1 1D Layered Velocity Model

While 1D layered velocity models simplify the complex
3D structure of the Earth, they provide valuable insights
into wave propagation and wave physics. This simplifi-
cation is a first-order approximation of the subsurface,
which is computationally effective andpractical,mainly
when high-resolution 3D velocity models are unavail-
able. For calculating phase travel times τ in 1D layered
models, we utilize Pyrocko’s cake ray tracer (Heimann
et al., 2017) based on classical ray theory. Ray trac-
ers are essential for comprehending how seismic waves
spread, refract, and reflect within the Earth. They are
also able to forwardmodel complex ray geometries and
phases.

3
SEISMICA | volume 4.1 | 2025



SEISMICA | RESEARCH ARTICLE | Qseek: Data-driven Earthquake Detection, Localization and Characterization

2.2.2 3D Velocity Model: Fast-Marching Eikonal
Solver

In seismology, travel times and ray paths for direct
waves in 3D heterogeneous media can be calculated
with the Eikonal equation (Hamilton, 1828; Dimri et al.,
2003) to achieve more precise travel time calculations.
We use the efficient numerical fast marching method
to obtain wave travel times for a search region on an
evenly spaced grid (Sethian, 1996). Our method im-
plementation can process and read NonLinLoc velocity
grids (Lomax et al., 2012). We calculate inverted travel
times from the receiver towards all grid nodes to effi-
ciently compute and store travel times between all seis-
mic stations and all grid nodes (Fig. 2). This allows the
creation of interpolated travel time volumes and the ef-
fective caching of node travel times without sacrificing
computational performance.
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Figure 2 Conceptual 2D visualization for seismic travel
time calculation in heterogeneous velocity media using the
fast-marching method for the Eikonal solution. Inverted
travel times from the receiving station at the surface (indi-
catedby a yellow triangle) towards all grid nodes in the sub-
surface are calculated, simultaneously resulting in station-
specific travel times for all potential source locations. The
contour lines indicate the travel time.

2.3 Search by Stacking and Migration

Stacking and migration is an established beamforming
method to detect and locate seismic sourceswithin a de-
fined volume. By time-shifting positive image functions
according to a calculated travel time τθ

s between the grid
node location x in the subsurface and the observation
location s, we effectively backproject the seismic energy
towards the potential source location x. In that way, we
time-shift and stack image functions from many obser-
vations (stations) onto each grid node within the search
volume, yielding the quantity called the semblance E.
Then the point of maximum semblance E(x, t) (also
known as coalescence, coherence or beam; Drew et al.,
2013; Grigoli et al., 2013; Beaucé et al., 2023) within the
search volume indicates the most likely source location
at time t. This method involves a grid search for the
maximum semblance across all grid points inside the
source volume. When energy enters the search volume

from the outside, maximum semblance will be located
at or inside the volume’s border. To counteract this, we
incorporate an absorbing boundary. Events within this
boundary are ignored or can be filtered out for analy-
sis. Inaccurate seismic velocity models result in a less
constructive stack, leading to fewer detections and the
deterioration of localization accuracy. A comprehen-
sive description of the waveform stacking method can
be found inDrew et al. (2013) or Grigoli et al. (2014). The
stacking and migration concept for a single node x in a
2D grid is shown in Figure 3. The extension to a 3D grid
follows the same concept. The semblanceE at a grid lo-
cation x, time t for a seismic phase θ ∈ {P, S} is given
by Grigoli et al. (2016)

Eθ(x, t) =
S∑
s

Iθ
s

(
t + τθ

s (x)
)

(3)

where τθ
s is the theoretical travel time of a seismic

phase at seismic station s in a set of stations S.
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Figure 3 Concept of stacking and migration grid search
method outlined in 2D: The positive seismic trace image
functions I are shifted by calculated travel-times (τθ

s ) and
stacked for each node x in the grid. For each grid point, we
obtain a stacked time series of semblances. This semblance
stack reaches its maximum at the most probable hypocen-
ter location at event time tof the seismic event, sketchedby
the star.

The semblance functions Eθ for P and S phase ar-
rivals are combined to a semblance function Ê using
the power mean (eq. 4), where η is a tune-able param-
eter that shapes the stacked semblance: Values η > 1
will sharpen the individual and combined semblance
and result in higher location accuracy; and η < 1 will
smooth the stacked image function, which can be of ad-
vantage when the velocity model is insufficient to stack
the different image’s phases. Typical values for η range
from 1 to 1.5.
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The power mean is defined as

Ê(Eθ, η) =
(∑

θ wθEη
θ∑

θ wθ

)1/η

(4)

where wθ is the user-defined weight for phase θ. Com-
monly, P and S phaseweight is 1 forwell-posed datasets.
Otherworks use the general coherence function to com-
bine the P and S phase semblance functions (e.g. Grigoli
et al., 2016), but cannot control the shape of the input
image functions.
It is inherent to the location search that stations near

the hypocenter provide the most precise information
about the event’s location. Furthermore, as the distance
between stations and the event grows, the ray path com-
plexity rises, leading to more significant travel time
modeling errors with distance. We propose a station-
distance weighting, ws, to offset these effects based on
the node-station distance:

ws(x) = 1 − W

1 +
(

r(s,x)
R

)3 + W (5)

where x is the node location, s the station, r the 3D dis-
tance from the node to the station, R is the radius of the
spatial decay function, usually 10 - 50 km (depending on
the search volume and station density) and W is a wa-
ter level, ensuring that stations outside the cubic decay
function are included in the search.

2.4 Octree Search
The semblance Ê(x, t) is defined for every potential grid
point x and time t. Local maxima detect events in the
semblance stack. To identify these maxima, we follow
a two-step procedure. First, we reduce the semblance
function to the peak semblance Ē(t) at each time step:

Ē(t) = max
x

(
Ê(x, t)

)
(6)

We keep track of the location x, maximizing the sem-
blance at each time step t. We then identify peaks in
the semblance function Ē(t) using a simple trigger cri-
terion. This reductionmight lead tomissed detections if
two events occurwith very short interevent time (< 1 s),
for example, during borehole injection or very dense
seismic swarm activity.
To perform the spatial reduction of the semblance

function, we employ a hierarchical octree data struc-
ture (Meagher, 1982). The octree has coarse resolution
in regions of low semblance and can iteratively adapt to
high resolution in areas of high semblance. For a single
time step t, we initialize our root octreeO with a coarse,
regular grid covering the entire search volume (Fig. 4).
We call each cubical grid cell a node n with edge length
ln and define the semblance Ê(n, t) as the stacked sem-
blance trace at the center point of the node n at time
t. We then apply an iterative procedure for refining the
octree to find the node with the maximum semblance:

Step 1 Calculate semblance Ê(n, t) for all nodes in the
octree (caching can be applied)

Step 2 If for no node n ∈ O the predefined semblance
threshold E0 is exceeded, i.e. ∀n ∈ O : Ê(n, t) ≤
E0, terminate the octree search.

Step 3 Select nodes: (1) with the maximum semblance
nm and (2) the node with the maximum semblance
densitynv per volume, and (3) their neighbornodes
nn with contacting face, edge, or vertex. The sem-
blance density per volume Êv is defined as:

Êv
n = Ên

ln
3 (7)

Each node is split into 8 equally sized child nodes
that are added to the tree (Fig. 4). A leaf node
cannot be split and is removed from the selection.
This strategy guarantees an efficient exploration of
the semblance space, and the nodes nm and nv will
eventually converge at the hypocenter.

Step 4 If the maximum semblance Ē(t) falls into a leaf
node nm and the selected nodes cannot be split, the
hypocenter has been found, and the search can be
terminated. Otherwise, go to step 1 and continue
searching for refined octree.

Step 5 (Optional) Perform a neighborhood maximum
search around the maximum semblance node nm

by interpolating Ē using radial basis functions.
This will refine the hypocenter location for larger
leaf node sizes.

The maximum semblance Ē(t) can now be deter-
mined in the same way as before. Note that this op-
timization might lead to a higher total number of ex-
plored nodes but not a change in the maximum sem-
blance function. It is computationally efficient be-
cause larger batches are examined, and it enables vec-
torization. The octree approach facilitates efficient
global exploration of expansive volumes and datasets
and adaptively refines its resolution towards the seis-
mic event hypocenter by iteratively focusing the search
towards regions with pronounced semblance signa-
tures (Fig. 5). Leveraging this strategy accelerates
the resource-intensive migration and stacking method,
thereby optimizing the scanning process for seismic
events within large datasets and large volumes while
enhancing the resolution near the hypocenter, leading
to more accurate event locations. The effective octree
strategy is also employed by NonLinLoc for earthquake
localization (Lomax et al., 2000).
For regional analysis, the root level nodes have a typ-

ical edge length of 1-2 km with 4-6 refinement levels l
exposing bottom nodes with an edge length of 62.5 m.
The finest resolution of nodes is limited by the sem-
blance sampling frequency and the minimum resolv-
able wavelength at the source depth (depending on the
seismic velocity at depth). Generally, a higher sem-
blance sampling frequency allows for the resolution of
smaller octree nodes and leads to a more accurate sem-
blance stack and better hypocenter locations. On the
other hand, root nodes (l = 0) that are too large will
suffer from aliasing effects in the semblance stack, and
peaks in the IF will not stack constructively. Effective
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anti-aliasingmeasures before stacking are reducing the
image function with a maximum filter or the convolu-
tion with a boxcar function.
The efficacy of a search is dependent upon the sem-

blance threshold E0 to detect events on the octree.
A too-small threshold will result in many false posi-
tives, while a too-large threshold will result in missed
events. The number of total stations, station density,
parametrization of the station-distance weighting ws,
and ML phase annotation model influence the Ê(n, t)
value. It is generally advisable to begin with a lower E0
value close to zero and filter out erroneous detections.

Figure 4 Refinement of an octree: one cubic root node
(octant) is split into eight smaller, equally-sized nodes. The
illustration displays a two-level refinement of a single node
from left to right.

2.5 Location Uncertainty
Uncertainties of the detected event locations can be de-
termined in different ways: (1) Perturbing the image
function and velocity model and relocating the event
many times (Grigoli et al., 2013). This method is similar
to Bayesian bootstrapping and computationally costly.
(2) The temporal-spatial semblance function can be
fitted with a multivariate Gaussian distribution (Drew
et al., 2013). (3) Transforming the semblance into a
probability density function (Poiata et al., 2016).
We propose extracting the event’s location uncer-

tainty from the spatial semblance distribution of sur-
rounding octree nodes: Nodes are selected within a
pre-defined semblance percentile, usually set at 2%.
The spatial extent of these selected nodes defines the
location error in all three dimensions, thus provid-
ing an orthonormal triaxial error ellipsoid for the lo-
cation. See Figure 5 for a 2D projection of the node
semblance distribution around the located hypocenter.
This method is simple yet a robust qualitative measure
for the uncertainty of the location but has shortcom-
ings in non-ellipsoidal, non-orthonormal, and multi-
modal semblance distributions. An example of the un-
certainty procedure is demonstrated for seismicity on
theReykjanes Peninsula, Iceland, andEifelVolcanic Re-
gion, Germany (see sections 3.1 and ??).

2.6 Station Corrections
Simple 1D and 3D seismic velocity models are often in-
apt to represent geological reality. This leads to inac-
curacies between the forward-modeled theoretical τθ

mod
and observed arrival times tθ

obs of P and S first arrivals
(Billings et al., 1994). These inaccuracies reduce the
accurate and constructive stacking of the image func-
tions (E), leading to inaccurate event hypocenter loca-
tions (Grigoli et al., 2016; Lomax and Savvaidis, 2022).

To address these discrepancies, station travel time cor-
rections δτθ

s for first arrivals (P and S) can be statisti-
cally derived from a catalog of observed travel time de-
lays. In the following, we will describe two variants
of the station-specific delay times (or station correc-
tions): simple scalar station-specific terms (SST) and 3D
source-specific station terms (SSST).
In a subsequent scan of the seismic dataset, the ex-

tracted station corrections can be added to the calcu-
lated travel times τθ

mod to enhance the precision of the
seismic event locations. This augmentation increases
the location accuracy and the semblance value, sub-
sequently increasing the number of event detections
without increasing the number of false detections, as
demonstrated by Grigoli et al. (2016).

2.6.1 Station Specific Terms (SST)

The modeled travel time τθ
s and the phase arrival time

tθ
s obtained from the neural network annotation are
known. Thus, the average phase-specific residual delay
time δτθ

s at station s can be statistically extracted from
a catalog of located events (Fig. 6):

δτθ
s = τθ

s − tθ
s (8)

The semblance value is proportional to the loca-
tion confidence or the accuracy of the event. The
station-specific correction time is then calculated by
the weighted mean or weighted median of all observed
travel time delays δτθ

s :

δ(τθ
s ) = stat

(
δτθ

s,1, . . . , δτθ
s,n, wp

i

)
,

where stat ∈ {mean, median} (9)

and

wp
i = pi Ēi (10)

where the pick weight wp
i is defined by the confidence

of the arrival pick pi and semblance Ei of the event de-
tection i.
Simple scalar SST station corrections are adequate

for compensating common ray path delays beneath the
station’s location. However, multimodal station de-
lay statistics hint towards more complex 3D hetero-
geneities of the subsurface (Lin and Shearer, 2005).

2.6.2 Source-Specific Station Terms (SSST)

We can calculate source-specific station terms to ac-
count for the natural 3D variability of seismic velocities
in the Earth. These are station-specific 3D volumes of
correction times (Nooshiri et al., 2016; Lomax and Sav-
vaidis, 2022). For the volume, we re-use the octree grid
fixed at a defined level l (e.g., l = 0); this effectively rep-
resents a regular grid. The delay time for a location can
be calculated as described in 2.6.1 with an additional
node-event distance weighting for each observed event.
This distance weighting we (r) can be as described as:

we (r) = 1

1 +
(

r
Rn

)b
(11)
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Figure 5 Horizontal and vertical surface reductions (projections) of the 3D octree showing the first three refinement levels
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Figure 6 Distribution of SST delay times (red negative,
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ticalmeasures of the distribution: Theweighted (wt.) mean
and median are calculated by using weights based on the
pick confidence multiplied with the event’s semblance.

where r is the distancebetweennode centroid andevent
hypocenter, and Rn is the size of the sphere envelop-
ing the node. The spatial decay exponent b is typically
3. The distance weighting can be combined with the
scaled pick weight wp

i from eq. 10. Then we find the ra-
dius Rn around each node to encompass picks with in-
tegrated pick confidence Pn greater than threshold PT :

Pn =
K∑
i

pn

where K = min {k ∈ {1, 2, . . . , n} : Sk > PT } (12)

This approach is similar to Richards-Dinger and
Shearer (2000) but recognizes the phase pick confi-
dences to find a sufficiently large Rn for each node. For
our analysis, we chose PT = 5. The obtained delay time
volume (Figs. 7, S3) has an identical resolution as the oc-
tree at refinement level l. The station andphase-specific
delay 3D grid of phase delay times can then be used to
interpolate and extrapolate station correction times for
arbitrary source locations.

2.7 Event Feature Extraction
After detecting and localizing seismic events, we can
extract event features from the seismic waveform data.
These may include event magnitudes or groundmotion
observations that can be input for shake maps or site
amplification maps.

2.7.1 Local Magnitudes

The calculation of earthquake localmagnitudeML from
measured peak ground motions follows different re-
gional and local magnitude definitions (Bormann and
Dewey, 2012). This complexity of local magnitudes is
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Figure 7 SSSTdelay times of the P first arrivals for a single
seismic station SI.VOS on Reykjanes Peninsula, Iceland.
Slices are from the full volume (Fig. S3) reduced to (a) a hor-
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the octree volume. The SSST residual times are obtained
from weighted travel time residuals calculated on the oc-
tree at level l = 1 (1 km grid spacing) and PT of 5. Travel
time residuals shown here are calculated from 50k+ events
on the Reykjanes Peninsula (black dots).

inherent in the local attenuationmodel and themodel’s
definition of peak ground motions AP measurement
(i.e., horizontal or vertical components). Most attenua-
tionmodels require the simulation of aWood-Anderson
seismometer; the accepted numerical representation
of this response has historically changed (Hutton and
Boore, 1987; Uhrhammer and Collins, 1990; Bormann
and Dewey, 2012), while other attenuation models re-
quire the measured particle motion (e.g. Horálek et al.,
2000). Theqseek software frameworkhas incorporated
various local magnitude models for estimating event
ML in different regions. The framework estimates the
individual station magnitudes MS

L together with pre-
event noiseDN , noise standard deviationsσ(DN ), noise
amplitudes AN and peak amplitudes AP . Valid station
peak amplitudes AP are selected by AP > 2 σ(DN ).
Clipped waveforms (digital and analog) are filtered out.
Magnitude errors can then be calculated by adding and
subtracting the noise amplitude ±AN to the peak am-
plitude estimationAP and recalculating the station’s lo-
cal magnitude. The network’s local magnitude ML is
calculated from the median of estimated station mag-
nitudes MS

L (Bormann and Dewey, 2012). Individual
station magnitude corrections, however, are not esti-
mated, and the local magnitudes calculated here are
less reliable than those derived from a calibrated seis-
mic network.

2.7.2 Moment Magnitudes

A data-driven method for moment magnitude estima-
tion from modeled peak ground motions is proposed
by Dahm et al. (2024). It retains traditional magnitude
determination from peak amplitudes while addressing

limitations like rigid frequency filters and responses,
signal saturation, or source complexity.
The relationship of moment magnitude MW and ob-

served peak ground motion is given by Dahm et al.
(2024):

MW = median
(

log10

( us

ûR

)
+ MR

W

)
. (13)

where us is themeasured peak ground displacement (or
velocity) at station s and ûR is the synthetic peak ground
displacement and MR

W a selected reference magnitude
to calculate synthetic Green’s functions.
The statistical attenuation functionsu(r) are forward-

modeled through synthetic waveforms provided by
Green’s function (GF) databases (Heimann et al., 2019).
The velocity model underlying the GFs was chosen as
the same model used for detecting and localizing the
event. This effectively harmonizes the detection, local-
ization, and magnitude estimation procedure.

2.8 Software Implementation
The open-source qseek software framework is imple-
mented in Python and C programming languages. The
exposed API interface is in Python, while heavy-lifting
algorithms (i.e., stacking and migration) are imple-
mented in C. This computationally expensive function
is implemented in Pyrocko’s parstack module and
benefits from massive parallelization on the CPU reg-
ister level (Single instruction, multiple data; SIMD).
Seismic waveform handling is expedited by Pyrocko’s
squirrel, enabling fast and asynchronous access to
large seismic datasets. Node travel time calculations are
cached in last-recently-used (LRU) caches. New entries
are added to the cache and discardedwhennot accessed
in a long time. This strategy alleviates costly and repet-
itive forward modeling. An overall modular architec-
ture and structured object-oriented principles organize
the code base and allow for the integration of plugins
across the entire processing pipeline. This facilitates
the integration of other image functions, e.g., analytical
phase pickers, such as FilterPicker (Lomax et al., 2012;
Bagagli, 2022), or the integration of non-cartesian oc-
trees. To maximize performance and hardware utiliza-
tion (Disk I/O–RAM–CPU–GPU), we use asynchronous
programming principles facilitated by asyncio from
the Python standard library.
All data models adhere to semantic schemas and

strict typing provided by the Pydantic framework. This
enables serialization and de-serialization to and from
standard JSON format. The formalization of data ex-
change formats and semantics, in turn, allows easy
handling and examining of large earthquake catalogs.
Moreover, it establishes the foundation for data ex-
change across different software modules (e.g., a web
interface or databases). The interplay between differ-
ent detection and localization workflow components is
conceptualized in Figure 8.

2.8.1 Waveform Pre-processing

Various frequency filters, such as low-pass, high-pass,
and band-pass, can enhance the waveform data’s SNR
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Figure 8 Components of the presentedmethod and the software frameworkqseek for earthquake detection, localization,
and characterization. The components of the method are grouped in blocks (i.e., data, travel time model, stacking, and
migration). The calculation and application of station corrections and the extraction of event features are optional modules
in the processing workflow.

prior to its annotation by the imaging function. Option-
ally, the SNR can be improved by applying the Deep-
Denoiser neural network (Zhu et al., 2019), which can
significantly improve data quality and subsequent NN
phase annotation (Münchmeyer et al., 2022). However,
pre-processing can be computationally demanding and
degrade large datasets’ overall search runtime perfor-
mance.

3 Applications
We demonstrate the method and software framework
on three seismic datasets containing different scales
of seismicity and representing different geological set-
tings: (1) Volcano-tectonic seismic data recorded on
Reykjanes Peninsula (RP), Iceland, in 2020, where non-
effusive volcanic activity produced episodic swarm seis-
micity. (2) Seismological data from the Eifel large-N ex-
periment in the Eifel Volcanic Region (EVR), Germany.
Wedetect and locate seismic activity that comprises tec-
tonic earthquakes, small-scale seismic swarm activity,
and anthropogenic events. (3) Data from Utah FORGE,
a laboratory for enhanced geothermal systems, where
we detect and locate microseismicity induced during a
circulation experiment in 2023.
In this study, we do not provide interpretations of the

located seismicity. For a detailed analysis of the seis-
micity and source mechanisms observed on RP, we re-
fer to Büyükakpınar et al. (2024), for the seismicity in
the EVR toDahmandTheEifel Large-N team (2023), and
for an analysis of the microseismicity at Utah FORGE to
Niemz et al. (2024).

3.1 Reykjanes Peninsula, Iceland
The Reykjanes Peninsula (RP) in southwestern Ice-
land represents the intersection of the Reykjanes mid-
oceanicRidgewith the island and formspart of an active
oblique rift system. Since late 2019, intensified tectonic-
magmatic activity has been observed, including earth-
quake swarms at varying crustal depths, ground de-
formation, and volcanic fissure eruptions from 2021 to
2024 (Sigmundsson et al., 2024; Flóvenz et al., 2022).
These phenomena are linked to fluid migration and
magmatic intrusion, activating dike and sill complexes
within the crust and upper mantle (Flóvenz et al., 2022;

Ducrocq et al., 2024; Büyükakpınar et al., 2024).

Analysis We analyzed seismic datasets comprising 27
stations across the RP and its eastern surroundings for
benchmarking and validation. The data span from Jan-
uary 1 to September 1, 2020 (244 days). The earthquake
catalog with applied SSST corrections is presented in
Figure 9. The catalogs without station corrections and
simple SST corrections are shown in supplement Fig-
ures S6 and S7. Seismicity maps, including uncertain-
ties, are shown in Figures S8-S12, alongwith a statistical
analysis of uncertainties and station correction terms
(Fig. S11). The average horizontal and vertical uncer-
tainties are 233 m and 480 m, respectively (Tab. S2). We
compare our results to a curated catalog by the Iceland
Meteorological Office (IMO), which is based on a com-
parable seismic network (Fig. S5). A 3D animation of
the seismicity is linked in the supplement.

3.2 Eifel Large-N Experiment, Germany

The Eifel Volcanic Region in the Rhenish Massif, Ger-
many, comprises over 350 volcanic centers, including
basanitic scoria cones, maars, and phonolitic centers
(Mertes, 1983). The last eruptions include the Laacher
See Maar (12,800 years ago) (Reinig et al., 2021) and
the Ulmener Maar (10,800 years ago) (Zolitschka et al.,
1995). The region features active fault systems, such
as the SE-NW Ochtendunger fault (ODFZ) with M < 4
seismicity and the fossil SW-NEVariscan faults (Hinzen,
2003). Evidence of volcanic activity includes mantle
CO2 degassing (Gal et al., 2011; Defourny et al., 2022),
upper-crustal swarm earthquakes near older volcanic
centers (Hensch et al., 2019), and deep low-frequency
swarms at 45 km depth (Dahm et al., 2020b).
In 2022, the GFZ Potsdam and collaborating institu-

tions deployed a temporary large-N seismic network in
the German Eifel region focused around the Laacher
See volcano (in preparation). Thenetwork spans 180 km
EW by 120 km NS and is comprised of 500 sites, which
were equipped with different seismic instruments: 3-
component 4.5 Hz geophones, short-period Mark 3D
instruments, and broadband seismometers (Trillium
Compact 120). Details about this deployment are given
by Dahm and The Eifel Large-N team (2023).
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Dataset RP, Iceland EVR, Germany Utah FORGE, USA
Seismic stations 28 500 5
Dataset coverage 9 months 1 year 25 days
Dataset size 1 TB 5 TB 62 GB
Sequential waveform duration 63 years 1000 years 125 days
Processing duration 17 hours 2 days 2.5 hours

Search Parameters
ML network; model PhaseNet; original PhaseNet; original PhaseNet; original
Search area 62 x 32 km 60 x 60 km 9.6 x 6 km
Search depth 12 km 50 km 4 km
Search volume 24 000 km3 180 000 km3 230.4 km3

Octree root node size 2 km 2 km 400 m
Octree levels 5 (125 m) 5 (125 m) 5 (25 m)
Velocity model Layered 1D Layered 1D 3D
Magnitude model Mw Dahm et al. (2024) ML Stange (2006) -
Velocity model Hrubcová and Vavryčuk (2023) EDSW, Fig. S19 Finger et al. (2024)
Input stretching Si - - 4
Semblance Sampling Rate 100 Hz 100 Hz 200 Hz
Semblance threshold 0.2 0.2 0.1
DeepDenoiser No No No

Results
No. qseek catalog 51 465 2483 1464
No. reference catalog 18 225 198 31

Table 1 Search parameters and detection performance for the three study areas in Reykjanes Peninsula, Iceland; Eifel Vol-
canic Region, Germany; and Utah FORGE, USA. The searches were conducted on a single compute node with 48 CPU cores,
128 GB RAM, and an Nvidia A100, A40, or A30 GPU for ML inference.

Analysis The obtained earthquake catalog, which fea-
tures SSST corrections, is presented in Figure 10, and
the event location uncertainties are presented in Fig-
ure S18. Catalogs without corrections and simple SST
corrections are presented in Figures S15 and S16. As a
benchmark reference for our method, we use the offi-
cial automatically-generated catalog, which is curated
by the Geological Survey of Rhineland Palatinate (LGB)
/ Erdbebendienst Südwest (EDSW), Freiburg, Germany
and based on high-quality permanent seismic stations
of the state seismic network (network LE; Erdbebendi-
enst Südwest Baden-Württemberg and Rheinland-Pfalz,
2009) and is shown in Figure S14. Maps of SST delay
times for the large-N network are presented in supple-
mentary Figure S1 and S2.

3.3 Utah FORGE, USA

Utah FORGE (Frontier Observatory for Research in
Geothermal Energy) in southwest Utah, USA, is a field-
scale laboratory for studying Enhanced Geothermal
Systems (EGS) in granitoid basement rock (Moore et al.,
2019). EGS enhances reservoir conductivity at depths
typically >2 km by creating fluid pathways in tight base-
ment rock through stimulation, such as hydraulic frac-
turing. Fluids are injected into an injection well, heated
in the fractured reservoir, and extracted via a produc-
tion well. Key phases include a 2022 stimulation phase
creating fluid pathways and a 2023 circulation phase
testing the well connection (Moore et al., 2023; McLen-
nan et al., 2023). Utah FORGE, located at the edge of
a sedimentary basin overlying dipping basement rock,

requires a 3D velocity model to precisely locate the in-
duced microseismicity due to the sharp velocity con-
trast.

Analysis The earthquake detections take advantage of
the 3D ray tracing for travel time calculation using the
fast-marching Eikonal solver. We analyze four weeks of
seismic data during the circulation tests (July 4 to 31,
2023) recorded by 5 (near-)surface seismometers from
theUniversity ofUtah SeismographStations (UUSS;Uni-
versity of Utah, 1962). The inducedmicroseismicity was
similar in event rate and magnitude compared to the
2022 reservoir stimulations, with bursts of hundreds of
events in a few hours up to magnitude 0.5 (Niemz et al.,
2024). We compare our results to the authoritative re-
gional catalog provided byUUSS and to the relative relo-
cations presented by Niemz et al. (2024). The detections
within a 230 km3 source volume revealed induced mi-
croseismic events within the geothermal reservoir and
natural swarm activity in the Mineral Mountains (Pe-
tersen and Pankow, 2023). Details on the circulation-
induced microseismicity are presented by Niemz et al.
(2024). Detection results using SSSTs are shown in Fig.
11. Plain and SST-corrected versions of the catalog are
provided in the supplementary Figure S23.

4 Discussion and Conclusions
The developed stacking andmigrationmethod and soft-
ware framework successfully combine machine learn-
ing phase annotations and efficient stacking to associate
seismic phase arrivals. This facilitates detecting and lo-
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Figure 9 Locations of earthquakes on the Reykjanes Peninsula, Iceland detected by qseekwith applied SSST corrections.
Featuring 50k+ seismic events detected between January 1 and November 1 2020 inside a search volume of 26 000 km³. The
high number of events cluster densely along the active structures.

calizing seismic events on an adaptive octree grid with
high precision and resolution. The extraction of sta-
tion corrections through SST and SSSTmethods further
improves the detection and localization performance.
We demonstrate this in the different analyzed datasets,
wherewe can increase the number of earthquake detec-
tions (Tab. 2 and S2) and improve the hypocenter loca-
tion certainty (Fig. S8 and S9).
In the volcano-tectonic dataset recorded on Reyk-

janes Peninsula, Iceland, we can identify a notable
number of 51k+ seismic events within the search vol-
ume. The IMO catalog had previously documented
about 18k seismic events from a similar network con-
figuration within the confines of the identical volume.
The seismicity images the geometry of a dike structure
Sigmundsson et al. (2024) with higher fidelity and de-
tail compared with the already high-quality IMO cata-
log. The dense spatial clustering of the events illumi-
nates the active geological structures during the unrest
(see supplement for a link to the animation), thus allow-
ing for a more detailed and more constrained interpre-
tation of the seismicity. The location uncertainty is low
in areas with complete azimuthal station coverage and
degrades when the illumination is narrow. The location
uncertainties improve with better station coverage and
the application of SSSTcorrections (Fig. S8 andTab. S2).
It should be pointed out that the event depths are sys-

tematically deeper and showahorizontal artifact at ~5.2
km depth. This stems from a velocity contrast within
the layered velocity model (Fig. S13). Flóvenz et al.
(2022) detected 39k+ events within a similar volume and
period, more than detected in this study in the compet-
ing work. However, supplementary DAS data was used
to detect seismicity, resulting in more events and false
detections. A detailed geological interpretation of the
observed seismicity and inverted sourcemechanisms is
given in Büyükakpınar et al. (2024), Flóvenz et al. (2022)
and Sigmundsson et al. (2024).
In the EVR dataset, we detected 780 events, exceed-

ing the 210 events reported by the regional network
(EDSW). However, this study analyzed seismic data
from the dense local large-N temporary seismic net-
work. In contrast, the EDSW catalog relies on the
more sparse, high-quality stations from the permanent
network. The regional catalog shows tectonic activ-
ity on a local fault system (ODFZ) spatially tightly con-
fined in the qseek catalog. The detections also re-
veal two seismic clusters close to Rieden and Ahrbrück,
shown in the two inlets. The presented seismic cat-
alog qualitatively paints a more complete and precise
picture of the region’s activity. The accuracy of loca-
tions is also reflected in the detection and localization
of quarry blasts shown in Figure S17 and the horizon-
tal uncertainty estimations in Figure S8. Further, the
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Figure 10 Locations of earthquakes detected by qseek in the Eifel volcanic region between September 20, 2022 and
September 1, 2023. A total of 780 events were detected, and the depth color scaling is identical to Fig. S14. The two cir-
cular inlets focus on the detected swarms in Altenahr and Rieden. The detections cluster along the main seismic features in
the area. SST station corrections were applied.

Figure 11 The microseismicity detected at Utah FORGE,
USA, during the reservoir circulation tests in July 2023
shows the induced activity within the reservoir and natural
swarm activity in theMineral Mountains to the east. Results
from qseek use a local 3D velocitymodel and SSST correc-
tions containing 1464 event detections.

presented method delivers a continuous resolution of
the hypocenter depths. The presented localmagnitudes
are based on the same ML model (Stange, 2006), and we
obtain similar magnitudes for the same set of events.
DahmandThe Eifel Large-N team (2023) presents a geo-
logical interpretation of the results and the located DLF
events of the large-N network.
Examining seismic data from Utah FORGE, we show

that the neural network can annotate induced micro-

seismicity down to M < −1 (Fig. S22). This is accom-
plished by stretching the input waveforms D(t) for the
NN and improving the network’s annotation sensitivity
for microseismic events. Further, the high semblance
sampling rate of 200 Hz allows the refinement of the
octree down to nodes with 25 m edge length and en-
hances the precise localization of the seismicity. When
comparing the absolute locations from qseek with
manually picked relative locations obtained through
GlowCrust (Trugman et al., 2022; Niemz et al., 2024), we
can chart the lobes and extent of the seismicity cloud
around the well strains (Fig. S20). Magnitudes are not
presented for the Utah FORGE dataset, but the extrac-
tion of spectral magnitudes is planned for future work.
Applying station correction terms in the form of SST

and SSST improves the semblance and localization ac-
curacy (Tab. 2 and S2). Incorporating SST and SSST
station correction terms refines and further enhances
the catalogs by clustering seismic activity onto active
structures. These corrections are essential, particularly
when only layered 1D velocity models are available. We
can demonstrate this effect in our SSST and SST cor-
rected localization when compared to the plain detec-
tions presented in the supplementary material. The
well-behaved statistical distribution of delay times (Fig.
6) further supports that the bias of travel times is often
systematic for individual stations and influenced by the
shallow subsurface (Lin and Shearer, 2005). A compari-
son of the time delay weighting (eq. 10) reveals that the
weighted average results in a more significant number
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of detected events and a larger cumulative semblance.
Conversely, median weighted residuals yield a smaller
number of events but at a higher maximum semblance
(Tab. S1).
The achieved computational performance of the de-

veloped framework surpasses existing open-source al-
ternatives for stacking andmigration event detection by
a significantmargin, and the processing time is reduced
from weeks (Lassie) to hours (qseek, Tab. 1). The per-
formance enhancement is rooted in the octree search
and resolute application of asynchronousprogramming
principles throughout the advanced software stack. The
computational speed-up is critical for processing large
seismic datasets and iterative computation of seismic
catalogs. It enables the generation of robust, complete,
and precise seismic catalogs from large networks and
across extensive regions. Utilizing an NN image func-
tion instead of the STA/LTA image functions stabilizes
and simplifies the stacking and migration approach: it
eliminates the need to normalise STA/LTA counts (raw
waveforms), resulting in a more robust detection of
events. The shape of the NN annotation function propa-
gates phase and arrival uncertainties into the backpro-
jection stack. This, together with the adaptive refine-
ment of the octree, leads tomore precise hypocenter lo-
cations. However, the fine resolution of the octree grid
can lead to high memory consumption and require ca-
pable computing hardware. This also makes the search
within large volumes inefficient. These shortcomings
can be counteracted by implementing the stacking and
migration algorithm (parstack) in single precision
floats (16-bit), effectively cutting thememory consump-
tion in half and doubling the processing speed. This
is planned for future work. We encourage contribut-
ing to the open-source software framework. To foster
scientific collaboration and ease the development expe-
rience we designed the framework in a modular fash-
ion and adhere tomodern open collaboration platforms
(i.e. GitHub), code formatting, and linting, which eases
on-boarding of scientists and developers alike.
Our approach of combining machine learning with

stacking and migration on an adaptive octree grid has
identified a large number of seismic events with high
spatial resolution in different geological settings and
seismic datasets. Accurate and complete catalogs can
offer a richer understanding of the geological and
seismo-tectonic dynamics beyond what standard loca-
tion catalogs may provide. By creating qseek, we want
to enable the analysis of large datasets. This facilitates
new perspectives and insights for discoveries in Earth
sciences.
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source software at https://github.com/pyrocko/qseek.
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documentation and set-up instructions are available at
https://pyrocko.github.io/qseek/.
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