1 Supplementary Figures

2 Historic creep events on Calaveras Fault

- 3 The USGS installed 4 creepmeters on the Calaveras Fault (Figure 1.1). Creepmeter XSH1
- 4 operated from 1971 to 1997 with 1-day sampling and was reactivated in October 2020
- 5 with 10-minute sampling. The other three creepmeters, SHR2, HLC1, and HLD1, were
- 6 manually monitored from 1970 to 1999 but are currently not in operation. Data recorded
- 7 by these instruments are plotted as Figure S1. XSH1 recorded at least 6 creep events with
- 8 slip larger than 10 mm (Figure S1. A-F). Any creep events between 1988 and 2000 are not
- 9 plotted here because of problems with the instrument or data.
- 10
- 11 **Fig.S1**. Historic creep events recorded by creepmeters XSH1, HLC1, and HLD1.

13 Uncertainty in earthquake location and magnitude

14 To obtain a better understanding of the spatiotemporal patterns of seismic activity during

- 15 the 2021 creep event on the Calaveras fault, we improved the location quality of the
- 16 catalog. We did a visual inspection of the arrivals picked by PhaseNet and EQCorrscan
- 17 (Chamberlain et al., 2018; Zhu & Beroza, 2018), and we conducted a careful examination of
- 18 all the seismic waveforms from selected stations in 2021 to prevent missed picks. We used
- 19 the Hypoinverse location algorithm, and applied the station corrections and multiple 1-D
- velocity models used by the NCEDC in their catalog creation to alleviate the impact of local
- 21 topography and instrument effects (Oppenheimer et al., 1993). We compared our locations
- with those from the NCEDC catalog for the same earthquakes and find that the differences
 are acceptable (Figure S2). Despite the absence of station correction files for 5 stations and
- the limitation of seismic station coverage, the Root-Mean-Square (RMS) traveltime
- 25 residuals for 90% of the earthquake locations are lower than 0.35 seconds (Figure S3).
- 26 Since we use fewer arrival information and stations, it is reasonable that we get higher RMS
- 27 than the NCEDC catalog. The GrowClust relocation step incorporates earthquakes from
- 28 2012 to 2020 to minimize the differential arrival times (Trugman & Shearer, 2017). A
- 29 higher cross-correlation threshold mitigates the RMS error of differential travel times
- 30 while decreasing the number of clustered and relocated earthquakes. We tested various
- 31 cross-correlation threshold (Table S1 and S2). And we set the cross-correlation threshold
- 32 as 0.9, and the RMS differential travel times of 95% relocated events are lower than 0.1s
- 33 (Table S1). Consequently, all earthquake locations are satisfactory, and the location of the
- 34 relocated earthquakes is more accurate than the earthquakes that are not relocated.
- 35
- 36 Fig.S2. Comparison of our locations and those from the NCEDC catalog for the same
- arthquakes in 2021

- **Fig.S3**. Distribution of RMS travel time residuals for Hypoinverse locations. The left panel is
- 41 for our catalog. The right panel is for the NCEDC catalog.

- **Table.S1**. Table of GrowClust location differential traveltimes using different Cross-
- 45 Correlation threshold

Cross-correlation	pRMS mean	pRMS 95th	sRMS mean	sRMS 95th
coefficient un eshold		percentile	mean	percentile
0.4	0.096	0.2	0.15	0.41
0.5	0.08	0.18	0.111	0.28
0.6	0.079	0.19	0.097	0.27
0.8	0.058	0.17	0.043	0.15
0.9	0.03	0.1	0.026	0.11

Table.S2. Table of GrowClust clustered rate using different Cross-Correlation threshold

Cross-correlation coefficient	Clustered rate
threshold	
0.4	82.33%
0.5	82.15%
0.6	81.78%
0.8	75.38%
0.9	60.97%

50 Earthquakes above magnitude completeness

- 51 To show that the seismicity gap is not an artifact caused by heterogenous completeness, we
- 52 plotted Figure 4 and Figure 5 with the earthquakes above magnitude completeness 0.5
- 53 here. Historical events were also selected according to a magnitude completeness
- 54 threshold of 1.4. As shown in Figure S4 and Figure S5, the seismicity gap around latitude
- 55 36.91 is consistent with the selected events exceeding magnitude completeness.
- 56 **Figure S4.** Distribution and Characteristics of Detected Earthquakes above magnitude
- 57 completeness (March-August 2021). (a) Map view and (b) cross-sectional profile
- 58 illustrating the spatial distribution of detected earthquakes, symbolized by circles and
- 59 squares (newly detected). All detected earthquakes are selected within 1km on the left side
- and 3km on the right side to the Calaveras fault, and they are sized by local magnitude and
- 61 colored by occurrence time. Circles with black edges indicate earthquakes that were
- 62 clustered and relocated by GrowClust, circles with gray edges are earthquakes not
- 63 clustered. Gray dots are earthquakes above magnitude completeness included in the
- 64 NCEDC catalog from 2012 to 2020. The yellow box indicates the location of creepmeter
- 65 XSH1. (c) Circles and squares (newly detected) show the latitudinal position of
- 66 earthquakes, with gray bars showing the corresponding earthquake rate. The red line
- 67 shows the fault surface slip recorded by creepmeter XSH1.

- 69 **Figure S5.** Normalized accumulated seismic moment along the fault in two distinct time
- 70 periods, 2021-03-20 through 2021-05-20 (upper panel) and 2021-05-21 through 2021-09-
- 71 01 (lower panel). Only events above magnitude completeness are plotted. Colored lines
- indicate moment accumulation from the starting date in the subtitle to the end date shown
- by the dots color. The sizes of dots are slightly different so that the lines would not fully
- block each other. Gray lines show the normalized accumulated seismic moment of
- earthquakes from 1984 to 2020. Gray bar marks the seismicity gap.

77 The misleading 'shallowing trend'

- 78 HYPOINVERSE allows the use of 1D velocity model or multiple velocity models. In a 1D
- velocity model, the seismic velocity varies only with depth and is constant within each

- 80 depth layer. Multiple velocity models consist of many 1D velocity models for specific areas,
- 81 accounting for regional variations. Transition regions between these models are managed
- 82 using weighted averages of travel times and derivatives, ensuring transitions across
- 83 different areas.
- 84 We tested the location of events in our 2021 catalog with the manually revised arrivals
- using the Coyote Lake 1-D velocity model (Table S3), and the results show a 'shallowing
- trend' from March to August (Figure S6a). Initially, it was misinterpreted as a migrating
- 87 aseismic slip. However, upon extending our test to the location of all events in the NCEDC
- catalog from 2000 to 2022, the 'shallowing trend' still exists (Figure S6b). Comparing the
- 89 location calculated with multiple velocity models (Figure S6c) against those obtained with
- a single velocity model for the 2000 to 2022 period, we concluded that the 'shallowing
- 91 trend' is not indicative of an actual seismicity pattern but rather an artifact caused by the
- 92 inherent limitations of the 1-D velocity model.
- 93

c Lake 1D velocity model		
Depth (km)	P-wave Velocity	
	(km/s)	
0.00	3.80	
1.40	5.30	
5.80	6.12	
10.60	6.37	
24.00	6.59	
26.00	8.00	

94 **Table. S3**. Coyot<u>e Lake 1D velocity model</u>

95

96 **Fig.S6**. Profile of earthquakes located by HYPOINVERSE with different velocity model and

97 aperture. A) 2021 March-to-Sept. events from our catalog with revised arrival at selected

stations using the Coyote Lake 1-D velocity model. B) 2000-2020 Events from the NCEDC

99 catalog with NCEDC arrivals at all detecting stations using the Coyote Lake 1-D velocity

100 model. C)2000-2020 Events from the NCEDC catalog with NCEDC arrivals at all detecting

101 stations using multiple velocity models.

104 The along fault distances

- 105 The along-fault distances of the earthquakes are measured from the northwest point of the
- 106 reference line in Figure S7 to the projections of the earthquakes on this line.
- **Figure S7**. Along fault distances of earthquakes. The earthquakes are represented as dots
- 108 color-coded by their distance along the fault. The reference line is plotted as the red dashed109 line.
- 110

111

112

113 Normalized accumulated seismic moment

- 114 To address concerns regarding the comparison between the long-term accumulated
- seismic moment (1984-2020) and shorter time windows, we compared the accumulated
- seismic moment from 1984-2020 for all events and those smaller than M4.0. The
- 117 comparison revealed a similar distribution, indicating that large events with longer
- 118 recurrence intervals do not dominate the area.
- 119 **Figure S8.** Normalized accumulated seismic moment along the fault of historical
- 120 earthquakes from 1984 to 2020.

