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Text S0: Methods 

Embedding Theory ET attempts to reconstruct the phase-space of the system from the trajectory of a single observable. 

The phase-space has a number of axes equal to the number of variables that describe the system's behavior. It allows us 

to depict every possible state of the system. The trajectory followed by the system in the phase space fully defines it. If 

the observation time is long enough, so that the ergodic assumption can be made, and the sampling rate is high enough to 

illuminate the process, it is possible to reconstruct a shadow of the original trajectory even if we have access to the 

evolution of the system on only a subset of the actual phase space [Takens, 1981]. This theoretical result is particularly 

powerful in real-case circumstances, where access to all possible variables is often problematic. We use the method of 

time delays [Takens, 1981]. The procedure involves duplicating the original time-series m times with a τ time-step shift 

between each copy. The hyper-parameters m and τ are named embedding dimension and time delay, respectively. The 

reconstructed time delay vectors can be written as 

F(t,τ,m) = [x(t),x(t-τ),…,x(t-(m-1) τ)]         

(eq.1) 

where x is the analyzed signal and t = 1, 2,··· , N − (m − 1)τ, with N being the total length of the time series (Figure 2B). 

F(t,τ,m) represents an m-dimensional vector delaying in time the time series x(t) of an amount t for m − 1 times. 

The appropriate selection of observables (e.g., displacement) and hyper-parameters produces a reconstructed trajectory 

in the delay coordinate space to be topologically similar (i.e., preserve shape characteristic) to the signal in the original 

phase space (Figure 2C). We determine the value of τ by using the Average Mutual Information (AMI; SI text2) and the  

value of m using the method of Cao [1997; SI text3]. Once m is known we can refer to Taken’s theorem [1981] and 

estimate the system dimension D. Taken’s theorem states that the embedding dimension m must be at least larger than 

twice the true dimension D (i.e., m ≥ 2D+1) of the underlying system. If the functions governing the dynamics are 

sufficiently smooth, certain properties can be preserved with values of m smaller than 2D, except for subsets of dimension 



size no greater than 2D - m - 1 [Sauer et al., 1991]. Cao’s method [1997] allows us to determine the minimum embedding 

dimension, which cannot be smaller than D (i.e., D ≤ m). Thus, once m is determined, we can set bounds on the true 

dimension of the system as (m-1)/2 ≤ D ≤ m.  

The dimension estimated via ET provides an overall, time-averaged, value for the whole system dynamics. Since the 

stick-slip behavior of seismotectonic models is by nature characterized by instabilities, the dimension of the trajectory 

may be time-dependent. To analyze the dynamics of the experiments over time we use a method that applies Extreme 

Value Theory EVT to dynamical system theory [Faranda et al., 2017; SI text5]. We use two properties: the instantaneous 

dimension (d1) and the instantaneous extremal index (θ). To estimate these quantities, we use the complete spatio-

temporal information (i.e. no embedding is used) and we assume that the state ζ of the system is described by a specific 

configuration of the chosen variable (e.g., displacement field). The instantaneous dimension d1(ζ) measures the density 

of neighboring points (i.e., similar configurations) in the phase space. The system dimension D is obtained by averaging 

d1 over all ζ. The "stickiness" of the state ζ allows us to estimate θ(ζ), which is defined as the inverse of the average 

persistence time of trajectories around ζ and is normalized between 0 and 1. Lower values of θ reflect a persistent state 

and higher values a transient one. 

θ(ζ) is related to the metric entropy H of the system, and thus to its predictability. In fact, H is equal to the sum of all 

positive Lyapunov exponents, and we can thus use its inverse to get an equivalent of the Lyapunov time but using all 

directions of divergence. As in Gualandi et al. [2020], we use two approaches to estimate H and the corresponding 

predictability horizon t*. The first method uses the following relation between the extremal index 𝚯 and the entropy H: 

𝚯 ~1 − e−H; with 𝚯 ∈ [θmin, θmax] [Faranda and Vaienti, 2018]. The second method is based on Nonlinear Forecasting 

Analysis (NFA) [Farmer and Sidorowich, 1987; Wales, 1991]. To make a prediction of Tp time steps in the future, we 

split our time series into two parts of equal duration. The first half of the time series (training set) is used to learn a 

nonlinear map using a local linear approximation in the phase space. The second half of the time series (test set) is used 

to test the “performances” of predictions, quantified as ⍴ i.e., the correlation between the observed and predicted time 

series at different Tp [Wales, 1991]; and 𝟄 i.e., the root mean square error between observed and predicted time series 

normalized by the root mean square deviation from zero [Farmer and Sidorowich, 1987]. Since ⍴ and 𝟄 provide different 

values of H, t*NFA=1/H will either refer to ⍴ (i.e., t*⍴) or to 𝟄 (i.e., t*𝟄; SI text4). t*EVT and t*NFA are complementary 

in a way that the former represents a “global” measure and the latter, being computed for a precise point along the sampled 

section, refers to a particular location on the model surface. 

 

 

Text S1: Data and data pre-processing 



Table S1 reports information about monitoring of our experiments and image processing. The PIV provides us with 

velocity field time series. These are integrated to obtain displacement time series. One can use either the velocity or the 

displacement to build the delay embedding. Here we select the trench orthogonal component of the displacement as the 

target signal, that we indicate with x(t). PIV also provides the trench parallel component of the velocity field, which we 

ignore in this study as the kinematically imposed loading (i.e., plates convergence) in our experiments is perpendicular to 

the trench. The temporal pattern of x(t) clearly depicts stick-slip dynamics. Preliminary analysis supported our choice of 

using displacement rather than velocity for the reconstruction of model dynamics. 

First, all displacement time series have been normalized to zero mean and unit variance to ensure the same level of 

magnitude for comparison. Second, linear and second order polynomial trends have been removed by simple regression 

to make the stick-slip confined in a given range and avoid non-stationary behavior. Time series data are not passed through 

filters (e.g., smoothing or moving average), to prevent potential influence on the reconstructed dynamics [Badii et al., 

1988; Theiler and Eubank, 1993]. Figures S1-S4 show displacement time series for all experiments. 

 

Text S2: Average mutual information AMI 

The Average Mutual Information (AMI) is a widely used technique to determine the ideal time delay (τ) needed for phase 

space reconstruction. AMI quantifies the relation between x(t + τ) and x(t), at a particular τ. To calculate the AMI of a 

time series x (t), first an histogram with a given number of bins is created. In this study we used 10 bins. We define Pi the 

probability that the signal has a value inside the ith bin, and Pij(τ) the probability that x(t) is in bin i and x(t+τ) is in bin j. 

Next, AMI for τ time delay is computed as AMI(τ)= ∑i,jPi,jlog(Pij/PiPj). We select the first local minimum of AMI (τAMI) 

as the optimum delay. To investigate how our assessment of the embedding dimension is affected by our ability to identify 

this minimum, we implement 5 different values of τ from a linearly spaced selection in the [0.5*τAMI, 1.5*τAMI] range. 

To compute AMI we used the Matlab function phaseSpaceReconstruction. We report all AMI(τ) for all experiments in 

Figure S13-S16. Plots of AMI(τ) (realized using the ARFM_ami.m function [Sujith, 2019]) have been used for visual 

inspection. 

 

Text S3: Cao’s method for calculating the minimum embedding dimension 

We used the method of Cao to calculate the optimum embedding dimension [Cao, 1997]. The algorithm uses the 

embedding function F and detects false neighbors in the reconstructed phase space when changing embedding dimension 

m. False neighbors are points in a lower dimensional embedding of a dynamical system that appear close together, but 

are actually far apart in the higher dimensional phase space. The quantities E and E* are defined as follows: 
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E∗(m) =
1

T −mτ	 / ∥ x(t + mτ) −	x!(#,%)(t + mτ) ∥
'(%)

#*+

 

(eq.3) 

where 1≤n(t,m)≤ (T-m) and Fn(t,m)(t,t,m) is the nearest neighbor of F(t,t,m). From E and E* two following ratios can be 

defined: 

E+(m) =
E(m + 1)
E(m)  

(eq.4) 

E-(m) =
E∗(m + 1)
E∗(m)  

(eq.5) 

E1(m) reaches a plateau and stops changing once all the false neighbors are identified after a dimension m. We implement 

three thresholds (i.e., 0.900, 0.925 and 0.950) to identify the plateau and define then the minimum embedding dimension 

as m +1 (Figure S11). E2(m) is useful for determining whether the analyzed time series results from a deterministic or 

stochastic process. In the latter case, consecutive points in the timeserie are independent from previous ones and E2(m) 

=1 for each m (Figure S12). If the analyzed time series results from a deterministic process E2(m) is not constant and 

some E2(m)≠1. To compute E1(m) and E2(m) we used the Matlab function cao_deneme.m by M. Kizilkaya. For each time 

series we computed 15 optimal embedding dimensions by systematically varying the 3 thresholds of E1 and the 5 values 

of τ (SI text2). 

 

Text S4: Estimating the prediction horizon form entropy 

In the frame of dynamical systems theory, entropy H refers to a measure of regularity of fluctuations over time series 

data. Therefore, entropy is often associated with predictability. The prediction horizon t*, on the other hand, refers to the 

time window within which a model correctly predicts the future. It determines how far ahead the model predicts the 

future.  

Here we used a basic nonlinear forecasting algorithm NFA based on the "Lorenz Method of Analogues". The idea behind 

the algorithm is that future states of the actual state’s neighbors are indicative of the actual state’s future [Lorenz, 1969]. 

NFA pseudo code can be found in Gualandi et al. [2020].  



First, we split the analyzed time series in two parts of equal duration. We use the former (training set) to learn a nonlinear 

map to make a prediction Tp time steps in the future using a local linear approximation in the phase space. The second 

half of the time series (test set) is used to test the “performances” of predictions. We use the correlation between the 

observed and predicted time series at different Tp ⍴ and the root mean square error between observed and predicted time 

series normalized by the root mean square deviation from the mean of the observed time series 𝟄 to quantify how well 

the NFA predicts the test set. Values of ⍴ and 𝟄 at different Tp allow estimating H.  

The first method to estimate H is based on the rate of loss of information from the time series and provides the following 

relationship: ln(1−⍴(Tp))=c+2HTp. The number of points to use for the estimate is not strictly defined. Previous studies 

have used 2 or 6 points for example [Wales, 1991; Barraclough and De Santis, 1997]. Here, we used the first 3 points 

(i.e., Tp=1, 2, 3) of ⍴ to fit a linear model and estimate H. The resulting values of t*⍴=1/H for all analyzed time series are 

reported in Figure 5. A larger number of points (e.g. 4 points) provides a minor (i.e., ~ 1 frame) increase of t*⍴ for the 

asperity area of both Gelquake and Foamquake. 

The second method to estimate H is based on the following relation: ln 𝟄 (Tp)+2/D lnN ≈ lnC+2HTp; where D is the 

average attractor dimension from EVT and D is the number of datapoints, and holds for 𝟄<<1. To compute H we used a 

linear fit for all values of 𝟄<0.3 [e.g., Gualandi et al., 2020]. 

Since ⍴ and 𝟄 provide different values of H, t*NFA=1/H will either refer to ⍴ (i.e., t*⍴) or to 𝟄 (i.e., t*𝟄). Additionally, 

we provide an error t*err for the estimation of t* based on the standard error SE of the linear fit using the following 

relation t*err= t*2(SE/2). 

 

Text S5: Extreme Value Theory 

We use the Extreme Value Theory EVT to compute two quantities of interest: the instantaneous dimension d1 and the 

instantaneous extreme index θ.  

d1 is informative of the number of variables needed to describe the dynamics of a system in a specific point of the phase 

space (i.e., a moment in time). The derivation of d1 is based on the Poincarè theorem, specifically on the observation that 

if a point ζ(t) exists in the phase space, then after a sufficient amount of time the system will eventually revisit a region 

of the phase space arbitrarily close to ζ(t). d1 defines the density of points ζ(t) in the phase space. For each ζ(t), the 

algorithm searches for the nearest configurations (i.e., nearby points in the phase space) and arranges them in order of 

their Euclidean distance from the current state. Successively it computes the negative log-distance from the current state. 

The distribution of negative log-distance can be represented by a generalized Pareto distribution GPD [Faranda et al., 



2017]. The GPD shape parameter σ is the inverse of the instantaneous dimension d(ζ)=1/σ(ζ). We can finally compute 

the attractor dimension D by calculating the temporal average of the instantaneous dimension d1. 

The extremal instantaneous index θ is a measure of the inverse of the average persistence around a given state in a region 

of the phase space. In other words, θ informs us about the amount of time spent by a dynamical system in a given region 

of the phase space. θ ranges from 0 to 1, with smaller values representing a persistent state in the phase space and higher 

values representing states that will be rapidly abandoned. As a consequence θ can be related to predictability, in a way 

that large values of θ indicate less predictability. In fact, θ is related to entropy H [Faranda and Valenti, 2018]. We can 

introduce the extremal index 𝚯 (i.e., 𝚯 ∈ θmin, θmax) and the following relation 𝚯 ~1 − e−H; we can thus derive the 

predictability horizon t*EVT as the inverse of the entropy. θ is calculated using the maximum likelihood estimator of 

Süveges (2007). 

To summarize, d1 is related to the density of points in a certain neighborhood of the phase space while θ indicates how 

long the system stays in a region of the phase space. 

To compute d1 and θ we used the Matlab function fun_dynsys_univariate_analysis.m by D. Faranda. 

  



 
Figure S1: Time series of the trench orthogonal component of displacement for different points along the 
analyzed cross section from experiment mono gel. Target point number and τAMI are reported within each 
panel. 



 
Figure S2: same as figure S1, here for experiment twin gel. 



 
Figure S3: same as figure S1, here for experiment mono foam. 



 
Figure S4: same as figure S1, here for experiment twin foam. 
 



 
Figure S5: the analog seismic cycle path in the d1, θ space. Marker colors represent different stages of the 
seismic cycle as identified by k-means analysis to split data into 4 clusters given their distribution in the d1, θ, 
x space. 
  



 

 
Figure S6: bivariate plot showing the influence of the analyzed area (represented by different markers) on the 
θ - displacement pattern in Gelquake. We removed all coseismic frames from the analysis so that the axis 
displacement is representative of different moments into the interseismic period with negative and positive 
values of displacement corresponding to early and late interseismic, respectively. In twin gel experiment (panel 
b), a clear decrease of θ in the late-interseismic stage becomes visible only when focusing within individual 
asperity. Similarly, also in mono gel experiment (panel a) a clearer picture of θ - displacement pattern appears 
when analyzing the asperity.  



 
Figure S7: Bivariate plot of d1 against θ colorcoded by displacement (panels a-d) and velocity (panels e-h). 
Experiment reported as title of each panel. 



 
Figure S8: time series of d1 as a function of time for the analyzed experiments (reported as title in each panel). 
Time series are colorcoded by velocity. Slip episodes (pinkish colors) correspond to peaks of d1.  



Figure S9: EVT results. Distribution of d1 and θ for the four experiments used in this study. We notice d1 
distribution similarities by model type rather than by frictional configuration. We also notice that all 
experiments have remarkably similar minimum values of θ (providing insights of the furthest prediction 
horizons). 



Figure S10: zoom on a stick-slip cycle. Displacement (panel A) and velocity (panel B) time series from 
measurement points located above the asperity area of model mono gel display different focusing/unfocusing 
(i.e., concentration of observables at given moment) depending on different stages of the analog seismic cycle.  



 
Figure S11: Cao’s method for determining the embedding dimension m. The input signal is the trench 
orthogonal component of displacement. E1 (blue lines) and E2 (magenta lines) as a function of m. Plots 
summarize the computed values of E1 and E2 for different experiments (panel a-d) and all target points along 
the analyzed cross section. Thick lines represent the mean while thin lines constrain 90% of the data. Black 
dashed lines represent the three thresholds used in our study. 



 
Figure S12: same as figure S11 but using the trench orthogonal component of velocity as signal. Notice, for 
all experiments, E2 (magenta) ~ 1 at all tested m indicative of a stochastic process. 
 
 



 
Figure S13: Black curves represent AMI(τ) for different target points tp (reported in titles) for experiment 
mono gel. Red circles represent the first local minima, i.e., the optimal delay time τAMI. Green circles 
represent 5 additional, linearly-spaced values of τ in the τAMI/2 - 1.5*τAMI range, that are used to compensate 
for the potential temporal variation of τ within the investigated time series. 



 
Figure S14: Same as figure S13, here for experiment twin gel. 



 
Figure S15: Same as figure S13, here for experiment mono foam. 



 
Figure S16: Same as figure S13, here for experiment twin foam. 
  



Table S1: additional information about models and monitoring. 

 gelquake foamquake 

images discretization [px2] 1600 x 1200 2048 x 1536 

PIV data size [interrogation windows]  
(trench orthogonal x trench parallel) 42 x 28 18 X 29 

monitoring rate [frames per second] 7.5 50 

model dimensions [cm]  
(x-y plane; trench parallel x trench 
orthogonal) 

34 x 52 150 x 90 

length scaling factor (Model/Nature) 
1.57 x 10–6 (i.e., 1 cm in the 
model corresponds to 6.4km 

in nature)  
2.9 x 10-6 (i.e., 1 cm in the model 
corresponds to 3.5 km in nature)  

subducting plate velocity [m/s] 1 x10-4 1 x10-4 

dip of the megathrust [°] 10 10 

main reference Corbi et al. [2013] Mastella et al. [2022] 

number of frames analyzed 4000 2000 

number of laboratory earthquakes 34(mono) 67(twin) 50(mono) 49(twin) 
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