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Abstract This paper introduces DeepRFQC, an automatedmethod for quality control in P-wave receiver
function analysis. Leveraging a U-Net inspired deep learning model, which has previously shown promise in
denoising and phase detection, DeepRFQC efficiently distinguishes usable from noisy receiver functions. We
examine data recorded by stations located in Archean and Paleoproterozoic regions of northern Canada, in-
cluding seismic events from 1990 to 2023, which are expanded for training purposes by data augmentation
techniques. With 1,508,449 trainable parameters, the DeepRFQCmodel attains 96.6% validation accuracy on
a test dataset from the X5 seismic network. The model’s global applicability is substantiated through sup-
plementary analyses conducted on seismic stations situated in diverse tectonic settings. However, optimal
performance is achieved when utilizing a dataset that has undergone water-level deconvolution and subse-
quent bandpass filteringwithin the range of 0.05 to 0.5 Hz. Consistent and plausible results fromH-κ stacking
also validate this method. As manual quality control is a major bottleneck in receiver function processing,
automatedmethods such as this one will allow for efficient examination of large data sets.

Non-technical summary Checking large amounts of seismic data for quality using receiver func-
tions canbechallengingand time-consuming, especiallywhendonemanually. However, anewmethodcalled
DeepRFQC uses deep learning to automate this quality control process for P-wave receiver function analysis,
making itmuchmore efficient. DeepRFQCuses a deep learningmodel inspired byU-Net, trained on data from
Paleoproterozoic regions in northern Canada. By enhancing the data and using over 1.5 million parameters,
DeepRFQC achieves a high accuracy of 96.6% in validation tests. The primary strength of DeepRFQC lies in its
capacity to automate a traditionally time-intensive process, providing an efficient solution for analyzing large
seismic datasets. By streamlining the evaluation of extensive data, this approach has the potential to signif-
icantly conserve researchers’ time and resources. Comprehensive testing and evaluation, including compar-
isons with existing models, variations in input parameters, and exploration of different hyperparameter con-
figurations, have demonstrated DeepRFQC’s robustness, adaptability, and its potential for broad adoption in
the field of receiver function analysis.

1 Introduction
The receiver function (RF) technique is passive seis-
mic imaging that plays a crucial role in understanding
crustal and upper mantle structure. Receiver functions
are sensitive to sharp changes in crustal andupperman-
tle properties (Vinnik, 1977; Hansen and Schmandt,
2017), complementing other techniques, such as sur-
face wave analysis, which are more sensitive to smooth
variations (Bensen et al., 2007; Shen et al., 2013; Zan-
jani et al., 2019; Dreiling et al., 2020), and contribute to
understanding tectonic processes (Vinnik et al., 2004;
Rodriguez and Russo, 2020). The arrival time of P-to-
S converted phases after the direct P-wave corresponds
to the depth of the interface at which the conversion oc-
curred and the amplitude of this phase indicates the ve-
locity contrast at the interface (Lawrence and Shearer,
2006; Ramadanti, 2023). To create a receiver function
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signal, we first rotate a recording of a teleseismic earth-
quake into the ZRT (Vertical-Radial-Transverse) coordi-
nate system, and then deconvolve the vertical compo-
nent from the radial or transverse. Deconvolution can
be performed in the time or frequency domains. Some
established techniques include iterative time-domain
deconvolution (Kikuchi and Kanamori, 1982; Ligorría
and Ammon, 1999) as well as frequency-domain multi-
taper (Park andLevin, 2000), andwater-level deconvolu-
tion (Ammon, 1992). Receiver functions are strongly af-
fected by noise on either of the components, which can
be amplified by the deconvolution process. Deconvolu-
tion has the potential to amplify noise in a frequency-
-dependent manner, complicating the precise interpre-
tation of converted waves. Quality control in P-wave
receiver functions is essential for ensuring the accu-
racy and reliability of seismic imaging and interpre-
tation. This quality control, distinguishing acceptable
data from unacceptable data, is a time-consuming and
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Figure 1 Illustrating the distribution of seismograph stations used in this study, overlaid on major tectonic boundaries
(adapted fromWhitmeyerandKarlstrom,2007). Black triangles indicate stationsbelonging to theX5network, our testdataset
for model development. Yellow triangles represent additional test stations located throughout Canada and in Turkey.

tricky process, especially in larger studies. Since re-
ceiver functions require visible Ps conversions to be
useful, they require careful examination of what are of-
ten weak arrivals in the P coda. Recognizing these chal-
lenges, automated RF quality control (QC) procedures
become invaluable tools. Comprehensive analyses ne-
cessitate careful examination of each individual radial
trace, which can be time-consuming for large datasets.
Automated RF QC not only saves considerable human
effort but also facilitates the efficient analysis of larger
datasets, thereby enhancing the reliability and robust-
ness of the findings (Hopper et al., 2017). To date, var-
ious semi-automated and automated receiver function
quality control methods have been introduced, offering
significant time savings in receiver function analysis.
Crotwell and Owens (2005) introduced the EarthScope
Automated Receiver Survey (EARS), a freely available
Java-based package. In contrast to EARSwhich relies on
phase similarities, Yang et al. (2016) introduced a semi-
automatedmethod. Thismethod is based on three cate-
gories of metrics: (1) deconvolution attributes, (2) char-
acteristics of individual receiver functions and (3) sta-
tistical attributes of station gathers.
In addition to classical approaches, automated qual-

ity control can be done using AI-based (Artificial Intel-

ligence) methods. With the expanding applications of
machine learning (ML) and its ability to identify pat-
terns better than humans in some cases (Gong et al.,
2022), the potential of ML-based models for quality
control is increasingly recognized. Machine learning
based approaches, supervised and unsupervised, have
demonstrated their capabilities to closelymimic human
behavior. In the field of seismology, these approaches
have shown comparable or even superior performance
to humans in extracting information from seismic data.
Two tasks that have received significant attention are
data denoising and phase detection (Zhu and Beroza,
2019; Mousavi et al., 2019; Adler et al., 2021). For re-
ceiver function quality control, both supervised (Gong
et al., 2022) and unsupervised (Krueger et al., 2021) ma-
chine learning approaches have been used. Gong et al.
(2022) created four deep learning architectures to au-
tomate the quality control of receiver functions. They
concluded that a model combining CNN (Convultional
Neural Network) and LSTM (Long Short TermMemory)
layers demonstrated the highest performance. How-
ever, while their model excelled in the areas used for
training (three distinct tectonic settings in China), it
may not perform optimally in other regions and updat-
ing the weights via transfer learning (meaning adjust-
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Original Dataset:
12,860 waveforms

Test and Validation Set:
3,600 waveforms

Training Set:
9,258 waveforms

Training Dataset:
10,205 waveforms

Training Dataset:
11,152 waveforms

Training Dataset:
12,099 waveforms

Adding Shift
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Adding Noise
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Figure 2 a) Illustration of the dataset division into training and test sets, including the expansion of training data after aug-
mentation. b) Distribution of data labeled as acceptable and unacceptable in both the training and test sets.

ing the model based on new dataset) would need to be
considered for usage in other area and tectonic settings.
In this study we focus on Archean and Paleoproterozoic
regions of northern Canada. We tested the model of
Gong et al. (2022) to quality control RFs but found this
method to be insufficient. Consequently, there arose
a need to either update their model’s weights through
transfer learning on our dataset or to develop a new
model that outperforms it. We developed a new model
inspired by U-net (Ronneberger et al., 2015) aiming for
a simple yet capable model suitable for handling large
datasets. In the following sections, we will first provide
a brief overview of our data collection procedure and
data preparation. Subsequently, we will elaborate on
the methodologies employed in this study. In the “Ex-
perimental Setup” section, we will detail the model pa-
rameters and the process of fine tuning those param-
eters. Following that, we will present the results and
evaluate them using a well-established technique in re-
ceiver function analysis. Additionally, we will investi-
gate the sensitivity of ourmodel to various hyperparam-
eters, training data and choice of optimizer. We will
then discuss the findings and compare the performance
of our model with that of Gong et al. (2022). Finally, we
will conclude by summarizing the results and providing
comparisons.

2 Data Collection and Preparation

The dataset used in this study comprises seismic events
recorded by stations located within the latitude range
of 49.8° to 80°N and longitude range of 105° to 75°W,
situated amidst the Rae and Hearne tectonic provinces
to the northwest, and the Superior craton to the south-
east, all of which are Archean in age. Between these
cratons lies the Proterozoic Trans-Hudson Orogen, a re-
gion of considerable tectonic interest (Whitmeyer and
Karlstrom, 2007, Figure 2). A substantial number of the
deployed instruments were originally deployed to in-
vestigate the tectonics of the Trans-Hudson as part of
the HuBLE experiment (Bastow et al., 2011). The study
area contains several smaller-scale structural features
of interest, prominent among which are theWager Bay
and Chesterfield faults (Snyder et al., 2015). Events with
magnitudes ranging from 5.5 to 9 were examined, lim-
ited to seismic events occurring within 30° to 90° from
the center of the study area, a range in which teleseis-
mic P-waves are not triplicated and arrive well sepa-
rated from other arrivals. The temporal scope of the
dataset spans from January 1, 1990, to November 1,
2023. Stations involved in this study are shown in Fig-
ure 1.
To assemble this comprehensive dataset, seismic data

were sourced from two primary repositories: the IRIS
(Incorporated Research Institutions in Seismology) and
FDSN (Federation of Digital Seismograph Networks)
(Scripps Institution of Oceanography, 1986) web server
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and the servermaintainedbyNatural ResourcesCanada
(1975). The creation of our database was followed by
a phase in which we converted raw seismic data into
receiver function signals. We began by reorienting
the waveforms from the ZNE (Vertical, North, East) to
the ZRT (Vertical, Radial, Transverse) coordinate sys-
tem. After reorientation, we constrained the signal’s
frequency spectrum to between 0.05 and 0.5 Hz using
a bandpass filter. Then, to eliminate the source charac-
teristics from the radial and transverse components, we
applied water-level deconvolution (Ammon, 1992) with
a water-level parameter set to 10−2. While frequency
domain techniques are more susceptible to sidelobe
residuals at the base of RF peaks due to numerical arti-
facts from the Fast Fourier Transform (FFT; Kind et al.,
2020), the decision wasmade to proceed with this faster
and simpler approach. The steps explained above have
been performed using a code written in Python which
incorporates classes and functions from RfPy (Audet,
2020). The use of water-level deconvolution is common
practice as it introduces a minimum value for the bot-
tom terms in the spectral division within the frequency
domain, thus ensuring the stability of thedeconvolution
process (Wilson and Aster, 2005). Within this study’s
context, the transverse component is not examined fur-
ther. However, in future work on this dataset, atten-
tion will be directed towards analysis of these trans-
verse components, which can provide information on
crustal anisotropy. We successfully performed decon-
volution on 12,860 waveforms (Figure 2). These wave-
forms were subsequently divided into two distinct cat-
egories: the training dataset, which comprised 9,258
waveforms, and the validation and test dataset, con-
sisting of 3,600 waveforms (Figure 2). The validation
and test dataset notably included the X5 network, which
comprises stations SHWN, CRLN, CTSN, DORN,MANN,
MARN,NOTN, andSHMN.Usingdata augmentation,we
artificially increase the size and diversity of the dataset.
To augment the dataset, three commonly employed and
effective techniques were utilized: introducing “new”
data by adding noise to the original dataset, as well
as shifting and scaling the dataset (Figure 2a). Retain-
ing the original data alongside the dataset augmented
with added noise doubles the size of our dataset. This
approach, as demonstrated by Chang et al. (2022) has
been shown to improve the performance of deep learn-
ing models. To do this, white noise with a peak ampli-
tude of 10−2 was added to the entire dataset, thereby
doubling the quantity of waveform data available for
analysis. After normalizing each waveform by its max-
imum, the magnitudes of the waveforms ranging be-
tween –1 and 1. Introducing noisewith amaximumam-
plitude of 10−2 corresponds to 1% of themaximum am-
plitude of the waveforms. In addition to noise augmen-
tation, two additional augmentation techniques were
selectively applied to datasets categorized as acceptable
data, as the volume of data deemed low quality was suf-
ficient. One of these techniques is temporal shifting,
termed rolling, where waveform data were translated
temporally within a range of -5 to +5 seconds, wrapping
around any overlap (Shorten and Khoshgoftaar, 2019).
The second technique, scaling, involved adjusting the

waveform amplitude by a scaling factor ranging from
0.9 to 1.1, which equates to an amplitude variation of -
10% to +10% (Iwana andUchida, 2021). Each augmenta-
tion technique was applied to the dataset labeled as ac-
ceptable, with each technique adding 958 traces to the
dataset, for a total of 12,134 traces collectively in the
training set.

3 Methodology
DeepRFQC, our model, is built upon a U-Net (Ron-
neberger et al., 2015) inspired architecture with
1,508,449 trainable parameters, for a volume of 13.2
MB. While these parameters/weights may not hold sig-
nificant meaning individually, they effectively perform
their intended function when appropriately positioned
within the network. The network comprises two main
components: a U-Net-inspired section and a set of fully
connected layers (Figure 3). In the U-Net-inspired seg-
ment, the architecture follows an encoding-decoding
structure with skip connections (Ronneberger et al.,
2015). The encoding phase captures hierarchical
features, while the decoding phase reconstructs the
output. Skip connections facilitate direct connec-
tions between corresponding layers in the encoding
and decoding phases, promoting the preservation
of positional information (position of features in the
signal), and aiding in the efficient learning of intricate
patterns (Ronneberger et al., 2015). The inclusion of
fully-connected layers can further enhance the model’s
ability to learn complex feature hierarchies, combining
high-level semantic information with detailed spatial
features. This architecture allows DeepRFQC to effec-
tively extract and analyze complex features in P-wave
receiver function data, contributing to its accuracy and
robustness. In the initial step of training, we input
our data into the model through a 1D convolutional
layer with 32 filters, a stride of one, and a kernel size
optimized through testing different values. In the
encoding branch, the number of filters doubles after
each max-pooling layer, while in the decoding phase, it
is halved after each upsampling layer.
In the process of optimizing our network, we had to

work within practical resource constraints. As such, we
were unable to train the network exhaustively across
countless hyperparameter configurations. Instead, we
conducted a broad search over various network hyper-
parameters to identify themost promising candidate for
further refinement. This involved making incremental
adjustments to the selected candidate, iteratively bring-
ing it closer to our desired model with the expected ac-
curacy level. During this step, we employed a meticu-
lous approach, referred to as ”Panda” (Basha and Ra-
jput, 2019), which allowed us to closely monitor the
network’s performance and identify the configuration
most suitable for our objectives. Following the estab-
lishment of the network, preprocessing steps were un-
dertaken to prepare the dataset for consumption by the
network. After the creation of RF signals, the next pre-
processing step involved manual labeling. For this la-
beling process, we developed a Python program to ex-
amine the radial receiver function obtained for each
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Figure 3 Illustration of the architectural configuration of DeepRFQC, encompassing a total of 27 layers, which incorporate
Convolutional, Max-Pooling, Up-sampling, and fully connected layers. Above, ”Conv” denotes 1-D convolution in the layers,
with the adjacent number indicating the number of filters. ”Maxpooling(2)” signifies amaxpooling (a type of down sampling)
layer with a factor of 2, and similarly upsampling is performed by a factor of 2. ”Concat” layers indicate the concatenation of
their lower layers with the output of data from the Encoding branch. The role of ”Flatten” is to convert the previous layer into
1-D form, and since the outputs are already 1-D, it doesn’t affect them, although it can be utilized if considering 2-D data such
as STFT results. ”Dense” layers represent hidden layers, and the accompanying numbers indicate the number of neurons.

event-station pair and determinewhether it met the cri-
teria for suitability in receiver function analysis. Fig-
ure 4 shows examples of seismic receiver function sig-
nals labeled as 0 (unacceptable) and 1 (acceptable). Un-
acceptable signals often have indistinct initial P-wave
arrivals and high noise levels surpassing anticipated
phases. Conversely, acceptable signals have clear P-
wave arrivals and minimal noise before this phase. Ini-
tial waveform assessment focused on the segment pre-
ceding the P arrival. If characterized by noise and high
amplitudes, it was promptly labeled as unacceptable (0).
If the pre-P phase had lower noise levels, subsequent
phases were manually inspected for distinctive Ps con-
versions. Our code facilitated this by highlighting seg-
ments for ease of identification, and records showing
clear recognition of these phases were labeled as ac-
ceptable (1) for subsequent analysis.
After preparing the dataset and inputting it intoDeep-

RFQC, we evaluated the network using the X5 seismic
network. The network X5 was used as both test and val-
idation set. Utilizing a Python code implemented with
TensorFlow, we predict the labels for event-station pairs
within the X5 dataset. To address concerns about label-
ing quality, we validate our results using the H-κ stack-

ing method. The H-κ method, introduced by Zhu and
Kanamori (2000), is a seismic analysis technique that
aims to determine the Moho depth (the crust-mantle
boundary) and the Vp/Vs ratio (the ratio of compres-
sional wave velocity to shear wave velocity) by stacking
RFenergy at the expected arrival times of theMoho con-
version and its associated multiples.

4 Experimental Setup
In the first phase of our model training, we established
key parameters to govern the process. Each waveform
in our dataset was set to a size of 424 samples (equiva-
lent to 84.8 seconds, 42.4 seconds before and after the
P-arrival estimated by TauPy (The ObsPy Development
Team, 2022), providing a standardized basis for sub-
sequent analyses (the time length follows Audet, 2020;
Audet et al., 2020). To enhance the dataset and intro-
duce variability, we employed data augmentation by
generating noise with magnitudes ranging from 0 to
10−2, rolling between -5 to +5 sec and scaling by -10
to 10%. Through experimentation with convolutional
neural network (CNN) architecture, we explored kernel
sizes (the dimensions of the filter used for sliding over
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Unacceptable (Label 0) Acceptable (Label 1)

Figure 4 Samples of acceptable and unacceptable waveforms labelled for feeding the deep neural network model. On
the acceptable side, we see a lower noise level before the P-wave arrival (the phase exactly located at the center) and some
obvious phases after it.

input data, determining the region it considers for fea-
ture extraction) of 3, 5, 7 and 9 and 11 samples. Fol-
lowing a thorough assessment, a kernel size of 5 was
chosen due to its superior accuracy. The optimal batch
size for effective training was determined to be 256,
facilitating efficient processing of data batches. It is
worth noting that batch sizes of 64, 128, 256, 512, and
1024were experimentedwithduring the evaluationpro-
cess. We conducted an evaluation of four learning rate
and learning decay pairings, denoted as (learning rate,
learning decay). The configurations tested were (10−6,
10−8), (10−5, 10−7), (10−4, 10−6), (10−3, 10−5), and
(10−2, 10−4). The pairing that yielded the best results
was (10−4, 10−6). Another important hyperparameter
is initialization methods, that is, the first assumptions
of weights in the network. We tried several different op-
tions, including starting with all zeros, all ones, random
numbers, and specific initialization schemes calledGlo-
rot uniform (Glorot and Bengio, 2010), He normal, and
He uniform (He et al., 2015). After evaluating the results
of the first training stage, we decided to use He uniform
initialization for the rest of the training. Using the opti-
mumvalues selected in the previous part, themodel un-
derwent extensive training over 200 epochs, allowing it
to progressively learn and adapt. To prevent overfitting,
an early stopping mechanism based on validation ac-
curacy was implemented. This mechanism, with a pa-
tience of 20 epochs and a minimum expected improve-
ment of 10−3, ensured that the model ceased training

when further improvements were marginal. Our over-
arching validation accuracy criterion aimed for a target
of 96%. This value was found after a trial-and-error pro-
cedure, as lower values canbe easily observed, while for
higher values, the model diverges or ceases improving
before reaching the target.

5 Results

Upon initiating the network training with the speci-
fied parameters outlined in the preceding sections, our
model achieved a validation accuracy of 96.6%. Both
training and validation accuracy converged to the same
value of 97%, indicating the absence of overfitting. Af-
ter applying DeepRFQC to the X5 network’s receiver
function data (the whole test set; while in the training
part, validation accuracy is determined from a part of
the test set according to the batch size), we achieved
noteworthy results with an accuracy exceeding 93%.
When comparing these outcomeswith those fromGong
et al. (2022) on earthquakes recorded at Chinese seis-
mic stations, our results demonstrate comparable per-
formance. Regarding our findings, it is important to
note that the slightly lower prediction accuracy, in con-
trast to the validation accuracy, can be attributed to two
factors: firstly, a smaller size was selected for the val-
idation set (because of batch processing) compared to
the test set, and secondly, the samples from the valida-
tion set were chosen randomly, and the distribution of
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Figure 5 Comparison of Moho depth from H-k stacking with different sources of RF: manual, DeepRFQC, and from Thomp-
son et al. (2010). For station MARN, no depth was reported by Thompson et al. (2010)

these chosen samples can influence the accuracy of the
model. Conversely, in the prediction phase, the entire
test set is utilized. Table 1 reveals that out of 1,778 wave-
forms, the model incorrectly predicted 123 instances
and correctly predicted 1,655 instances.

Measure Test set Training set
True Positive 334 –
True Negative 1321 –
False Positive 99 –
False Negative 24 –
Accuracy 0.931 0.975
Precision 0.771 –
Recall 0.933 –
F1-score 0.845 0.934

Table 1 Performance Metrics for Test and Training Sets

In Table 1, we provide other statistical measures like
precision, recall and F1-score (Sokolova et al., 2006) as
our data set was unbalanced and needed to be consid-
ered carefully for this imperfection. This F1-score was
introduced as it is a more reliable measure to judge the
outcome of the network given the imbalance in the data
set. Equations 1 to 3 showhowwe calculated thesemea-
sures:

(1)Precision = TP

TP + FP

(2)Recall = TP

TP + FN

(3)F1 − score = 2 × TP

2 × TP + FP + FN

The equations above use TP, FP, TN, and FN to denote
thenumberof truepositive, false positive, truenegative,
and false negative predictions, respectively.

5.1 H-κ stacking test
Testing the reliability of the trained model involves not
only analyzing statistical results but also conducting a

real-world application using the obtained data. The out-
put of the network was employed as input data for H-
κ stacking, a method introduced by Zhu and Kanamori
(2000) to measure bulk crustal properties from receiver
functions. In this method, a search is conducted across
a range of Moho depths (H) and Vp/Vs ratios (κ; specif-
ically, 20 km < H < 50 km and 1.5 < κ < 2.1 in this im-
plementation) for each waveform. For every H-κ pair,
the projected travel times are computed for the major
Moho-interacting phases (Ps, Pps, andPss) using the ray
parameter of each trace. The amplitudes of the traces
at the projected times are then combined to form the
H-κ stacked value at that particular point. Executing
this procedure for all conceivable values in the H-κ grid
produces the final stack, showcasing a peak when ar-
rivals are optimally aligned. To improve the stacking
process, we employed phase-weighted stacking follow-
ing the guidelines of Schimmel and Paulssen (1997). Ad-
ditionally, a P-wave velocity of 6.0 km/swas assumed for
stacking purposes. The results for each phase are sub-
sequently stacked using weights whichmay be adjusted
at each station (for example, atMANN the Pss phasewas
poor, and its weight was set to zero). Figure 5 shows the
Moho depths extracted from H-κ stacking through dif-
ferent sets of RFs includingmanual quality control from
this study, automated quality control from this study,
and published depths from Thompson et al. (2010). A
detailed comparison is available in Table S1, present-
ing the values for H, κ, H-error, κ-error, and the num-
ber ofwaveforms utilized for stacking at each individual
station. As can clearly be seen, manual and automated
analyses return essentially the samevalues but there is a
systematic difference between manual-automated pair
and Thompson et al. (2010) that could be attributed to a
different crustalVp assumption (6.5 km/s for Thompson
et al., 2010).

Figures 6 and 7 illustrate the results of H-κ stacking
conducted at the MANN and NOTN stations, with ad-
ditional data provided in the supplementary materials
(Figures S1 to S6). It is worth noting the similarity be-
tween the results obtained frommanual quality control
and those from analyzing with DeepRFQC. While the
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Figure 6 Results of the analysis for station MANN, a, and c) back-azimuth section plots for manual and automated QC by
DeepRFQC, respectively, b and d) H-κ stacking for manual and automated QC by DeepRFQC, respectively.

automatic quality control method performs outstand-
ingly, it will not outperform manual quality control, as
it is trained on a human-labeled dataset. The automatic
method builds upon and relies on the manual quality
control process. As evident in Figures 6 and 7 (a, c), the
Ps phase is discernible at around 4 seconds for both sta-
tions shown. A consistent pattern is observed across the
other six stations, as illustrated in the supplementary
material.
Additionally, station MANN exhibits a subtle precur-

sor phase before Ps, evident in the traces from the au-
tomated quality control results. A similar observation

holds for station NOTN, where a minor phase preced-
ing Ps is identifiable in the manual QC results, partic-
ularly at back azimuths of 70° and 150°. Interestingly,
this phase is clearly discernible in automated QC data
at a back azimuth of 150°. Regarding reverberations,
thePpsphase is clearly discernible around14 seconds at
stations MANN and NOTN. However, for back azimuths
of 170° and 190° at station MANN, the trend in back az-
imuth is lost in both manual and automated QC results.
Interestingly, the variationwithback azimuth at this sta-
tion follows a pattern resembling two periods of a sinu-
soid function, consistent across both manual and auto-

8 SEISMICA | volume 3.2 | 2024



SEISMICA | RESEARCH ARTICLE | DeepRFQC: automating quality control for P-wave receiver function analysis using a U-net inspired network

Figure 7 Results of the analysis for station NOTN, a, and c) back-azimuth section plots for manual and automated QC by
DeepRFQC, respectively, b and d) H-κ stacking for manual and automated QC by DeepRFQC, respectively.

mated QC results, that is an indicator of anisotropy be-
neath the station. A similar consistent trend in the ar-
rival of Pps is observable at station NOTN.

5.2 Investigating data and hyperparameter
influence

In this section, we analyze the model’s sensitivity to
training set, data augmentation and hyperparameters.
To assess sensitivity to the training set, we removed
each seismic network and retrained the whole process
using optimal hyperparameters. This allowed us to ob-

serve how the model performance would be affected.
Taking F1-score as the performance metric, we found
that the F1-score is the highest for PO (77%) and low-
est for 1E (0.81%). This is as expected, as 1E has the
least amount of data, resulting in a minimal impact
on the training set (Table 2). The impact of data aug-
mentation methods becomes evident when examining
model performance. When shift and noise augmenta-
tions are removed, performance noticeably drops (Ta-
ble 2). Removing scaling augmentation, on the other
hand, does not significantly reduce performance. How-
ever, it does lead to an increase in overfitting, as evi-
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Object Training Loss Training Accuracy Training F1-score Validation Loss Validation Accuracy Validation F1-score
Removing network to see the sensitivity of themodel to each network

PO 0.0175 0.9803 0.9527 0.0404 0.9448 0.7753
CN 0.0262 0.9649 0.9077 0.0297 0.9585 0.8000
1E 0.0243 0.9692 0.9186 0.0296 0.9593 0.8130

Removing each data augmentationmethod
Shift 0.1174 0.8789 0.6901 0.1103 0.8897 0.6701
Scaling 0.0191 0.9750 0.9153 0.0290 0.9622 0.8381
Noise 0.1383 0.8465 0.7300 0.0352 0.9514 0.7977

Testing different Hyperparameters
Kernel Size: 3 0.0364 0.9524 0.8738 0.0263 0.9647 0.8394
Kernel Size: 5 0.0184 0.9775 0.9408 0.0261 0.9667 0.8529
Kernel Size: 7 0.0145 0.9823 0.9533 0.0294 0.9625 0.8327
Kernel Size: 9 0.0392 0.9461 0.8573 0.0295 0.9572 0.8226
Kernel Size: 11 0.1875 0.8125 0.0000 0.1113 0.8897 0.0000
LR, decay: 10−6, 10−8 0.0655 0.9148 0.7738 0.0359 0.9536 0.7976
LR, decay: 10−5, 10−7 0.0619 0.9301 0.8240 0.0357 0.9578 0.8216
LR, decay: 10−4, 10−6 0.0269 0.9665 0.9119 0.0316 0.9650 0.8463
LR, decay: 10−3, 10−5 0.1875 0.8125 0.0000 0.1103 0.8897 0.0000
LR, decay: 10−2, 10−4 0.1875 0.8125 0.0000 0.1103 0.8897 0.0000
Batch Size: 64 0.0241 0.9677 0.9149 0.0273 0.9642 0.8390
Batch Size: 128 0.1875 0.8125 0.0000 0.1103 0.8897 0.0000
Batch Size: 256 0.0377 0.9478 0.8626 0.0256 0.9661 0.8498
Batch Size: 512 0.0769 0.9014 0.7460 0.0347 0.9542 0.8061
Batch Size: 1024 0.0804 0.9134 0.7720 0.0411 0.9567 0.8098

Testing different Initializers
Initializer: Zeros 0.2469 0.8125 0.0000 0.2454 0.8897 0.0000
Initializer: Ones 0.2469 0.8125 0.0000 0.2454 0.8897 0.0000
Initializer: Random Normal 0.1181 0.8151 0.0883 0.0461 0.9306 0.7950
Initializer: Glorot Uniform 0.0189 0.8151 0.0883 0.0461 0.9306 0.5629
Initializer: He Normal 0.0189 0.9755 0.9355 0.0268 0.9647 0.8418
Initializer: He Uniform 0.0268 0.9656 0.9092 0.0261 0.9653 0.8481

Testing the performance of different optimizers
Adagrad 0.2341 0.6084 0.4654 0.1398 0.8772 0.5424
Adadelta 0.1289 0.8403 0.4861 0.0989 0.9025 0.4311
Nadam 0.1875 0.8124 0.0000 0.1103 0.8897 0.0000
RMSProp 0.0258 0.9658 0.9099 0.0277 0.9642 0.8398
SGD 0.1769 0.7878 0.5733 0.1423 0.8753 0.5469
ADAM 0.0334 0.9556 0.8817 0.0261 0.9644 0.8428

Table 2 Performance metrics (Loss, Accuracy, and F1-score) on training and validation sets with varied hyperparameters
and data sensitivity tests.

denced by the significant difference between training
set F1-score (91%) and validation set F1-score (83%). To
evaluate the impact of hyperparameters, we tested var-
ious values while fixing the remaining parameters at
their previously identified optimal values. During the
evaluation, we recalculated the optimal values to con-
firm that they indeed resulted in superior performance,
which the results confirm. Our analysis of kernel sizes
reveals that kernels of size 3, 5, 7, and 9 achieve the
highest F1-scores on the validation set. Although F1-
-score is relatively comparable for all four sizes, the F1-
-score of the training set is higher for kernel sizes of 5
and 7, and we chose the size 5 since the difference be-
tween validation and training set was smaller and the
chance of overfitting is lower. It should be mentioned
that for kernel sizes of 9 and 11, the model training
performance dramatically diverges. We further investi-
gated the impact of the learning rate (LR) and its decay
(Decay) hyperparameter pair. To ensure training pro-

gressed beyond 100 iterations, we chose a decay rate
set at 1% of the learning rate. This strategy facilitated
a smoother decrease in the learning rate throughout
the iterations, preventing the model from overlooking
minima where it performed well (local minima). It can
easily be seen that the pairs of 10−5, 10−7 and 10−4,
10−6 are the best ones while the latter takes the lead
by almost two percentage points. Our analysis showed
that batch sizes of 64 and 256 achieved superior per-
formance compared to other tested values. While the
F1-score of validation set is close for both batch sizes,
we opted for 256. The decision was influenced by two
factors; first, the slight improvement in validation ac-
curacy and F1-score, and second, the potentially lower
risk of overfitting associated with a larger batch size.
The final hyperparameter investigated was the initial-
izer. We evaluated several built-in TensorFlow initial-
izers: zeros (initializes all weights to zero), ones (initial-
izes all weights to one), randomnormal, Glorot uniform
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Figure 8 Comparison of slowness section plots of Gong et al. (2022)’s model and DeepRFQC for three selected stations in
Canada with varying degrees of similarity to the training dataset; a and d) EDM, b and e) PGC and c and f) ULM.
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(Glorot and Bengio, 2010), He normal, and He uniform
(He et al., 2015). Upon analyzing the performance of
each initializer, it is evident that zeros and ones do not
function effectively in this context. Setting initializer to
random normal leads to diverging model performance.
Among the remaining three options, He normal and
Heuniformdemonstrate superior performancewithHe
uniform being the preferable choice due to its poten-
tial for preventing overfitting. In our optimizer testing
phase, we trained our model using multiple optimiz-
ers to assess their impact on model performance. We
tested six optimizers and found that RMSProp (Mukka-
mala and Hein, 2017) and Adam (Kingma and Ba, 2014)
outperformed the others, achieving F1-scores of 83.9%
and 84.2% respectively. Our analysis revealed that for
this specific task, the choice between Adam and RM-
SProp as optimizers does not yield a significant differ-
ence in performance.

6 Discussion
DeepRFQC, an automated quality control for P-wave re-
ceiver function data, addresses the labor-intensive na-
ture of trace examination in larger studies. Utilizing a
convolutional deep learning model inspired by U-Net,
automatedQCprocedures not only reduce humaneffort
but also enhance the efficiency of analyses for larger
datasets. TheU-Net architecture’s proficiency in captur-
ing intricate seismic data features proves crucial in ac-
curately discerning usable data from noise, optimizing
the overall quality assessment process. In contrast to
Gong et al. (2022)’s prior deep learningmodel, which ex-
plored four different architectures and identified convo-
lutional and long-short memory as the best, our model
exhibits a slight improvement in accuracy. The addi-
tional advantage of ourmodel for Canadian applications
lies in its foundation on data from Canadian seismic
stations, capturing the nuances of associated geological
structures. Significantly, our model is characterized by
a smaller volume (fewer weights), enhancing efficiency,
especially when handling larger datasets. Automating
the quality control process becomes particularly time-
saving whenmanaging a vast number of waveforms. In
theworst-case scenario, it can efficiently identify poten-
tial acceptable waveforms, serving as a preliminary fil-
ter for further analysis. Based on our dataset, it’s note-
worthy that around 90% of the collected data were la-
beled as noise (Figure 2). Consequently, employing au-
tomated algorithms can potentially save nine times the
effortwhen compared tomanually inspecting and label-
ing the entire dataset, as onewould only need to double-
-check the output of the network. Additional consider-
ations involve the incorporation of statistical measures
such as the F1-score and the assessment of factors like
True Positive and True Negative. To ensure a careful re-
liance on the results, we specifically isolated network
X5. For stations within this network, our algorithm has
more instances of retaining unacceptable (i.e. noisy)
waveforms in the final RF stacks (False Positive) than
omitting acceptable waveforms from the final RF (False
Negative). This indicates a relatively lower risk of losing
information waveforms. It is important to acknowledge

that our waveform labeling criteria were stringent, and
some waveformsmarked as unacceptable may perform
reasonably. Examining the outcomes of False Positives
(Figure 8), it becomes apparent that certain instances
may be deemed somewhat acceptable. The decision to
label them as unacceptable led to a reduction in the F1-
-score to 84% in the test set. Interestingly, in the train-
ing set, where the model encounters a smaller propor-
tion of suchwaveforms, it excels, achieving a higher F1-
-score. To validate assertions regarding False Positive
and F1-score, we conducted H-k stacking on the intact
results of both automated and manual QC, providing a
basis for result comparison. Figures 6 and 7 (b and d)
depict the H-κ stacking outcomes for manual and auto-
matedQC. Evidently, the results exhibit a high degree of
similarity, with nearly identical H values extracted for
all stations. While κ is not as robust as H, a slight vari-
ation is noticeable between manual and automated QC
for stations CTSN, SHWN, and SHMN, falling within the
acceptable error range. A systematic difference is ob-
served in the calculated values when comparing these
outcomes with a prior study conducted in the region
(Thompson et al., 2010). This difference can be primar-
ily attributed to dissimilarities in the assumedVp (veloc-
ity of P-wave), with 6.5 km/s in Thompson et al. (2010)
compared to 6.0 km/s in our study. Additionally, differ-
ences in processing methods, such as the utilization of
different deconvolution techniques, may contribute to
the observed differences.

6.1 Additional Test

Since our training and test sets were situated in ge-
ographically proximate regions with similar tectonic
characteristics, we decided to validate our results by
testing them on three stations located outside this area.
The first station, ULM in Manitoba, is situated on
Archean bedrock, while the second station, EDM in Ed-
monton, is locatedwithin theWesternCanada Sedimen-
tary Basin. The third station, PGC, is the farthest away,
located in the southernpart ofVancouver Island inprox-
imity to the Cascadia Subduction Zone. At each station,
we collected data spanning the past three years and sub-
jected it to automated quality control using DeepRFQC.
The results depicted in Figure 8, exhibit promising clar-
ity, revealing distinct phases. Upon examining Figure
8.a, station EDM, one can observe a delayed P pulse,
particularly for events farther from the stations (higher
slowness), consistent with what we generally expect
from a sedimentary basin. At station PGC, the Ps phase
stands out prominently, while other phases are less dis-
cernible, attributable to the area’s complex structure
(Figure 8.b) due to subducting Juan de Fuca and Gorda
plates along the entire Cascadia forearc (Bloch et al.,
2023). At station ULM, both the Ps and Pps phases
are clear, with the Pss phase becoming recognizable at
around 18 seconds for slowness values lower than 6.25
s/km (Figure 8.c). It is also obvious from comparative
plots that our model significantly outperformed Gong
et al. (2022)’s model at all three of these stations. One of
the reasons for this outperformance can be attributed
to using data augmentation which enriches the train-
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ing set with a good variety of waveforms. Data quan-
tity and diversity are most important factors of a suc-
cessful training process, which is why good augmenta-
tions can give rise to higher performance. Three addi-
tional tests were conducted to evaluate various decon-
volution techniques, assess the effectiveness of quality
controlling waveforms based solely on signal-to-noise
ratio (SNR), and investigate the global applicability of
DeepRFQC. For the deconvolution comparison, we ap-
plied bothwater-level andmultitaper techniques to data
recorded by the St. John’s seismic station (SJNN) (Fig-
ure S7). Obviously, the algorithm works for both tech-
niques while it is more efficient on water-level as it ex-
tracts more acceptable data. Figure S8 shows the re-
sults of using SNR for quality control on the same sta-
tion. We observed that results became acceptable at an
SNR threshold of 9, yielding 41 waveforms, while Deep-
RFQCretained49waveformswithmore realistic results.
Specifically, for waveforms around 50° back azimuth,
the SNR method shows Ps arrival before 5 seconds,
whereas DeepRFQC results indicate arrival slightly af-
ter 5 seconds. The latter is more realistic considering
the later arrivals in other back azimuth ranges. The
third test has been done on a 6-year data record from
station ANTO (Ankara, Turkey). We applied DeepRFQC
to RFs created using two different settings: a) bandpass
filtered between 0.05 and 0.5Hz and deconvolved by the
water-level approach, and b) bandpass filtered between
0.05 and 1.0 Hz and deconvolved by the multitaper ap-
proach. The results shows that DeepRFQC not only can
beused globally, but also canbeusedwith other settings
like different frequency ranges or deconvolution meth-
ods.

7 Conclusion
Our study introduces DeepRFQC, an automated qual-
ity control method inspired by the U-Net architecture,
demonstrating notable success in evaluating teleseis-
mic receiver function data. The method’s effective-
ness is evident through consistent and favorable results
observed from the H-κ stacking process across most
stations. This marks a significant stride in streamlin-
ing the workflow of teleseismic receiver function as-
sessment. The study’s findings present avenues for fu-
ture research, particularly the need to address outliers
and enhance the method’s robustness. The integration
of deep learning into automated quality control pro-
cesses for teleseismic receiver functions yields signifi-
cant benefits. It streamlines the most time-consuming
aspect of this type of data analysis, resulting in en-
hanced efficiency. Furthermore, our model demon-
strated superior performance compared to traditional,
non-machine learning automated quality control met-
rics such as signal-to-noise ratio (SNR). Lastly, it es-
tablishes a standardized quality control procedure, en-
suring a reliable means of preserving data integrity in
seismological studies. This research contributes to the
evolving landscape of automated quality control in seis-
mology, emphasizing the significance of refining meth-
ods for greater adaptability across diverse datasets. The
low-quality waveforms that are retained in RFs at some

stations using DeepRFQC emphasize the continuous
need for improvement and adaptation of automated
processes. Furthermore, it is imperative to note that
the model exhibits peak performance when applied to
datasets that have undergonewater-level deconvolution
and subsequent bandpass filteringwithin the frequency
range of 0.05 to 0.5 Hz.
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9 Open Research

Seismic data used here can be accessed from the Natu-
ral Resource Canada (natural-resources.canada.ca/) and
FDSNwebsites (www.fdsn.org/). Processing involved the
use of TensorFlow (Abadi et al., 2015), RFPy (Audet,
2020), Numpy (Harris et al., 2020), Pandas (The Pandas
development team, 2024), and Matplotlib. Additionally,
we utilized GMT (Wessel et al., 2019) and Draw.io for
their respective advantages to create plots and maps.
Our codes are accessible on GitHub (publicly available)
and Zenodo (Sabermahani and Frederiksen, 2023).
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