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Abstract Owing to its deployment and sensing characteristics, Distributed Acoustic Sensing (DAS) has
been touted as a promising technology for low-cost and low-latency Earthquake Early Warning (EEW). While
preliminary experiments conducted by several research groups have yielded encouraging results, it must be
acknowledged that these EEW feasibility studies were performed only on low-magnitude events. When ex-
posed to the wavefield of a largemagnitude earthquake (being the prime subject of EEW), the DAS strain rate
recordings are likely to become highly distorted (“saturated”) due to cycle skipping of the optical phasemea-
surements, to an extent that the recorded data start to degrade to uniform randomnoise. This clearly poses a
major challenge to EEW, as neither amplitude nor phase information can be readily extracted from saturated
DAS data. In this study, we perform a detailed analysis of the dynamic range of DAS, both from theoretical
and practical perspectives. We offer a set of criteria that need to be met for matching the DAS dynamic range
with EEW targets, and we propose a computationally convenientmethod to quantify the information content
of saturated recordings. We apply these methods to DAS data recorded offshore Chile, and identify several
avenues for future research to improve the feasibility of DAS for EEW.

Non-technical summary Distributed Acoustic Sensing (DAS) is a relatively new technology that
uses telecommunication (internet) cables to record vibrations in the ground. Because telecommunication
cables are robust and available in many places, DAS could potentially be used for rapid detection of large
earthquakes. Seismological institutes could use these data to send an alert for an imminent earthquake in
near-real time, a concept that is known as Earthquake Early Warning (EEW). Unfortunately, there are some
limitations of DAS thatmake it potentially unsuitable for EEW. Themain limitation is that under strong ground
shaking, the DAS measurements become unusable for the analysis of the earthquake. In this study we look
into this limitation in detail, and we propose several mitigation strategies that could potentially make DAS
more suitable for the analysis and EEW of large earthquakes.

Resumen La detección acústica distribuida (DAS) es una tecnología relativamente nueva que utiliza ca-
bles de telecomunicaciones (Internet) para registrar las vibraciones del suelo. Dado que los cables de teleco-
municaciones son robustos y están disponibles enmuchos lugares, los DAS podrían ser utilizados para detec-
tar rápidamente grandes terremotos. Los institutos sismológicos podrían utilizar estos datos para enviar una
alertade terremoto inminenteen tiempocasi real, un conceptoque se conoce comoAlertaTempranadeTerre-
moto (EEW). Desgraciadamente, el DAS tiene algunas limitaciones que lo hacen potencialmente inadecuado
para la EEW. La principal es que, en caso de fuertes movimientos de suelo, las mediciones del DAS resultan
inutilizables para el análisis del seísmo. En este estudio examinamos en detalle esta limitación y proponemos
varias estrategias de mitigación que podrían hacer que el DAS fuera más adecuado para el análisis y la EEW
de grandes terremotos.

1 Introduction
Earthquakes are among the most destructive of natural
hazards, having claimed an estimated 2.5 million fatal-
ities and over $900B in economic damages since 1900
(National Geophysical Data Center, 2023). Since short-
term earthquake forecasting remains infeasible to this
date, Earthquake Early Warning (EEW; Allen and Mel-
gar, 2019) can be considered society’s first line of de-
fence against seismic hazard. The concept of EEW is
based on the notion that telecommunication can trans-
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mit information faster than the speed of seismic wave
propagation. Seismic stations near the epicentre that
experience strong ground shaking can trigger an alert
that is transmitted to more distant localities, providing
up to several seconds of lead time before the arrival
of the seismic waves at those localities. During those
precious few seconds, individuals can try to seek cover
while various other mitigation measures can be (auto-
matically) taken, such as the slowing down of trains and
the initiation of emergency shutdown protocols of crit-
ical infrastructure. In order for EEW to be successful, a
dense network of seismic sensors close to the epicentre
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is required. Unfortunately, achieving sufficient proxim-
ity can be challenging, especially for subduction zone
settings that necessitate offshore sensor deployments to
maximise the lead time.
In recent years, Distributed Acoustic Sensing (DAS;

Hartog, 2017) has been considered as a potential solu-
tion for improving EEW coverage, particularly in sub-
duction settings (Zhan, 2020; Farghal et al., 2022; Lior
et al., 2023; Yin et al., 2023a). DAS is a fibre-optic sens-
ing technique that converts a fibre-optic (e.g., telecom)
cable into an array of equidistant vibration sensors by
means of optical interferometry. One major advan-
tage of DAS is that it can utilise existing telecom infras-
tructures (Lindsey et al., 2019; Sladen et al., 2019; Li
et al., 2023a), drastically reducing the cost of deploy-
ment and maintenance of DAS-based seismic arrays,
and granting access to environments that are inhos-
pitable to conventional instrumentation (like offshore
settings). However, even though some studies have al-
ready reported on the feasibility of DAS for earthquake
seismology (Lior et al., 2023; Yin et al., 2023a), it is still a
nascent technology of which the applicability and limi-
tations need to be evaluated.
One limitation that is particularly relevant for EEW, is

the response of the DAS instrument when subjected to
strong ground motions. Conventional broadband seis-
mometers exhibit a dynamic range and sensitivity that
allow for the detection of low-amplitude ground mo-
tions down to the ambient noise level, but they satu-
rate their measurements when the ground motions ex-
ceed a given range. Hence, EEW often relies on strong-
motion accelerometric sensors that have lower sensitiv-
ity, but that do not saturate when subjected to strong
motions. In principle, DAS exhibits a sensitivity that
can be similar to that of conventional broadband seis-
mometers (Lior et al., 2021), and it does not saturate its
measurements in the same manner as seismometers.
However, since DAS is an interferometric technique, it
does suffer from data corruption due to failure to track
the optical phase between consecutive laser pulses (also
known as cycle skipping). Hence, while DAS does not
saturate in the classical sense, it does exhibit data cor-
ruption when the optical fibre is exposed to sufficiently
large strain rates (see Fig. 1).
While it is clear that the limited dynamic range of

DAS poses a challenge for EEW applications, the issue
itself has received relatively little attention. Diaz-Meza
et al. (2023) reported on the observation of DAS “satura-
tion” during tap tests, and proposed a detection/recon-
struction algorithm that was able to recover from mild
saturation in a specially engineered fibre (see Fig. 1d
for an example that matches our definition of “mild”).
Kong et al. (2022) proposed a Deep-Learning based so-
lution for reliable phase unwrapping of single-channel
Φ-OTDR DAS data, likewise applied to a (synthetic) sce-
nario of mild saturation. Abukrat et al. (2023) remarked
that saturation of near-source channels prevents accu-
rate picking of seismic phases, and recommended the
use of short fibres (i.e., short sensing distances) that
permit the use of shorter gauge lengths (and corre-
spondingly a larger dynamic range) while maintaining
a reasonable data volume. A similar recommendation

was made by Viens et al. (2022), who were forced to ex-
clude the strongly-saturated measurements of a nearby
Mv 5.6 event from their analysis. However, reducing the
sensing range of DAS would limit its usefulness in EEW,
and should thus be avoided if possible.
The objective of the present study is to bring more

attention to the limited dynamic range of DAS and its
challenges for DAS-based EEW.We first conduct a theo-
retical analysis of the origin of DAS data saturation for
a monochromatic oscillator, from which a criterion for
the dynamic range emerges. We then extend this result
to the case of a broadband earthquake spectrum, and
test our model against the earthquake recordings gen-
erated by three 150-km long DAS cables that are located
offshore Chile. Finally, we derive a metric for the de-
gree of DAS data saturation that quantifies an upper sat-
uration limit beyondwhich the data have become statis-
tically indistinguishable from white noise. This metric
is subsequently applied to the data of the 2023 Mww 6.6
Huasco earthquake. We conclude with recommenda-
tions for EEW-specific deployments and for future tech-
nological developments.

2 Analysis of DAS dynamic range
2.1 Simulating a DASmeasurement
For a complete discussion of the dynamic range of DAS,
we begin with a simple theoretical analysis. In what fol-
lows, it is helpful to recall themain operations bywhich
a DAS interrogator converts a phase measurement into
a measure of (local) strain rate (for a more in-depth dis-
cussion, see e.g. Hartog (2017); Lindsey et al. (2020)):

1. First, the interrogator sends a pulse into the sens-
ing fibre and records the phase of the back-
scattered light as a function of time. This so-called
fast time axis can be converted into distance along
the fibre using the speed of light in glass.

2. The pulsation is then repeated to obtain a sub-
sequent phase measurement. The difference in
phase at a given cable position is proportional to
the length change of the fibre up to that position. In
otherwords, by taking the time derivative along the
timeaxis sampledby consecutivepulses (the “slow”
time axis), a measure is obtained for the stretching
rate of the fibre.

3. This stretching rate is a cumulative measurement
up to a given point, and so to obtain a local mea-
surement, the stretching rate is converted into
strain rate by taking the spatial derivative (corre-
sponding with the time derivative along the fast
time axis).

For a quantitative analysis, the above procedure needs
to bemademore precise, whichwill be the objective for
the remainder of this subsection.
Assuming an ideal instrument and perfectly linear re-

sponse, a phase measurement Φ(t, x) corresponding to
space-time lengthening d(t, x) of a fibre-optic cable is:

Φ(t, x) = 4πνξ

λ
d(t, x) (1)
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Figure 1 Experimental setting, and examples of DAS data saturation. (a) Overview of the ABYSS experiment, located along
the Central Chilean margin. The route of each of the three DAS cables (CCN.N, SER.S, and SER.N) are indicated in black. The
epicentre of the Mww 6.6 Huasco earthquake is marked by the orange star; (b) Time-series of the Huasco event recorded by
a poorly-coupled DAS channel, which are not saturated; (c) Time-series of the Huasco event recorded by a well-coupled DAS
channel. The data are strongly saturated, approaching the limit of uniform (white) noise; (d) Time-series of ocean gravity
waves (swell) recorded close to shore. The data are mildly saturated, and could potentially be recovered by unwrapping; (e)
Time-series of a vibrating segment, driven by ocean-bottom currents. Data saturation starts after 4 s. In panels (b)-(e), the
dynamic range is indicated by the dotted lines.

where ν denotes the refractive index of glass, ξ the
photo-elastic coefficient, and λ the wavelength of light.
Here, t corresponds to the slow time axis. To facili-
tate arithmetic operations, from here on, the measure-
ment is expressed in complex form: m = eΦ (with
2 ≡ −1). In this formulation, it is guaranteed that
Φ(t, x) = arg {m(t, x)} ∈ [−π, +π) (with arg {·} denot-
ing the complex argument), eliminating the burden of
explicitly considering the angle quadrant in the calcula-
tions. We will rely on this when we demonstrate a sim-
ple unwrapping algorithm (Appendix I).
The first processing step is to take the temporal

derivative of the discrete phasemeasurementΦ(tn, xk):

Φ̇(tn, xk) ≈ 1
∆t

[Φ(tn, xk)− Φ(tn−1, xk)]

= 1
∆t

arg {m(tn, xk)m∗(tn−1, xk)}
(2)

with t = [0, ∆t, . . . , N∆t]> and x = [0, ∆x, . . . , K∆x]>,
andm∗ denoting the complex conjugate ofm. As before,
we define ṁ = eΦ̇. To reduce the influence ofmeasure-
mentnoise, Φ̇(tn, xk) is typically averaged along the spa-
tial dimension with a sliding window of fixed size, but

this is not an essential component of the analysis. Fi-
nally, the spatial gradient is taken tomake themeasure-
ment local:

∇Φ̇(tn, xk) ≈ 1
L∆x

[
Φ̇(tn, xk)− Φ̇(tn, xk−L)

]
= 1

L∆x
arg {ṁ(tn, xk)ṁ∗(tn, xk−L)}

(3)

∆x represents the spatial discretisation interval, which,
depending on the specific interrogator model, may or
may not correspond with the gauge length as defined
by the optical pulse width. The integer L > 0 indicates
the number of spatial samples over which the spatial
gradient is computed, and effectively acts as an artifi-
cial gauge length. For the remainder of this work, we
set L = 1. Correspondingly, the measurement of strain
rate is obtained as:

ε̇(tn, xk) = λ

4πνξ
∇Φ̇(tn, xk)

= λ

4πνξ

arg
{

mn,km∗
n−1,km∗

n,k−1mn−1,k−1

}
∆t∆x

(4)

with mn,k = m(tn, xk) for compactness of the notation.
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2.2 The dynamic range of a monochromatic
oscillator

Next, we derive expressions for the dynamic range of
the measurement using a simple monochromatic oscil-
lator as an example. Consider the following space-time
dependence of the cable length d(t, x):

d(t, x) = A cos
(

2πf
[
t + x

c

])
(5)

with amplitude A, wave frequency f , and apparent
phase velocity c. The exact expressions of the phase rate
and its spatial gradient are:

φ̇(t, x) = −2πAf
4πνξ

λ
sin
(

2πf
[
t + x

c

])
(6a)

∇φ̇(t, x) = −4π2f2A

c

4πνξ

λ
cos
(

2πf
[
t + x

c

])
(6b)

The optical phase that defines the primary measure-
ment of DAS is limited between −π to +π, and conse-
quently the difference between two consecutive phase
measurements cannot exceed π. Hence, saturation of
theDASdata can occurwhen |Φ(tn, xk)− Φ(tn−1, xk)| >
π. In the case of amonochromatic oscillator, this occurs
when:

|Φ(tn, xk)− Φ(tn−1, xk)| ≈
∣∣φ̇(tn, xk)

∣∣∆t

= 2πAf
4πνξ

λ

∣∣∣sin(2πf
[
t + x

c

])∣∣∣∆t > π

⇔ A >
1

2πf

λ

4πνξ

π

∆t

1∣∣sin (2πf
[
t + x

c

])∣∣
(7)

Hence, the lower bound on the particle displacement
amplitude that causes saturation of the time derivative
is:

Acrit,t = 1
2πf

λ

4πνξ

π

∆t
(8)

However, as can be seen in Fig. 2e, saturation of the
temporal derivative does not necessarily lead to a satu-
ration of the finalmeasurement (strain rate). This is due
to the spatial derivative, which does not yet experience
similar saturation, and so even when the time deriva-
tive is saturated, its spatial derivative is not; in other
words, the phase difference between ṁn,k and ṁn,k−1
(in Eq. (3)) does not necessarily exceed π, even if the
phase difference between mn,k and mn−1,k (in Eq. (2))
does. Continuing the same strategy adopted above, the
saturation criterion for themonochromatic oscillator is
given by:∣∣Φ̇(tn, xk)− Φ̇(tn, xk−1)

∣∣∆t ≈
∣∣∇φ̇(tn, xk)

∣∣∆x∆t

= 4π2f2A

c

4πνξ

λ

∣∣∣cos
(

2πf
[
t + x

c

])∣∣∣∆x∆t > π

⇔ A >
c

4π2f2
λ

4πνξ

π

∆x∆t

1∣∣cos
(
2πf

[
t + x

c

])∣∣
(9)

and:

Acrit,ε̇ = c

4π2f2︸ ︷︷ ︸
wavefield

λ

4πνξ︸ ︷︷ ︸
fibre

π

∆x∆t︸ ︷︷ ︸
instrument

= c

2πf∆x
Acrit,t (10)

In the above equations, the contributions of the wave-
field (conversion from particle motion to strain), the

fibre (optical characteristics), and the instrument (in-
terrogation settings) have been made explicit. Note
that the first term labelled “wavefield” is specific to
our choice of a monochromatic oscillator, but it can
likewise be obtained through the well-known relation-
ship between particle acceleration a and strain rate ε̇,
a = cε̇ (Daley et al., 2016). In the spectral domain, the
double integration that converts acceleration into dis-
placement would correspond withmultiplication of the
strain rate spectrum with

(
4π2f2)−1, and so one would

again obtain c/4π2f2 as the conversion factor between
peak ground displacement (A) and strain rate, where f
would correspondwith the characteristic frequency of a
narrowband seismic source. However, the narrowband
assumption is too restrictive for most seismic sources,
and so the above criterion cannot directly be applied
to earthquake data. Hence, we need to consider finite-
source effects to obtain a criterion that is relevant in
practice.

2.3 The dynamic range of a broadband signal
A conventional representation of an earthquake ampli-
tude spectrum is given by the Brune spectrum, which,
when accounting for frequency-dependent attenuation,
reads (Brune, 1970; Anderson and Hough, 1984):

Ω(f) = (2πf)2 Ω0

1 +
[

f
fc

]2 exp (−παf) (11)

where Ω denotes the acceleration spectrum (which is
proportional to the strain rate spectrum)with reference
spectrum Ω0, fc is the corner frequency, and α is an at-
tenuation parameter. The reference spectrum and cor-
ner frequency are related to the seismic moment M0 as
(Madariaga, 1976; Shearer, 2011):

Ω0 = M0Θ
4πρc3

sR
(12a)

fc = kcs

(
16
7

∆τ

M0

)1/3
(12b)

In these expressions, ρ denotes the mass density, cs the
shear wave speed, R the hypocentral distance, k a ge-
ometric constant, and ∆τ the mean stress drop across
a circular crack. The parameter Θ comprises various
contributions from the radiation pattern and free sur-
face effects, including the broadside sensitivity (Martin
et al., 2021) and cable-ground coupling in the case of
DAS.
While the Brune acceleration spectrum gives an indi-

cation of which frequencies may exceed the saturation
threshold, one must keep in mind that it is not the sat-
uration of individual frequencies that is observed. In
the time domain, it is the superposition of the contribu-
tions of each frequency that may ultimately exceed the
dynamic range, and hence Ω(f) cannot be compared
with Acrit directly. A statistically robust alternative that
translates the Brune spectrum into an equivalent time-
domain signal amplitude is the root-mean squared ac-
celeration aRMS. Through the application of Parseval’s
theorem and subsequent simplification, Lior and Ziv
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Figure 2 Comparison between the optical phase induced by a monochromatic oscillator (orange line), and as measured
by a theoretical DAS instrument (black line). The left column includes the phase (Φ), phase rate (Φ̇), and the gradient of the
phase rate (∇Φ̇) for an oscillation amplitude of A = 1.5Acrit,t < Acrit,x. The right column includes the same quantities for
A = 1.5Acrit,x. Note that saturation of the final measurement (proportional to strain rate) only becomes saturated when A
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(2018) obtained the following approximation of aRMS for
the attenunated Brune spectrum:

aRMS = (2πfc)2 Ω0
√

παT
(

1 +
[ 2

3
] 1

4 παfc

)2 (13)

Here, T denotes the duration of the time-domain sig-
nal for which aRMS is obtained. Using this expression,
the (attenuated) spectral characteristics of the seismic
source are translated into an equivalent signal ampli-
tude aRMS that can be substituted into Eq. (10).
The next step is to compare aRMS with the phase sat-

uration criterion. Note that Eq. (10) is defined in terms
of particle displacement, whereas aRMS is a measure of
acceleration. Hence, the “wavefield” term can be re-
placedwith the apparent phase velocity c (since a = cε̇);
the same result is obtained byfirst differentiating Eq. (5)
twicewith respect to time and repeating the subsequent
steps. This gives acrit = cλ (4νξ∆x∆t)−1. We then set
the signal saturation threshold at acrit = 2aRMS, which
is equivalent to having 95 % of the signal contained
within the dynamic range (assuming a normal distribu-
tion of amplitudes), and express Ω0 and fc in terms of
M0 (Eq. (12)). The expression that follows is cubic in
M

− 1
3

0 , and so it permits an analytical solution of M0 in
terms of aRMS, R, etc., but the solution is too cumber-
some to be of practical use. Instead, we recognise that
Eq. (13) has two asymptotes around fc =

[ 3
2
] 1

4 (πα)−1,
each of which permits a simple analytical solution of

M0:

M0 =


[

acritR
√

παT
2(2πσ)2µ

]3
for fc �

[ 3
2
] 1

4 (πα)−1

α2
√

2
3 παT R

8µ acrit for fc �
[ 3

2
] 1

4 (πα)−1
(14)

with:

µ = Θ
4πρc3

s

σ = kcs

[
16
7 ∆τ

] 1
3

acrit = cλ

4νξ∆x∆t

(15)

The first asymptote represents the scaling of M0 for
large magnitude earthquakes (small fc), whereas the
second represents that of small magnitude earth-
quakes. See Supplementary Figure S1 for a visualisation
of these asymptotes as a function of Mw, taking the pa-
rameters from Table 1.
Finally, following the conventional scaling between

seismic moment M0 and moment magnitude Mw

(Hanks andKanamori, 1979), (14) can be used directly to
compute the moment magnitude above which the DAS
recordings become saturated:

Mw = 2
3 [log10 (M0)− 9.05] (16)

Up to this point, the attenuation parameter α has been
considered to be constant. However, conventionally
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this parameter comprises the distance that a seismic
ray has travelled through the attenuatingmedium in the
form α = 2R (cQ)−1, where c and Q are the average
phase speed and “quality factor” of themedium, respec-
tively, and where the ray path is approximated by the
hypocentral distance R.
To verify this relationship for the onset of DAS data

saturation, we analyse the DAS data recorded for 73
events taken from the public catalogue of the Centro Sis-
mológico Nacional (Universidad de Chile, 2012), ranging
in magnitude from 2.5 up to 6.6. For each DAS channel
we obtain the peak amplitude achieved within 30 s af-
ter the arrival of the first detectable phase arrival. To
avoid strong ocean swell from affecting the results, we
excluded the first 20 km of each cable. If the peak am-
plitude exceeds 90 % of the dynamic range, the given
DAS channel is assumed to have been affected by satura-
tion. Hence, this approach yields a binary classification
of the onset of saturation as a functionof cataloguemag-
nitude and hypocentral distance. Other metrics, like
those based on the total energy or the 90th-percentile,
give very similar results as taking the maximum ampli-
tude.
Aside from the parameters pertaining to the acqui-

sition and fibre, we take the remaining parameters in
Eq. (14) from Strumia et al. (2024) – see Table 1. A
reasonable fit between the model and the observations
(Fig. 3) is obtained when we assume an average coseis-
mic stress drop of ∆τ = 5 MPa, which is a bit higher
than what was inferred by Strumia et al. (2024). Then,
there are numerous factors comprised in the “effective”
radiation pattern Θ, such as the orientation of the fault,
the cable orientation, and the local velocity structure,
all ofwhichareunknown. Due to thebroadside sensitiv-
ity of DAS, certain phases could potentially be recorded
with almost zero amplitude, and therefore not trigger
saturation of the data. However, since the analysis pre-
sented here considers 73 earthquakes distributed over
a wide region, and three different cables with (some-
what) variable geometry and distance to each seismic
event, it is not physically realistic to assume a specific
seismic phase, radiation pattern, or cable orientation.
We therefore opt to consider a representative average
ofΘ. Following the theoretical analysis of Strumia et al.
(2024), the effective radiation pattern (including broad-
side sensitivity) averaged over the focal sphere and all
possible cable orientations, takes a value of 0.2586 for
the P-phase, and 0.2518 for the S-phase. Given the nu-
merous simplifications and approximations made so
far, we simply assume a value of Θ = 0.25 to represent
both phases.
A second justification for averaging the radiation pat-

tern comes from the notion that the wavefield recorded
by DAS is dominated by scattered phases. This is in part
due to the higher sensitivity of DAS to slower phases,
causing shallow scattered phases to be recorded with
higher amplitude, and in part due to the shallow sed-
imentary structure that is typical for marine environ-
ments, promoting scattering of incoming seismicwaves
(Trabattoni et al., 2024). By taking a time window of a
certain duration (e.g. 10 or 30 seconds), it is likely that
the recorded wavefield will comprise many scattered

Table 1 Selected parameters for Eq. (17) and Fig. 3

Quantity Symbol Value Units
App. wave speed c 400 m s−1

S-wave speed cs 2500 m s−1

Geometric factor k 0.26 -
Stress drop ∆τ 5 × 106 Pa
Radiation pattern Θ 0.25 -
Quality factor Q 800 -
Mass density ρ 2700 km−3

Optical wavelength λ 1550 × 10−9 m
Refractive index ν 1.44 -
Photo-elastic coeff. ξ 0.79 rad
Gauge length ∆x 30 m
Time sampling rate ∆t 16 × 10−3 s
Time window T 30 s

arrivals with a relatively slow apparent velocity. If the
scatterers are assumed to be isotropically distributed,
the effective Θ will again take a value that is an average
over many different orientations. Moreover, this would
constrain the apparent wave speed c to be representa-
tive for the shallow sedimentary structures underlying
the cable; here, we take a value of 400 m s−1.
Considering that not all events conform to repre-

sentative average parameters that are assumed for the
model, deviations from the predicted saturation thresh-
old are expected for individual events. What is particu-
larly clear from Fig. 3 is that the scaling of this thresh-
old is sensitive to the attenuation: by setting a fixed
α = 0.1 s, a distance scaling is obtained that does not
match the observations, underestimating the saturation
potential of proximal events and overestimating that of
distant events. By accounting for the length of the ray
path, a much more reasonable scaling is obtained. For
the attenuation parameters that describe the data well
with α = f(R), it is found that fc �

[ 3
2
] 1

4 (πα)−1 for all
events, and so only thefirst asymptote of Eq. (14) is prac-
tically relevant. The analysis of this section can thus be
summarised with the following expression:

Mw = 2 log10

(
acrit

√
T

2π

)
︸ ︷︷ ︸

acquisition

− 4 log10

(
k

[
16
7 ∆τ

] 1
3 √

Θ
)

︸ ︷︷ ︸
source

+ log10

(
ρ2cs

Q

)
︸ ︷︷ ︸
medium

+ 3 log10 (R)− 2
39.05

(17)

The scaling of this final expression is consistent with
the data in Fig. 3b, displaying a constant magnitude-
distance scaling consistent with this result (M0 ∝ R3).
One final observation is that for channels that are in

the proximity (< 50 km) of the hypocentre, saturation is
observed (andpredicted) to occur formagnitudes as low
as 3. This clearly presents a challenge to EEW efforts,
which are most effective when deployed in the vicinity
of the seismic source. However, Fig. 3 only considers
the onset of saturation, at which point the recordings
retain much of their original information content (i.e.,
the case of “mild” saturation as shown in Fig. 1d). In
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Figure 3 Observed and predicted DAS data saturation induced by 73 seismic events. Each DAS channel is classified as
“saturated” (orange) or “not saturated” (green) based on the recorded peak amplitude relative to its dynamic range. Eq. (14)
is plotted taking a fixed α = 0.1 s (dotted line) or as a function of hypocentral distance α = 2R (cQ)−1 (dashed line). The
transition to white noise as described in Section 3 is given by the solid black line. Panel (b) displays the same information as
panel (a), but on a logarithmic distance scale to highlight the more proximal, smaller magnitude events.

the next section, we will consider how rapidly this in-
formation content degrades with increasing amplitude.
Moreover, we define a metric for the degree of satura-
tion, and we use this metric to estimate an upper bound
beyond which no useful information can be (theoreti-
cally) recovered.

3 Spectral distortion and saturation
metric

As discussed in the previous section, signals that ex-
ceed the DAS dynamic range cause distortions in the
recordings, which negatively affects their useful infor-
mation content. However, this transformation is not
instantaneous: while strongly saturated data (Fig. 1c)
bear little resemblance with the true underlying signal,
weakly saturated data (Fig. 1b) could potentially be un-
wrapped or have their spectra analysed to extract the
corner frequency (Strumia et al., 2024). To see the effect
of phase saturation on a broadband earthquake spec-
trum, we use Eq. (11) to generate a synthetic source
spectrum with uniform random phase, and convert it
into a time series with an inverse Fourier transforma-
tion. We then scale the signal peak amplitudeby a factor
in the range of 1.5 to 5.0 times the dynamic range, and
wrap the signal. The spectra that are observed after this
synthetic saturation are shown in Fig. 4. For mild satu-
ration (Fig. 4a), the spectral information around the cor-
ner frequency remains mostly unaffected, but a promi-
nent low-frequency plateau emerges. As the synthetic
time series becomes increasingly more saturated (pan-
els b and c), this plateau increases in amplitude while
the amplitude of the spectral peak diminishes, until the
entire spectrum starts to approach a white noise spec-
trum (panels d and e).

To get a better grasp on this spectral behaviour, we
first note that any saturated time series m(t) with a dy-
namic range of ±A can be decomposed into a superpo-
sition of the original signal m(t), and a set of rectangle
functions of amplitude±2A and width w, i.e.:

m(t) = m(t)+2A

I∑
i=0

rectwi
(t− ti)−2A

J∑
j=0

rectwj
(t− tj)

(18)
with

rectw(t− t0) ≡ H
{

t−
(

t0 −
w

2

)}
−H

{
t−
(

t0 + w

2

)}
(19)

and H {·} denoting the Heaviside step-function. As a
consequence, the spectrum of m(t) can be expressed as
the weighted summation of Ω(f) (i.e., the spectrum of
the true signal) and the spectrum corresponding to the
superposition of rectangle functions Λ(f):

|F (m)|2 = (Ω + 2AΛ) (Ω + 2AΛ)∗

= |Ω|2 + 4A2|Λ|2 + 4ARe (ΩΛ∗)
(20)

Here, F(·) is the Fourier transform. The last term on
the right-hand side denotes the real component of the
cross-correlation between the true signal and the sum-
mation of rectangle functions, which in the spectral do-
main can be expressed as the multiplication of Ω with
the complex conjugate of Λ. For mild saturation, cy-
cle skipping is rare and only a few rectangle functions
are needed to satisfy Eq. (18). The spectrum of a sin-
gle rectangle function is given by the cardinal sine (or
sinc) function, i.e. |F (rectw)| =

∣∣sin (πfw−1) /πf
∣∣, and

so Λ(f) is well represented by the envelope of a sinc
function. We show this in Fig. 4a, where the sinc spec-
trum is overlain on the spectrumof rectangle functions.
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Figure4 (a)-(e) Synthetic acceleration spectra that undergoprogressivelymoredistortion,with peak amplitudes that range
from 1.5 to 5.0 times the dynamic range. (f)-(j) The cumulative distribution function (CDF) of the synthetic signal amplitudes
(normalised by the dynamic range), corresponding with the spectra shown in (a)-(e). As the signals become increasingly
saturated, they gradually approach a uniform distribution (indicated by the dotted line). The saturation metric DT is as
denoted in each panel.

As given by Eq. (18), the low-frequency plateau, as well
as the high-frequency distortion of the observed ampli-
tude spectrum, originates from the addition of the sinc
spectrum.
As the degree of saturation increases, the superposi-

tion of rectangle functions is no longer quasi-random,
as it needs to cancel out the true earthquake spectrum to
produce the ultimately observed, saturated spectrum.
In other words, the contribution of Re (ΩΛ∗) becomes
significant and Λ is no longer described by a sinc func-
tion (Fig. 4b-e), resulting in a non-trivial superposi-
tion of spectra. However, even though the observed
signal spectrum is no longer recognisable as a Brune
spectrum, it has not yet become completely uniform
(Fig. 4d-e). To quantify this, we consider how the ampli-
tude distribution of m(t) approaches that of a uniform
distribution (see Fig. 4f-j). The cumulative distribution
function (CDF) of a uniform distribution U [0, 1] is sim-
ply given by CU (x) = x (0 ≤ x < 1), and so when m
is suitably scaled between [0, 1), the distance between
the observed CDF (C(x)) and the uniform CDF can be
conveniently defined as:

D = − log10

(
3
∫ 1

0
[C(x)− x]2 dx

)
(21)

When C(x) is perfectly non-uniform, the integral eval-

uates to 1/3, so that D = 0. As m approaches a uniform
distribution, the integral evaluates to zero, andD →∞.
In practice, the finite precision of the empirical CDF
limits how close C(x) can approach CU , which in itself
is a function of the number of samples NT contained
within a given time window (in other words, the inte-
gration spacing dx). We find that the expectation of the
upper limit of D scales as log10(3NT ), and so we define
DT = D log−1

10 (3NT ), such that 0 < E [DT ] ≤ 1. This
renders the saturation metric independent of the arbi-
trary choice of NT . The procedure of quantifying the
degree of saturation of a given DAS channel is then to:

1. select a fixed time window (e.g., 30 s after the P-
arrival),

2. compute the empirical CDF of the time series,

3. scale the data by the dynamic range such that all
values fall between 0 and 1,

4. evaluate Eq. (21) and scale by log10(3NT ).

Now that a suitablemetric for the degree of saturation
has been defined, we evaluate to what extent this met-
ric can be applied in practice. We select an earthquake
recorded by the SER.N cable with good signal-to-noise
ratio, but without causing the data to saturate. For a se-
lected number of DAS channels with good coupling and
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Figure 5 (a) Progressive degradation of an earthquake waveform towards white noise, with corresponding DT -values. (b)
The evolution of the saturation metric (DT ) with increasing signal peak amplitude (before wrapping). DT plateaus at an
amplitude factor of 20, meaning that the saturated waveforms become statistically indistinguishable fromwhite noise.

low ambient noise levels, we normalise the data by the
90th-percentile value of each DAS channel. We then ar-
tificially saturate the data by scaling with a factor A and
wrapping around the dynamic range, and measure DT

as a functionofA. Due to variations in the signal charac-
teristics of each channel, the measured DT -values vary
fromone channel to the next. This allows us to estimate
the expected variationofDT for a given earthquake, and
consequently the precision of estimating A from DT .
As seen in Fig. 5, the transition towards white noise is
completed at around an amplitude factor of 20, beyond
whichDT plateaus. The exact point at which this occurs
depends on the data window selection, as the S-wave
train saturates more quickly than the (lower amplitude)
P-wave train. Taking a factor 20 as a reasonable esti-
mate, it is expected that the DAS data become “fully sat-
urated” within 0.9 magnitude units (= 2

3 log10 20) above
the initial saturation threshold. For reference, this up-
per bound on the saturation is included in Fig. 3.

To verify the existence of the upper bound in our data,
we evaluate DT for the Mww 6.6 Huasco event, which is
the largest magnitude event in the data set. The SER.N
and SER.S cables were located within a hypocentral dis-
tance of less than 200 km, while the CCN.N cable was
located around a distance of 400 km. By comparison
with the fully-saturated bound in Fig. 3, one can see that
the distal CCN.N cable is close to the predicted tran-
sition to becoming fully saturated, whereas the SER.N
and SER.S cables are expected to have become fully sat-
urated. We estimate DT for each channel individually,
and observe how DT changes as a function of hypocen-
tral distance and time (Fig. 6). WhenestimatingDT over
a time window spanning 10 s after the P-wave arrival
at each channel, we observe that the CCN.N cable at
around 400 km hypocentral distance is tightly clustered
aroundDT ≈ 0.25, indicating that no (or very little) data
saturation occurs. By contrast, the SER.N and SER.S ca-
bles (up to 200 km distance) exhibit DT -values that ex-
ceed 0.6, indicating that the data are saturated, though
potentially retain some useful information. However,
when extending the time window to 30 s and 60 s after
the P-arrival, the SER.N and SER.S data approach the

white noise limit at DT ≈ 1. Taking the same time win-
dow, the CCN.N data start to exhibit a DT -value greater
than 0.25, a trend that continues when extending the
time window up to 60 s, reaching up to DT = 0.6.

These observations confirm that the plateau of DT

observed in the quasi-synthetic analysis (Fig. 5b) is a
phenomenon that manifests itself when the cable is
subjected to strong ground motions, resulting in DAS
recordings that have been fully reduced to white noise.
The magnitude-distance criterion that marks the fully-
saturated transition (Fig. 3) seems somewhat too strin-
gent since the CCN.N cable, which was predicted to be-
come fully saturated, exhibits intermediate DT -values
up to 0.6. Based on Fig. 5b, in order to reach DT ≥ 0.9
the ground acceleration at CCN.Nwould have needed to
be stronger by about a factor 3 (equivalent to a magni-
tude increase of 0.3). However, given thenumerous sim-
plificationsmade up to this point, and the uncertainties
in the parameters that enter Eq. (14), we believe that the
predictive power of the proposed saturation criteria is
acceptable.

With regard to Fig. 6, we make one final observa-
tion, being that the lowest measured DT -values remain
around 0.25 even for the SER.N and SER.S cables that
reach the white noise transition. These are sections of
the DAS cable that are poorly coupled, and that record
little to no strain induced by the body waves. Some
of these channels record only a fraction of the seismic
energy, such that they remain unsaturated or become
only mildly saturated, if at all (see Fig. 1b). These chan-
nels could be used to recover information that was lost
by fully-saturated channels, and possibly play a criti-
cal role in EEW and near-field analysis of large seis-
mic events. In this respect, well-coupled and poorly-
coupled DAS segments would play a similar role as
broadband and strong-motion sensors in conventional
seismic networks. However, whether the data recorded
by poorly coupled sections provides a faithful represen-
tation of the seismic wavefield (up to a scaling factor)
still needs to be investigated.
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Figure 6 Saturation metric for the Mww 6.6 Huasco event. In each panel, DT is computed as a function of hypocentral
distance, over a time window that extends 10, 30, or 60 seconds from the first arrival at each position. The colour intensity of
the hexagonal bins is proportional to the number of data points in each bin. The onset of saturation at DT = 0.25 and the
plateau at DT = 1 are indicated by the dotted and dashed lines, respectively.

4 Implications for EEW
From the theoretical analysis laid out in Section 2, as
well as from the empirical observations made in the
previous section, it becomes clear that the limited dy-
namic range of DAS data presents a major obstacle for
the use of DAS for EEW. Even though DAS has the po-
tential to provide near-source instrumentation, which
would maximise the warning time given by EEW (Lior
et al., 2023), rapid saturation of the recordings prevents
the accurate extraction of amplitude information that
underlies local magnitude scaling relationships (Yin
et al., 2023b). We found that for hypocentral distances
of around 20 km, earthquakes of a magnitude as low as
2.5 could cause data saturation, which underlines the
existing challenges that DAS-based EEW still needs to
overcome.
Fortunately, there are several perspectives that could

redeem DAS as an effective method for EEW:

• Firstly, while the amplitude information of the DAS
recordings may not be informative, the P-wave on-
set times can be used to obtain a rapid first estima-
tion of the hypocentre (Yin et al., 2023a). Given a
known seismic source location, it is possible to esti-
mate the source magnitude from the recordings of
a single strong-motion sensor. This alleviates the
need for several strong-motion sensors to be trig-
gered, which is a requirement to obtain a source lo-
cation (and corresponding magnitude) in conven-
tional EEW systems. As a result, an alert could be
issued as soon as the nearest strong-motion sensor
exceeds a trigger limit, reducing the system latency
by several seconds (Minson et al., 2018; Peng et al.,
2021).

• Owing to imperfect coupling between the cable and
theground,DASdata commonly exhibit large varia-
tions in the spatial distribution of seismicwave am-
plitudes. While these poorly-coupled sections are
typically considered a nuisance for weak-motion
analyses, they may be vital to estimating ground

motion amplitudes thatmay otherwise have caused
the data to become fully saturated. However, it
needs to be investigated whether the response of
these sections is linear (i.e., there exists a constant
scaling between the imposed and recorded ampli-
tudes), and whether they interact with soil non-
linearities (Viens et al., 2022).

• Particularly for submarine DAS, the shallow, un-
consolidated sediment cover can cause major dis-
tortion of the seismic wavefield, including phase
splitting (Trabattoni et al., 2024). As observed in
a previous DAS study offshore Chile (Trabattoni
et al., 2023), the arrival of the faint direct P-wave is
commonly obscured by subsequent converted ar-
rivals. This is a consequence of the measurement
principle of DAS, measuring strains instead of par-
ticlemotions, but it canbe corrected byperforming
a spatial integration. After spatial integration, the
direct P-wave can be distinguished from the P-to-
S conversion that usually follows within 1 s. While
the very first second of an earthquake trace is insuf-
ficient to establish amagnitude (Meier et al., 2017),
the polarity and amplitude of the first motion can
be used to construct an initial focal mechanism (Li
et al., 2023b). In turn, this focal mechanism may
serve to distinguish megathrust events occurring
on the plate interface from those occurring in the
overriding accretionary wedge or in the outer rise.
It has been observed that such intraplate events can
trigger disproportionally large tsunamis (Cummins
andKaneda, 2000; Hananto et al., 2020), and soDAS
may contribute to improve tsunami earlywarnings.

Beside these future avenues for exploration, we offer
the following recommendations for DAS-based EEW in
its current form:

• As is apparent from Eq. (10), and as was rec-
ommended by previous studies (Viens et al.,
2022; Abukrat et al., 2023), increasing the spatio-
temporal sampling rate of the acquisition increases
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the saturation amplitude proportionally. As it may
not be feasible to record and store the acquired
data without downsampling (owing to limited stor-
age capacity or bandwidth), operating in trigger-
mode could be a viable solution. However, one
must keep in mind that the logarithmic magnitude
scaling implies severely diminishing returns: by si-
multaneously decreasing the gauge length and tem-
poral sampling period by a factor 10 (i.e, increas-
ing the data density by a factor 100), the magnitude
threshold is raised by only 1.3 magnitude units.
Moreover, there are practical limitations to the data
resolution which stem from the laser pulse dura-
tion and the total length of the sensed fibre. These
prevent one from setting an arbitrary acquisition
sampling rate in an attempt to extend the satura-
tion threshold to thedesired earthquakemagnitude
range. Another point of consideration is that for a
fixed bit-resolution of the data (typically stored as
16 or 32-bit integers), the sensitivity scales propor-
tionally with the dynamic range. For DAS arrays
that serve both EEWand general seismological pur-
poses (microseismicity monitoring, ambient noise
correlation, etc.), a fixed bit-resolution may render
the data unsuitable for either application. As an ex-
ample, consider a dynamic range that permits un-
saturated recordings of an Mw 7 event at 50 km dis-
tance. A 16-bit discretisation (values in the range
±215) then implies that events of Mw 4 or lower will
generate strains that fall within the bit-precision,
and are therefore rendered undetectable.

• Aswehave shown in Section 3, it is possible tomake
an estimation of the peak groundmotion amplitude
evenwhen it exceeds the dynamic range. As long as
the data distribution is significantly different from
that of a uniform distribution, one could map the
observed saturation metric (DT ) back into a peak
amplitude following the relationship depicted in
Fig. 5b. By doing so, the dynamic range can be ar-
tificially extended by an amount that corresponds
with almost one unit of Mw. If the objective is to
use an amplitude-based magnitude-distance rela-
tionship, extending the dynamic range also implies
that reliable estimates of magnitude can be made
much closer to the seismic source, which translates
into faster alert times.

• By implementing (real-time) unwrapping algo-
rithms, recordings that suffer from saturation
could be fully restored. For mildly saturated data,
one could attempt to detect sudden jumps in the
data and add/subtract the dynamic range value to
unwrap the saturated recordings (e.g. Diaz-Meza
et al., 2023). However, this algorithm is severely
limited and prone to errors once the true ground
motion amplitudes far exceed the dynamic range.
Instead, one should opt for a gradient-based un-
wrapping method, which tracks and integrates the
phase-gradient of the recordings. We present a
simple example of such an algorithm inAppendix I.
More sophisticated gradient-tracking algorithms
could greatly improve upon the unwrapping per-

formance, potentially increasing themagnitudede-
tection threshold by more than one magnitude
unit. The unwrapping should be performed prior
to downsampling, as to retain the maximum sam-
pling density for the gradient estimation, and not
be affected by the step-response of anti-aliasing fil-
ters.

• One of the appealing features of DAS, is that it can
leverage existing telecom fibre networks. How-
ever, for the specific purpose of EEW, it may be
worthwhile (or necessary) to design and deploy
customised cables that exhibit a lower sensitivity.
This can be achieved either through changes in
the optical characteristics (increasing optical wave-
length or decreasing refractive index), or through
geometry (e.g., helically-wound cables with an op-
timisedpitch that can accommodate axial deforma-
tion with a smaller change in optical path length).

5 Conclusions

In this study, we presented an in-depth analysis of the
dynamic range of Distributed Acoustic Sensing (DAS),
with a primary focus on Earthquake Early Warning
(EEW).While DAS offers many advantages over conven-
tional instrumentation used by EEW systems, it suffers
from data degradation (“saturation”) when the ground
motions exceed its dynamic range. We derived several
criteria that describe the tendency of DAS data satura-
tion as a function of seismic moment magnitude and
hypocentral distance, verified with empirical observa-
tions. From this we conclude that for typical DAS acqui-
sition settings (gauge length and sampling rate), satura-
tion occurs for a range of moment magnitudes and dis-
tances that is overly restrictive, indicating that present-
day DAS technologies may not be suitable for EEWpur-
poses. Furthermore, we proposed a metric for the de-
gree of saturation, that may help to artificially extend
the dynamic range of DAS by a factor equivalent to 0.9
units of Mw. Even though this is a significant improve-
ment, it remains insufficient for the near-field analysis
of earthquake magnitudes that are of interest of EEW
(typically Mw 6 or higher).
These observations indicate that technological ad-

vances still need to be made before DAS could replace
conventional strong-motion instrumentation in EEW
systems. Nonetheless, DAS canprovide complementary
information that helps to rapidly establish the seismic
source location and focal mechanism, and dedicated
signal processing techniques and custom cable designs
could remedy the limited dynamic range, allowing DAS
to contribute faithful amplitude and phase information
to benefit EEW.
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Appendix I: gradient-based unwrapping

A somewhat naive approach to phase unwrapping is to
detect when the recorded signal exhibits a large discon-
tinuity, which is then interpreted as a phase jump and
corrected by adding or subtracting twice the value of
the dynamic range. In the context of what was previ-
ously discussed at the start of Section 3, this approach
amounts to finding the rectangles in Eq. (18). Such an
algorithm is currently implemented in the commonly-
used NumPy library, andmay be a starting point for an-
alysts who wish to restore their saturated DAS record-
ings. Unfortunately, correctly identifying each phase
jump is highly improbable even for modest degrees of
saturation, hence this approach is prone to unwrapping
errors.
An alternative method circumvents the need for

phase jumpdetection by relying on the continuity of the
gradient of the data in the complex plane: a sequence
of small increments in the phase angle can be easily
tracked, even as it crosses quadrants (e.g. from +π to
−π). While the DAS recordings may exhibit discontinu-
ities in the time domain, these are only the result of lift-
ing the phase measurement out of the complex plane
(the arg operation in Eq. (4)). Within the complex plane,
the signal is continuous, and so it can be reconstructed
by estimating the gradient of the signal in the complex
plane, converting this into increments of ε̇, and inte-
grating (summing) these increments to obtain a signal
that is not restricted by the dynamic range.
A first-order algorithm that implements this notion is

as follows:

Algorithm 1 Gradient-based unwrapping
Require: time-series x, dynamic range R
1: z ← exp

(
πxR−1) . Lift x into the complex plane

2: g ← diff(z) . Phase difference; see Eq. (2)
3: x̂← R

π

∫
arg {g} dt . Reconstruction by integration

4: return unwrapped time-series x̂

The critical step in this algorithm is the estimation
of the gradient of z. As in Section 2.1, one can con-
veniently estimate the gradient in the complex plane
through a first-order finite difference operation, but
more advanced gradient estimators (such as Kalman fil-
ters) can be employed to achieve higher accuracy. Like-
wise, the integration of arg {g} could take the form of a
cumulative sum (if g is expressed as a phase difference)
or a higher-order integration scheme (if g is expressed
as a phase gradient).
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Figure A1 Performance of the gradient-based unwrapping algorithm. The reference signal is scaled by its maximum value,
and subsequently multiplied by a constant factor ranging from 1 up to 50. Synthetic recordings are rendered by wrapping
the scaled reference signal, which is fed to Algorithm 1. Unwrapping errors start to appear when the maximum amplitude
exceeds the dynamic range by a factor 20.

Assuming perfect (infinite-order) differentiation and
integration,we canderive a criterion for theonset of un-
wrapping errors of Algorithm 1. Taking again the exam-
ple of a monochromatic oscillator, x(t) = A cos (2πft),
and realising that |arg {g}| < π, we obtain:

|arg {g}| ≈ 2π2AR−1f |sin (2πft)|∆t < π

⇔ Acrit = R

2πf∆t

(22)

The factor πR−1 is introduced in the first step to ac-
knowledge the conversion from x to z. In practice, the
differentiation and integration will be imperfect, and
so these finite-precision schemes will introduce a pro-
portionality constant, i.e. Acrit = βR (2πf∆t)−1, with
0 < β < 1.
As an example, we test Algorithm1 on a reference sig-

nal (recordings of ocean gravitywaves)with a character-
istic frequency of f = 0.1 Hz and a time sampling rate
of (∆t)−1 = 62.5 Hz – see Fig. A1. Hence, the theoreti-
cal maximum AcritR

−1 ≈ 100. The signal was scaled by
itsmaximumamplitude andmultiplied by a factor rang-
ing from 1 to 50 times the dynamic range (i.e., AR−1 ∈
{1, 2, 5, 10, 20, 50}), followed by wrapping around R. Af-
ter applying Algorithm 1 on the wrapped data, we find

that unwrapping errors start to become prominent af-
ter AR−1 > 20, suggesting β ≈ 0.2. As aforementioned,
higher-order differentiation and integration will likely
increase β, possibly approaching β ≈ 1.

The article An analysis of the dynamic range of Distributed
Acoustic Sensing for Earthquake Early Warning © 2025 by
Martijn van den Ende is licensed under CC BY 4.0.
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