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Abstract The Gofar oceanic transform fault at the East Pacific Rise has one of the best seismic cycles
recorded by modern instruments. The timing, location, and magnitude of major earthquakes (M,,>5.5) have
been well constrained by data from global seismic networks for the past 30 years. The earthquake interval is
short, about 3-5 years. Several segments have already experienced 5 cycles since 1995, when the seismic net-
work was good enough for surface wave relocation. Two ocean bottom seismometer deployments (2008-2009,
2021-2023) also provide constraints on the seismic properties on the fault. This makes Gofar an ideal place to
study earthquake cycles. Here, we developed a model for the seismic cycle along the Gofar transform fault
using a semi-analytical approach for rapidly calculating 3D time-dependent deformation and stress caused
by screw dislocations embedded within an elastic layer overlying a Maxwell viscoelastic half-space. The 160-
km long fault is divided into three major segments with six asperities. Our model simulates the earthquake
pattern on this fault for the past 30 years. Most of the time, each asperity ruptured as a large earthquake every
3-5years. Most segments have a nearly constant Coulomb stress threshold of 2-3 MPa, providing optimal con-
ditions for the forecasting of future earthquakes along Gofar. For three cases that deviated from this simple
regular pattern, a large earthquake occurred with a centroid location between two asperities. Thisis likely due
to concurrent rupture that involved both asperities. We also modeled surface deformation with different elas-
tic layer thicknesses and mantle viscosities. Even though most deformation is in the horizontal direction, the
difference in both horizontal and vertical directions between models can be as large as a few centimeters per
year. Several seafloor geodesy methods can be used to differentiate between models, and seafloor pressure
might be the most appropriate one at this remote location.

Non-technical summary Large earthquakes repeatedly occur on the same fault over many cycles.
Most earthquake cycles are hundreds of years long and therefore difficult to observe. A special kind of faultin
the East Pacific Ocean has very short cycles (3-5 years), and we have a very good record of its seismic behavior
for the past 30 years. Here we build a numerical model, which can simulate previous earthquakes and forecast
future events. The model can also calculate the surface deformation on the seafloor over time. New data can
be collected and compared with different model results, and therefore constrain important parameters of the
fault.

1 Introduction
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The earthquake cycle is a key, yet enigmatic, concept
in seismology. For most large earthquakes on plate
boundaries, faults are constantly loaded by the move-
ment of the plates, and major earthquakes occur in a
quasi-periodic manner (Scholz, 2002). Progress in un-
derstanding earthquake cycles is often hindered by the
fact that cycles of large earthquakes are much longer
than the modern observation history (McGuire, 2008),
and it is difficult to fully understand earthquake cy-
cles from observations that capture only a snapshot of
the hundreds- to thousands-year cycles of large earth-
quakes. Paleo-seismic data could cover multiple cy-
cles, but they suffer from large uncertainties regard-
ing earthquake magnitude, timing, and rupture extent
(Weldon et al., 2005). Fast-spreading oceanic transform
faults (OTFs) are uniquely suited for studying earth-
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quake cycles because the intervals between the largest
earthquakes are typically less than 15 years due to high
offset rates (Boettcher and McGuire, 2009), so it is possi-
ble to observe several earthquake cycles on some OTFs
with modern instruments (McGuire, 2008; Sykes and
Ekstrom, 2011). Furthermore, the geometry and ther-
mal structure of OTFs are simpler than a continental
system (Roland et al., 2010), providing a simpler case
to crack the “codes” of earthquake cycles. OTFs also
share some fundamental physics with their continental
counterparts, so improved understanding will provide
insights into the dynamics of continental faults, such
as the San Andreas Fault in California and the North
Anatolian Fault in Turkey, both of which have gener-
ated devastating earthquakes in recent history (Johnson
etal., 2023).

The Gofar oceanic transform fault at the East Pa-
cific Rise is one of the best studied sites among all the
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Figurel (a)Relocated earthquakes on the Gofar system since 1990. Two intra-transform spreading centers (ITSC) separate
the fault into three segments. (b) Time-space plot of the relocated catalog (moment magnitudes from the USGS). Beach balls
and filled circles have been relocated with surface waves. Unfilled circles were not relocated due to limited data at that time.
The solid lines highlight the earthquakes that ruptured the same segments. The two black dashed circles highlight earth-
quakes that only ruptured a small part of the seismic segments. The three black dashed squares highlight the earthquakes
that might have concurrently ruptured two seismic segments separated by a creeping segment.

oceanic transform faults. The fault is about 160 km long
and consists of three major segments (G1, G2, G3) sepa-
rated by two intra-transform spreading centers (ITSC)
(Figure 1). The fault is highly segmented and has an
earthquake interval of 3-5 years (McGuire, 2008; Shi
et al., 2022; Wolfson-Schwehr et al., 2014). Since 1990,
up to six cycles have occurred and been recorded by
modern seismic networks. An interesting new observa-
tion is that three large earthquakes (My>5.5) ruptured
the western G3 with a very short time interval (11 days
and 18 minutes) in September 2023, suggesting possible
synchronization (Lynch et al., 2003; Wei and Shi, 2021,
Shi et al., 2022). Moreover, between 2008-2009 and 2021-
2023, two field campaigns of ocean bottom seismome-
ters (OBS) were conducted at the fault. In both cases,
the OBS array caught a major earthquake (M>5.5) on
the fault. The 2008-2009 OBS data have been carefully
analyzed and constrained many features of the fault sys-
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tem (Yao etal., 2011; McGuire et al., 2012; Froment et al.,
2014; Guo et al., 2018; Gong and Fan, 2022; Liu et al.,
2023). The 2021-2023 data are still being analyzed with
publications pending.

The objective of this paper is to develop a simple
mechanical model for the earthquake cycle on the Go-
far transform fault, which allows us to study the de-
formation and stress evolution on the fault for the
past few earthquake cycles. First, we relocated major
earthquakes on the system using surface wave cross-
correlation. Next, we used the improved earthquake
location data to construct the fault geometry and seg-
mentation (seismic versus creep). Then, we utilized the
crustal deformation software package Maxwell to run
the simulation and analyzed the results. Lastly, we ex-
plored how seafloor geodesy can help distinguish be-
tween models and estimate key parameters of the Gofar
seismic fault system.
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Figure2 The model setup of the Gofar oceanic transform fault system at the East Pacific Rise. The system consists of three
segments separated by two intra-transform spreading centers (ITSCs). The gray and black areas represent the brittle-elastic
part of the fault. The black patches are the seismic segments, whose locations and widths are constrained by relocated
earthquakes. The gray areas are creeping faults, which only slip aseismically. H is the elastic plate thickness and h is the

representative asperity locking depth.

2 Methods

2.1 Earthquake relocation

We used cross-correlation between teleseismic sur-
face waves to relocate OTF earthquakes on Gofar
(McGuire, 2008; Cleveland and Ammon, 2015; Howe
et al., 2019; Castellanos et al., 2020; Shi et al., 2022;
Wolfson-Schwehr et al., 2014). We obtained events
from USGS earthquake catalogs between 1 January
1950 and 1 November 2023 (https://earthquake.usgs.gov/
earthquakes/search). Relocations were performed on
events after 1990, with the majority occurring after 1995
when the global seismic network had achieved an ad-
equate distribution for this task. We assumed an R1
Rayleigh wave group velocity of 3.75 km/s (Nishimura
and Forsyth, 1988). We used waveform data from
the Global Seismic Network (https://www.iris.edu/hq/
programs/gsn; network code GSN) and GEOSCOPE (http:
//geoscope.ipgp.fr/networks/detail/G/; network code G)
because they provide satisfactory azimuthal coverage.
Raw waveforms were truncated using a velocity window
of 5 km/s to 3 km/s and were bandpass filtered (zero
phase) between 0.02 Hz and 0.04 Hz and tapered. Cross-
correlation between two events yields several differen-
tial times at stations of different azimuths. A cosine fit-
ting from azimuths to differential times gives the rela-
tive distance, the azimuth, and their uncertainties be-
tween an event pair. Such information was then passed
through chains of event pairs to collectively relocate all
events in the clusters (Cleveland and Ammon, 2015; Shi
et al., 2022). Finally, the cluster was shifted depend-
ing on the availability of accurate hydroacoustic cata-
logs or on the geological features from high-resolution
bathymetry data (Pan et al., 2002).

The relocated earthquakes (Figure 1) show that the

Gofar system consists of 6 major seismic segments (3 on
G1, 1 on G2 and 2 on G3). The earthquake cycle on these
segments is quasi-periodic with an average interval of 3-
5 years. Sometimes, a segment ruptures as two smaller
earthquakes within a cycle. For example, the western
G3 ruptured as two My, 5.7 in 2012 and 2014, whereas
the typical repeater size is My, 5.9-6.1. Also, three earth-
quakes appear to be centered on a typical barrier seg-
ment (highlighted as dashed squares in Figure 1b). This
can be explained by a concurrent rupture of two seis-
mic segments separated by a barrier, which is not un-
common (Philibosian and Meltzner, 2020). More im-
portantly, seismic data indicate that these three earth-
quakes each had two sub-events separated by several
seconds (W. Wu, personal communication), which have
been counted as one event in routine analyses.

2.2 Maxwell software and parameters

Maxwell is a crustal deformation software package
that uses a semi-analytic approach for rapidly calculat-
ing three-dimensional (3D) time-dependent deforma-
tion and stress caused by screw dislocations embedded
within an elastic layer overlying a Maxwell viscoelas-
tic half-space (Smith and Sandwell, 2004; Sandwell and
Smith-Konter, 2018). The Maxwell model was devel-
oped in the Fourier domain to exploit the computa-
tional advantages of the convolution theorem, hence
substantially reducing the computational burden asso-
ciated with modeling an arbitrarily complex distribu-
tion of force couples necessary for fault analysis (Smith
and Sandwell, 2003). The software has mostly been
used to model the San Andreas Fault System (Smith and
Sandwell, 2006; Howell et al., 2016; Ward et al., 2021,
Smith-Konter and Sandwell, 2009). A new version of the
Maxwell package added the ability to model lateral vari-
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Figure3 Earthquake history and segmentation on the Gofar transform system. The gray areas are the creeping segments,
and the white areas are the asperities. The small red circles represent the relocated centroid locations of the earthquakes,
and the horizontal red lines show the estimated rupture lengths at depth, using the empirical equation from Wells and Cop-
persmith (1994). The blue horizontal lines depict the rupture history used in the modeling. The timing is shifted downwards
for easier visualization, but accurate earthquake timing is used in the simulation. The bold black horizontal lines indicate the
rupture history in three earthquakes that likely involved concurrent rupture of segments separated by creeping segments (W.
Wu, personal communication). The letters on the top are the names of the segments used in this study. For example, segment

Gla means segment a at G1.

ations in shear modulus (Sandwell and Smith-Konter,
2018) and has also been applied to the San Andreas Fault
System (Ward et al., 2021, 2022) to better understand
time-dependent seismic cycles.

In the Maxwell software package, a fault system
is modeled as asperities embedded within an elastic
layer over a Maxwell viscoelastic half-space (Smith and
Sandwell, 2004; Barbot et al., 2017; Kato, 2002). Here, we
use the relocated large earthquakes to determine the six
major seismic asperities on the Gofar earthquake sys-
tem (Figure 2). The 160-km long fault system is further
divided into thirty-two 5-km long sub-segments with
sixteen assigned asperities (Figure 3). The asperities are
estimated by comparing rupture lengths and centroid
locations of relocated earthquakes (red horizontal line
in Figure 3) with the location of the 5-km sub-segments.
We assigned a segment as an asperity when it overlaps
with a rupture of multiple repeating large earthquakes.
We estimated earthquake rupture length at depth us-
ing the empirical equation for strike-slip events from
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Wells and Coppersmith (1994). Although this method
is derived from continental earthquakes, this approach
is consistent with the well-recorded 2008 M6.0 earth-
quake on the Gofar OTF and the 2015 M7.1 earthquake
on Charlie-Gibbs OTF (Shi et al., 2022). With this infor-
mation, we constructed a simplified rupture history of
the fault system (Figure 3). During an earthquake, one
or more such 5-km segments slip. As discussed earlier,
three earthquakes seem to be centered at a barrier seg-
ment. We assumed that these earthquakes ruptured two
asperities separated by a barrier nearly simultaneously,
which is consistent with seismic data (W. Wu, personal
communication).

The two-dimensional (2D) map-view domain of the
Gofar model space is 1024x1024 pixels, and the grid size
is 250 m x 250 m. The Maxwell software places a mirror
image of the force couple distribution in a mirror grid
so that the net moment is zero and the Fourier trans-
formation can be used (Smith and Sandwell, 2003). The
line of symmetry is on the north boundary, parallel to
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Symbol Physics meaning
The locking depth, above which the seismic

h segments (asperities in Figure 2) slip during
earthquakes and remain locked between earth-
quakes.

1 Shear modulus of the brittle layer

H Elastic plate thickness. The slip between h and
H is aseismic.

v Viscosity of the mantle

Table1l Key parameters used in the Gofar simulation.

the fault traces. Consequently, the effective domain be-
comes 512x1024 pixels, corresponding to dimensions of
128 x 256 km. We experimented with a finer grid size of
125 m and found that the difference in results compared
to the 250 m grid size is negligible. For each calcula-
tion, we specify an observation depth plane. 3D results
can be obtained with repeating calculations at different
depths.

We set the boundary condition to best simulate a
strike-slip environment that drives the OTFs. The fault
parallel boundaries are set to uniform far-field velocity,
and the fault perpendicular boundaries have a constant
far-field velocity difference across the transform plate
boundary and is simulated using a cosine transform in
the fault perpendicular direction. This will introduce
unrealistic deformation beyond the two ocean ridges,
which will be discussed later.

The stress loading rate was estimated using a back-
slip method (Savage and Burford, 1973; Smith and
Sandwell, 2006). The timing of the earthquakes was de-
rived from the earthquake catalog, and the slip was esti-
mated based on the time elapsed since the last event on
that segment.

The key parameters in the model are listed in Table 1.
The locking depth and shear modulus were estimated
from previous studies at Gofar. The elastic layer thick-
ness and viscosity of the mantle near Gofar are not well
constrained, due to the lack of seafloor geodetic mea-
surements, so we tested multiple values within a reason-
able range from studies in California and Iceland. Since
the structure of oceanic and continental lithosphere is
quite different (Fischer et al., 2020), studies from Ice-
land might be more applicable to Gofar.

We set the locking depth h to 8 km, above which most
earthquakes occur in West Gofar (Gong and Fan, 2022).
The earthquake depth in East Gofar is not well con-
strained, butit should not be significantly different from
that in West Gofar. While McGuire et al. (2012) observed
a much deeper seismicity depth on a barrier patch at
West Gofar, Gong and Fan (2022) observed much less
depth variation. The discrepancy does not affect our
model because we assume the barriers to be creeping,

5

Value References
Yao et al. (2011); McGuire et al. (2012);
8 km Froment et al. (2014); Guo et al. (2018);

Smith and Sandwell (2006)

Roland et al. (2012); Gong and Fan

48 GPa (2022)
Johnson and Segall (2004); Smith
10, 20, 40 km and Sandwell (2006); Barnhoorn et al.

(2011); Decriem and Arnadéttir (2012);
Li et al. (2022)

Pollitz et al. (2001); Johnson and Segall
(2004); Smith and Sandwell (2006);
Barnhoorn et al. (2011); Decriem and
Arnadéttir (2012); Li et al. (2022); Pollitz
(2019); Pollitz et al. (2021)

10%,10%, 10% Pa's

and thus no locking depth is prescribed at the barrier
patch. Smith-Konter et al. (2011) established that on the
San Andreas Fault, geodetic locking depths correspond
to seismogenic depths identified at the 95% seismicity
cutoff, with a close agreement within 2 km for most fault
segments. Since no geodetic data are available at Gofar
to estimate the locking depth, we assumed a depth of 8
km, which is close to the 95% cutoff depth in seismicity
at Gofar (Gong and Fan, 2022).

The shear modulus (u), also called rigidity, is the
product of the density and the square of the shear wave
velocity of the elastic layer. Gong and Fan (2022) devel-
oped a one-dimensional (1D) shear wave velocity model
for Gofar derived from a 2D P-wave travel-time tomo-
graphic model (Roland et al., 2012), assuming a constant
Vp/Vs ratio of 1.9 in the crust (above 6.85 km depth) and
1.8 in the mantle (below 6.85 km depth). The average
shear wave velocity above 20 km depth in this 1D model
is about 4 km/s. Assuming an average density of 3.0
g/cm?®, the shear modulus of the elastic layer is calcu-
lated to be about 48 GPa.

We assessed the sensitivity of the elastic plate thick-
ness at 10, 20, and 40 km. The elastic plate thickness
is defined as the elastically strong portion of the litho-
sphere that is responsible for supporting topographic
loads. By studying deformation caused by volcanic
loads on the ocean lithosphere, the elastic thickness is,
on first order, proportional to the age of the ocean crust
(Watts, 1978; Calmant et al., 1990; Watts and Zhong,
2000; Watts and Burov, 2003). This leads to a very small
and unrealistic elastic plate thickness of up to 3 km at
Gofar. On one hand, the simple relationship between
plate thickness and age might be more appropriate for
older lithosphere. On the other hand, it has been no-
ticed that geophysical observations sampling geologi-
cally long time periods (> 1 Myr) result in a lower es-
timate of elastic plate thickness than observations of
stress relaxation over much shorter times (tens of years)
(Smith and Sandwell, 2006; Pollitz, 2019). For example,
models based on gravity-topography relations (Lowry
et al., 2000), effectively accounting for 1 Myr of load-
ing, yield elastic plate thickness values of 5-15 km in
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Figure4 Coulomb stress evolution at 4 km depth in the center of all the segments for a model with elastic plate thickness
H =40 km and viscosity = 10%° Pa-s. Models with lower viscosity (1017-10'° Pa-s) do not affect the output because the elastic

layer is so thick.

the western United States. In contrast, Johnson and
Segall (2004) estimate an elastic layer thickness of 40-
100 km for central California after studying the post-
seismic deformation of the 1906 San Francisco earth-
quake, while Smith and Sandwell (2006) estimate an
elastic layer thickness of more than 60 km in Califor-
nia using GNSS data. Studies in Iceland on deglaciation
(Barnhoorn et al., 2011) reported 27-40 km lithospheric
thickness, while post-rifting deformation (Decriem and
Arnadéttir, 2012; Li et al., 2022) generally used 15-20
km elastic layer thickness. Plate thickness affects the
amplitude and wavelength of deformation and plays a
role in the timescale of observed deformation, partic-
ularly in the vertical dimension (Smith and Sandwell,
2004; Lu et al., 2021). Thick elastic plate models yield
larger wavelength postseismic features but shorten the
duration of the vertical response compared to thin plate
models (Smith and Sandwell, 2006). Additionally, re-
sults from a thick plate model are very similar to those
from an elastic half-space model (Kato, 2002).

Viscosity estimates range from 10'¢ to 10*' Pas in
different studies across various tectonic environments
(Pollitz, 2019). Pollitz et al. (2001) inferred an upper
layer viscosity of 4 x 10'7 Pa-s to model deformation fol-

6

lowing the 1999 Hector Mine earthquake in the Mojave
Desert. Johnson and Segall (2004) reported 1 x 10° -
2.9 x 10%° Pa-s for central California with geodetic data
constraining the post seismic strain following the 1906
San Francisco earthquake. The 2019 Ridgecrest earth-
quake sequence contributes to this range with estimates
of transient mantle asthenosphere viscosity at approx-
imately 1.3 x 10'7 Pa-s, and an adjacent Central Valley
transient mantle asthenosphere viscosity of about 7 x
107 Pa-s (Pollitz et al., 2021). Barnhoorn et al. (2011)
reported 2x10'8-10" Pa-s mantle viscosity by studying
the deglaciation cycles in Iceland. Decriem and Ar-
nadéttir (2012) reported an upper mantle viscosity of 1-
3x10'8 Pa-s in the South Iceland Seismic Zone observed
by geodetic data between 2000-2008. Li et al. (2022) re-
ported mantle viscosity of 0.4x10% Pa-s by studying the
post-rifting deformation using geodetic data between
2015-2020. It is not clear which values best apply to
Gofar. One unique aspect of the oceanic upper man-
tle is the potential effect of water-penetrated faults,
which can reduce the viscosity by 1-2 order of mag-
nitude (Hirth and Kohlstedt, 1996; Kohli and Warren,
2020; Kohli et al., 2021; Biirgmann and Dresen, 2008).
Therefore, we ran simulations with different viscosities
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The maximum Coulomb stress at the center

Segment of the segment at 4 km depth for the past few
cycles (MPa)

Glb 3.74 389 342 327

Glc 3.03 204 315 301

Gld 294 219 327 313

G1f 4 328 348 3.06

Glg 4.1 342 362 316

G2b 234 287 252 254 126 42

G2c 236 29 257 241 3.07

G3c 8.4 7.15

G3d 196 458 097 1.3 166 153

G3e 791 138 4

G3h 225 221 278 332 217 204

G3i 211 213 234 318 175 191

G3j 223 229 218 707 203

G3m 223 3.04 251 184 301 233

G3n 214 286 237 178 203 223

G3o 234 31 256 3.09 231 244

Next event Uncer-
Average (MPa) STD (MPa) time* tainty

(Year) (Year)**
3.58 0.28 2027.41 0.15
2.81 0.52 2026.37 0.28
2.88 0.48 2026.31 0.26
3.45 0.40 2029.76 0.22
3.57 0.40 2029.24 0.21
2.62 0.95 2026.82 0.52
2.66 0.31 2021.36 0.17
77 0.88 >2030 0.45
2 131 2028.89 0.66
4.43 3.29 2026.97 1.67
2.46 0.49 2029.2 0.25
2.24 0.50 2028.94 0.26
3.16 2.19 >2030 111
2.49 0.47 2029.02 0.24
2.24 0.37 2028.69 0.19
2.64 0.36 2029.04 0.18

Table2 The Coulomb stress threshold at 4 km depth and the predicted time for the next event for each fault segment.
*The predicted time is based on the average maximum Coulomb stress on the segment at 4 km depth.
**The uncertainty is based on the standard deviation (STD) of the maximum Coulomb stress at the center of the segment at 4 km depth for the past few

cycles.

(107 - 10%° Pa-s) and compared these results.

3 Results

3.1 Coulomb stress evolution

Coulomb stress (of) can be used to evaluate a fault’s
stressing behavior throughout the earthquake cycle. In
this study, we calculate Coulomb stress accumulation at
seismogenic depths as oy = 7 — pyo,, where 7 is the
shear stress, iy is the effective coefficient of friction,
and o,, is the effective normal stress. Because stress
varies as a function of observation depth within the seis-
mogenic zone, we calculate the representative stress at
4 km depth, which is 1/2 of the local locking depth, fol-
lowing King et al. (1994). Stress calculations are per-
formed on a fault-segment by fault-segment basis, thus
only the local fault contributes to the final stress result.
Restraining bends have higher normal stress and lower
rates of Coulomb stress accumulation; releasing bends
have lower normal stress and higher rates of Coulomb
stress accumulation. For the Gofar system, the largest
angular deviation of a local strike-slip segment from the
average slip direction is very small, thus the normal
stress contribution to the total Coulomb stress calcu-
lation is generally less than 10%. Therefore, the exact
value of the effective coefficient of friction is not a cru-
cial parameter. Here, we set ;7 to be 0.6.

We began our analysis with a very thick (H = 40 km)

elastic plate model, which closely resembles a pure elas-
tic half-space model (Kato, 2002). The Coulomb stress
evolution at 4 km depth in the center of all the segments
for a model with 102° Pa-s viscosity is shown in Figure 4.
Lowering the viscosity (10'7-10'° Pa-s) does not affect
the output because the elastic layer is so thick. Coulomb
stress on the seismic asperities increases linearly be-
tween earthquakes and then drops to near zero during
earthquakes.

According to this model, most segments have a nearly
constant Coulomb stress threshold of 2-3 MPa (Table 2),
which reflects the regular and simple repeating earth-
quake history. The exceptions are G3j and G3c-e, which
are caused by a relatively complex rupture history in
these segments. According to this model, we can esti-
mate stress thresholds for the next large earthquakes on
these segments and forecast future events using these
thresholds (Table 2). For segments with regular cycles,
the forecasted rupture times are closely aligned for ad-
jacent segments. For example, segments G1f and Glg
are estimated to rupture sometime in 2029. Segment
G3m, G3n, and G3o0 are expected to rupture near the
end of 2028, where the forecasts are anticipated to be
quite good with uncertainty less than three months (Ta-
ble 2). However, for segments with a complex rupture
history, the forecasts can vary significantly for adjacent
segments. For instance, segment G2c was estimated to
rupture in 2022, but it did not occur. We expect the next
earthquake in G2b and G2c will be larger than previous
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Figure5 Coulomb stress evolution at 4 km depth in the center of selected segments (G3i, G2b, and G1f) for different H and

viscosity. ‘H10 V17’ refers to H = 10 km and viscosity = 10'7 Pa-s.

ones.

One important question regarding the seismic cycle
is why ruptures deviate from a simple repeating pat-
tern in some cases. As discussed earlier, three earth-
quakes seemed to rupture multiple segments separated
by abarrier patch. Our model provides a possible expla-
nation. For the 2007 M6.1 earthquake in G3, our model
shows that the Coulomb stress on G3d and G3e was very
large at the time of the earthquake. One possible sce-
nario is that the rupture that initiated in G3d and G3e
was very large, and it propagated through the barrier
patch and triggered slip on G3h and G3i. The two other
earthquakes of this kind occurred near the beginning of
our simulation; thus we cannot provide any insight. It
is possible that these earthquakes also started in a seg-
ment that had accumulated an above-normal amount of
seismic moment.

Our model could not explain the two cases where no
large earthquake occurred during a cycle (G3c-e, G3m-
0, 2010-2015). The lack of a large earthquake in G3c-e
could be caused by the unusually large rupture in the
previous cycle of 2007. This large rupture produced
a heterogeneous stress field that could not sustain an-
other large event. Between 2010-2015, G3m-o ruptured
astwo smaller events, despite the normal size of the pre-
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vious rupture. Therefore, this kind of behavior could oc-
cur randomly due to the heterogenous nature of faults
(Kato, 2020; Cox et al., 2021).

For a viscoelastic model with a thinner elastic layer
(H =10 or 20 km), the stress evolution is very similar to
that of the thick elastic model (H=40 km) but with some
noticeable differences (Figure 5). First, the stress load-
ing rate of models with H=10 km is smaller than that of
models with a thicker elastic layer, as expected. Second,
the effect of the viscoelastic layer becomes noticeable
for the thin elastic layer model (H = 10 km) with low vis-
cosity (10'7 Pa-s). The stressing rate increases due to the
viscoelastic effect (Lambert and Barbot, 2016). Because
the estimated slip remains the same, the shear stress
exhibits an upward trend in the simulation. Modifying
the code to adjust the estimated slip based on the shear
stress state of the fault segment can eliminate this arti-
ficial trend. The stress evolution will be similar to the
thick elastic layer model but with a slightly increased
stress threshold.

3.2 Surface deformation simulation

We used the same models to estimate surface deforma-
tion. First, we estimated the long-term surface veloc-
ity without adding deformation caused by earthquakes.
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Second, we incorporated earthquake history into the
simulation. Co-seismic deformation is similar across
different models. The main difference lies in the post-
seismic viscoelastic deformation response. Models with
a thin elastic layer and low viscosity exhibit larger post-
seismic deformation.

The 3-D long-term surface velocity for a model with
H=40 km is shown in Figure 6. Because we assume full
relaxation, viscosity does not affect the result. The sur-
face velocity varies spatially in all three directions. Sur-
face velocity in the fault-parallel direction is the largest
and looks like a step function across the fault trace. The
velocity ranges from -60 mm/yr to 40 mm/yr (with pos-
itive values indicating movement to the west). Near
the fault trace, the velocity difference across the fault
varies between 0 and 140 mm/yr depending on whether
the segmentis creeping or locked between earthquakes.
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The velocity in the fault perpendicular direction located
near the end of the asperities ranges from 30 mm/yr
to -20 mm/yr (positive means going south). The verti-
cal velocity exhibits short-wavelength lobate patterns at
the endpoints of locked fault segments, consistent with
previous studies (Ward et al., 2022; Smith-Konter et al.,
2014), and resulting from double force-couples. Vertical
velocities at Gofar range from 10 mm/yr to -10 mm/yr
(positive is uplift) near the fault line and decreases to
zero when moving away from the fault. Figure 7 shows
the comparison of interseismic surface velocity for H=
10, 20, and 40 km. The basic features are very simi-
lar. However, the fault parallel component is noticeably
smaller in the far-field for thinner models, even though
at large enough distances, the fault-parallel long-term
rates will reach plate rate. The vertical velocity is much
higher in the far-field for thinner models, and the fault
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perpendicular velocity does not change much with H.

Both elastic layer thickness and viscosity affect the
postseismic deformation on the seafloor. We ran sim-
ulations beginning in August 2018 (year 2018.8) and
calculated the surface deformation until year 2025.
These models include long-term velocity, co-seismic,
and postseismic deformation. The most significant
earthquakes are in 2023 on the western segments (G3).
Figure 8A shows the difference in deformation during
the year 2025 for two extreme models (H10 V17 and H40
V20). The difference in the fault parallel and vertical di-
rections are more than 70 mm, whereas in the fault per-
pendicular direction it is 30 mm. Figure 8B shows the
displacement history at three locations. The most obvi-
ous differences between models are caused by the long-
term velocity, which depends on the elastic layer thick-
ness. Thinner models (H=10 km) show lower velocity
in the fault parallel and fault perpendicular directions
but higher velocities in the vertical direction at almost
all three locations. For models with the same elastic
layer thickness but different viscosities, the models with
lower viscosity produce more postseismic deformation.
Among the three locations, the most significant differ-
ence in deformation between the two extreme models
(H10 V17 and H40 V20) in the fault parallel direction is
at P1 (> 100 mm). The most extreme difference in the
vertical direction is at P2 (~60 mm), and that in the fault
perpendicular direction is P3 (~ 30 mm).

10

4 Discussion

4.1 Model simplification

In our model, we simplified the behavior of barrier
patches to free creep. However, the actual behavior
on faults is much more complex (Wolfson-Schwehr and
Boettcher, 2019). This complexity is controlled by het-
erogeneity in the rheological evolution, which is caused
by heterogeneous petrological fabric. This, in turn, is
influenced by heterogeneous fracturing, permeability,
and fluid flow (Cox et al., 2021; Gregory et al., 2021).
Earthquake swarms and foreshocks have been observed
at a barrier patch before the 2008 M6.0 earthquake on
G3 (McGuire et al., 2012) and might be driven by slow
slip events (Liu et al., 2020). Repeating earthquake
swarms have also been observed near the western edge
of G3 and the eastern edge of G1. These might be
driven by magma intrusion activities and/or aseismic
slip along the fault (Gong et al., 2023). In both cases, the
majority of the energy is released as aseismic slip. The
existence of small earthquakes does not significantly af-
fect the major earthquake cycles. The 2008 M6.0 earth-
quake on G3 might have been triggered by a slow slip
event (McGuire et al., 2012; Liu et al., 2020). The slow
slip events might have short term influence on the tim-
ing of large earthquakes but do not affect the general
behavior of the earthquake cycles.

Gong and Fan (2022) proposed a conceptual model
of microseismicity and fault slip modes at the western-
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most Gofar transform fault (Figure 10 in Gong and Fan,
2022). In general, their conceptual model is consis-
tent with the asperity model that we proposed for Go-
far (Figure 2), where locked patches are separated by
barriers with earthquake swarms and slow slip events.
However, their model has more details regarding along-
strike depth variation and seismicity in the mantle.
Also, they only proposed two seismic patches on G3
(zones 3 and 1in Gong and Fan, 2022) instead of three as
simulated here. This difference might be caused by dif-
ferent dataset used: we used global seismic data span-
ning the past 30 years, while Gong and Fan (2022) mostly
relied on OBS data between 2008-2009 when the west
segments were mostly active. Future data and events
should be able to indicate which one is more likely cor-
rect.

We assumed that the brittle crust is elastic in the en-
tire domain, underlain by a viscoelastic medium. While
this assumption is adequate for assessing the mechan-
ical response of locked fault segments within Gofar, it
is probably not valid at the ocean ridges (the two long
vertical red lines at the ends of the fault trace in Fig-
ure 6-8), where shallow magma chambers exist (Detrick
et al., 1987) and make the crust warmer and more vis-
cous. Hence, our model likely overestimates the surface
deformation on the ridge. Furthermore, itis known that
some OTFs are under compression or extension (Pock-
alny, 1997). Our calculations do not include the stress
accumulation due to compression or extension beneath
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the locked portions of each fault segment because there
is little data to constrain that.

In the real OTFs environment, the two fault perpen-
dicular boundaries should also have uniform velocities
due to the existence of ocean ridges. Our model does not
include ocean ridges, and we focus on OTFs behaviors.
Even though the results beyond the two ridges (lightly
shades areas in Figure 6-8) are not realistic, the calcula-
tion on the OTFs between the two ridges should be good.

4.2 Coulomb stress threshold

Our model shows that most segments on Gofar have a
nearly constant Coulomb stress threshold of 2-3 MPa
at 4 km depth (Table 2). This threshold is compara-
ble to modeling studies of other fault systems such
as the San Andreas Fault (Smith-Konter and Sandwell,
2009), the North Anatolian Fault (Stein et al., 1997), the
Xianshuihe-Xiaojiang Fault (Shan et al., 2013) and the
Central Apennines extensional system (Mildon et al.,
2019). This threshold is also in agreement with stress
drop that was estimated from the spectral analysis of
seismograms for moderate to large earthquakes (All-
mann and Shearer, 2009). Even though stress drop esti-
mates for individual earthquakes range from about 0.3
to 50 MPa, the median stress drop is about 4 MPa and
does not vary with moment between Mw from 5.2 to
8.3 (Allmann and Shearer, 2009). The 2-3 MPa thresh-
old that we observed is evaluated at 4 km depth, and
we note that this value varies with depth strongly for
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shallower and deeper portions of the asperities. While
the average Coulomb stress for the asperities, which is
physically equivalent to stress drop, might be half of the
value, this is still within the range observed by Allmann
and Shearer (2009) and close to the average. Therefore,
both numerical models and observations indicate that
the Coulomb stress change over earthquake cycles is on
the order of a few MPa, regardless of the absolute stress
level on these faults.

4.3 Time- and slip-predictable models

Time-predictable model (Shimazaki and Nakata, 1980)
and slip-predictable model (Bufe et al., 1977) are
two popular earthquake cycle models. In the time-
predictable model, earthquake will occur once the
stress reaches a threshold. Therefore, the timing of the
earthquakes is predictable by tracking the stress evolu-
tion. In the slip-predictable model, the timing of events
is not predictable, but the slip is. The slip is large if the
time from the last eventis long. Researchers have tested
these two models against various datasets and the appli-
cability of these two models are still under debate (see
Rubinstein et al., 2012).

Our model assumes that the slip of an earthquake on a
segment is proportional to the time from the last event,
which makes our model intrinsically slip-predictable.
The evolution of Coulomb stress as shown in Figure 4 is
very similar to the classic slip-predictable model. How-
ever, because the variation in interval and maximum
Coulomb stress is quite small in most asperities, one
can estimate the time of the next event using a Coulomb
stress threshold (Table 2). Effectively, the earthquake
cycle is time predictable with a reasonably small uncer-
tainty at Gofar.

4.4 Seafloor geodesy

Seafloor geodesy has improved significantly over the
last several decades (Biirgmann and Chadwell, 2014)
and could be applied at Gofar in the near future. Most
surface deformation at Gofar is in the fault-parallel di-
rection. The GNSS-A method can measure horizontal
deformation within a few centimeters of uncertainty
(Chadwell and Sweeney, 2010; DeSanto et al., 2023) and
seems to offer the best chance of recording tectonic de-
formation at Gofar. However, the GNSS-A method usu-
ally requires three transponders at one location, and
measurements can only be made using a surface vehicle
(such as a ship or waveglider) in a campaign-style man-
ner. At best, one can get a couple of measurements per
year. The remote location of Gofar has limited the prac-
tical use of the GNSS-A method. However, as technology
advances, this situation might change. For example, a
mooring-based surface platform could be deployed to
collect data more continuously. Even a few measure-
ments over a few years could be useful to distinguish
models because the expected difference is quite large.
Moreover, oceanic transform faults closer to land, such
as Blanco and Mendocino, could be better targets for
GNSS-A field projects due to easy access.

In contrast, direct acoustic ranging has been used to
measure tectonic deformation across transform faults
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in the ocean (McGuire and Collins, 2013; Lange et al.,
2019; Yamamoto et al., 2019). This technique is effec-
tive for accessing the locking state of segments and cap-
turing shallow afterslip and slow slip events. However,
it can only measure distance between transponders,
which is usually only a few kilometers due to the down-
ward bending nature of acoustic wave propagation near
the ocean bottom. It is less useful to measure deforma-
tion off the fault and has no sensitivity to broader defor-
mation related to mantle rheology.

Another promising tool is seafloor pressure sensors,
which can continuously measure vertical seafloor de-
formation with a couple of centimeters of uncertainty
over a five-year period (Dobashi and Inazu, 2021; Watts
et al., 2021). These sensors could be useful at Gofar
if deployed at carefully selected locations. For exam-
ple, P2 in Figure 8 has large difference in vertical mo-
tion between models, making it a good potential loca-
tion for deploying a pressure sensor. Although the mea-
surements are subject to ocean noise due to non-tidal
oceanic processes, recent studies have developed meth-
ods to reduce this noise to only a few millimeters by re-
moving common ocean signals using a reference sta-
tion (Fredrickson et al., 2019, 2023). Further work is
necessary to understand the feasibility of implement-
ing pressure sensors at Gofar, including the effects of
topographical features and locations with varying water
depths.

Given the rapid development of seafloor geodesy in
the past few years, it is reasonable to expect future field
work at Gofar or other oceanic transform fault systems
to collect both seafloor geodesy data and seismic data.
Future seafloor geodetic data can be used to illuminate
critical characteristics of the fault system and help dif-
ferentiate between models with different viscosities or
locking depths.

5 Conclusions

We developed a numerical model of the earthquake cy-
cle along the Gofar oceanic transform fault system. The
160-km-long fault is divided into three major segments
with six asperities. Our model can simulate the earth-
quake pattern on this fault for the past 30 years. Most of
the time, each asperity ruptured as a large earthquake
every 3-5 years. Most segments have a nearly constant
Coulomb stress threshold of 2-3 MPa, and future earth-
quakes have been forecasted accordingly. For three
cases that deviated from this simple regular pattern, a
large earthquake occurred with a centroid location be-
tween two asperities. This is likely due to concurrent
rupture that involved both asperities. We also modeled
surface deformation with different elastic layer thick-
nesses and mantle viscosities. Even though most defor-
mation is in the horizontal direction, the difference in
both horizontal and vertical directions between models
can be as large as a few centimeters per year. Advances
in seafloor geodesy methods can be used to differenti-
ate between models, and seafloor pressure might be the
most appropriate one at this remote location.
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