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Abstract Geomorphic markers such as displaced surfaces, offset rivers or scarps are witnesses to the
neotectonic activity of the faults. The characterization (such as fault detailed surface trace, the scarp height,
etc.) of these geomorphological markers is currently a time-consuming step with expert-dependent results,
often qualitative and with uncertainties that are difficult to estimate. To overcome those issues, we present
a proof of concept study for the use of deep learning in morphotectonics, specifically on fault markers. We
developed a Bayesian supervisedmachine learningmethod using one-dimentional (1D) convolutional neural
networks (CNN) trained on a database of simulated topographic profiles across normal fault scarps, called
ScarpLearn. From a topographic profile, ScarpLearn is able to automatically give the cumulative scarp height
with an uncertainty. We have developed two versions: one designed for more generalized cases involving
profiles with multiple fault scarp (ScarpLearn), and another specifically trained to handle profiles featuring
a single fault scarp (ScarpLearn_1F). We apply ScarpLearn for the characterization of active normal faults in
extensional settings such as the Trans-Mexican Volcanic Belt andMalawi Rift system. From those specific case
studies, we explore the progress (computation time, accuracy, uncertainties) that machine learningmethods
bring to the field of morphotectonics, as well as the current limits (such as bias). Our results show that we
are able to develop a CNNmodel that is estimating scarp heights on topographic profiles from 5m resolution
digital elevation model. We compared the results obtained with ScarpLearn and other non deep-learning
methods. ScarpLearn achieves similar accuracy while being much faster and having smaller uncertainties.
We invite readers to use and to extend our study: codes to build the synthetic scarp database and for the CNN
model ScarpLearn are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/poussel/scarplearn.

1 Introduction
Characterization of geomorphic markers recording
fault deformation is crucial to understand past fault ac-
tivity and future potential impact of earthquakes (i.e.,
Crone and Haller, 1991; Wells and Coppersmith, 1994;
Schlagenhauf et al., 2008). Indeed, this activity is
recorded in the landscape leaving amorphological trace
documenting the historical physical processes that gov-
ern fault rupture (i.e., Zhang et al., 1991; McCalpin and
Slemmons, 1998; Kurtz et al., 2018). Among the exam-
ples of characterization of faulting geomorphological
evidence, the offset’s quantification created by ruptures
that have reached the surface is a parameter directly
used to estimate fault rates, spatial patterns of past rup-
tures, and slip rates (i.e., Arrowsmith et al., 1998). This
information is needed to model the past activity of the
fault and estimate the potential hazard for society.
In this study, we focus on normal faults that are of-
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ten responsible of shallow and destructive earthquakes
in numerous inhabited regions of the world (i.e. Cen-
tral Italy, Wasatch Mountains, Central Mexico). Those
faults marks out the landscape through a vertical off-
sets leaving a typical trace: a scarp (Fig. 1). The scarp is
the expression of earthquake in the landscapewhen the
rupture reaches the surface. It is due to the slip along
the fault plane that creates a free face which slope is
greater than the angle of surrounding hillslopes. This
scarp then undergoes erosive processes through times,
altering its slope by degrading it (Wallace, 1977; Nash,
1980). Further rupture on the same fault splaymay reju-
venate the scarp, whichwill be affected by erosion once
again, altering its shape. Such normal fault scarps have
been numerically modeled to characterize and decor-
relate the forcing from seismic ruptures and erosional
processes (e.g., Avouac and Peltzer, 1993; Hodge et al.,
2020; Tucker et al., 2020; Gray et al., 2021; Holtmann
et al., 2023). These models focus on the variation of el-
evation along scarp over time and both models and ob-
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servations show that one scarp can also be the sum of
various slopes reflecting the complex history of the pro-
cesses shaping the landscape, both constructive and de-
structive.

Figure 1 Example of a normal fault scarp in Italy in the
Apennines which shows the co-seismic rupture of the 30th
October 2016 Norcia earthquake at the base of the cumu-
lative scarp created by previous ruptures (modified from
Pousse-Beltran et al., 2022). A) Photo view without inter-
pretation B) with interpretation C) AA’ topographic profile
across the DEM (Digital Elevation Model) showing footwall
and hanging wall (real data).

For tectonic characterization purposes, the morphol-
ogy of normal fault scarps is mainly analyzed through
topographic profiling across the fault. Most studies fo-
cus on the vertical offset or the throwor the scarpheight
that are themost direct parameters signing the cumula-
tive amount of seismic slip. In the very particular con-
text of a flat and horizontal surfaces, the vertical offset,
the throw or the scarp height would be the same thing.
However, for an inclined surface or a more complex to-
pography with slope breaks there can be quite impor-
tant differences between these parameters and differ-
ences in definition according to authors in the bibliog-
raphy (details in the following paragraph and in supple-
mentary, Fig. S1). To avoid any confusion, the defini-
tions that we consider for each of them in this study are:

• the vertical separation is the altitude difference be-
tween the projection of the planes that fit the upper
and lower geomorphic surfaces at a point (x) along
the topographic profile (Fig. 12-A), it is not directly

related to a fault and allows avoiding implication of
tectonics interpretation

• the throw is the vertical component of the slip dis-
placement commonly measured at the base of the
fault scarp (Fig. S1-B-C), here it is clearly implicit
that the measurement is related to tectonic defor-
mation (e.g., Pucci et al., 2021).

• the scarp height is the altitude difference between
the projection of the planes that fit the upper and
lower geomorphic surfaces at a point (x) along the
topographic profile but need the existence of a
fault. It thus corresponds to the the difference in
altitude at a specific point (x) between a line that
fits the footwall and another line that fits the hang-
ing wall (Fig. S1 -D). The location of this point is
detailed below. In some papers the term ”surface
offset” or “vertical offset” is used instead (e.g., Mc-
Calpin, 2009; Campbell et al., 2015).

• the vertical offset can also be seen as a value com-
prised between 1) the difference in altitude be-
tween the hanging wall and the projection of the
hanging wall on the footwall where the inflection
due to the scarp begins and 2) the inverse, i.e.
the difference in altitude between the footwall and
the projection of the footwall on the hanging wall
where the inflection due to the scarp begins (see
Fig. S1-F).

It should also be noted, that when the scarp does not
correspond to the fault free face: the slope of the scarp
is not the slope of the fault (Fig. S1-C). Scarp height is
more often used because it take into account a variabil-
ity of the footwall and the hanging wall slopes and thus
allows to take into account a more complex geomor-
phology (e.g., Johnson et al., 2018; Hodge et al., 2019a).
In the following sections of the manuscript we will

then focus on the scarp height as it is a parameter sign-
ing the cumulative amount of seismic slip (Fig. 1). More
in detail, the classic scarp height estimation can be di-
vided into two stages:

• a mapping step which consists of delimiting three
portions of the topographic profile that corre-
sponds to the hanging wall, the footwall, and the
scarp (Fig. 1). The complexity lies in the possible
disturbance of the topography created by erosion,
sedimentation, drainage, non-geologic related fea-
tures (trees, anthropic disturbance, etc.). Also com-
plexity comes from identification and reconstruc-
tion of the markers that are offset, that influences
their projections to the fault.

• an estimation step where these portions are fitted
to three lines, which are used to estimate the scarp
height (Fig. 2). However, particular attention must
be paid to where the scarp height measurement
is performed. Some studies focus on the middle
of the scarp (e.g., Johnson et al., 2018); others on
the location where the scarp has a maximum slope
(e.g., Hodge et al., 2019a; Scott et al., 2022); others
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Figure 2 A) Sketch showing the scarp height’s definition used in this manuscript. Here the scarp height is measured at the
center of the width of the scarp. B) Case where the fault dip is different from the scarp dip.

project the hanging wall (or the footwall) on the in-
flexion between the footwall (or hanging wall, re-
spectively) and the scarp to bracket the scarpheight
(see in supplementary the Fig. S1-C-D-E).

To make these measurements, a high-resolution to-
pographic profile is therefore required. In the last 20
years, to get the accurate topographic measurements,
researchers used to go into the field to measure Real-
Time Kinematic positioning profiles and manually esti-
mate the scarp height (e.g.,Mitchell et al., 2001). For the
last 10 years, thanks to the remote sensing democratiza-
tion (drones, access to satellite data), researchers have
computed digital elevation models (DEM) that cover
several tens to hundreds of kilometres of fault zones at
high resolution (<5 m). It therefore became necessary
to create the tools to systematize the measurements.
In the last 5 years, several research groups have devel-
opedmethods to estimate the scarpheight by empirical,
semi-manual or semi automatic approaches (e.g., Stew-
art et al., 2018; Johnson et al., 2018; Hodge et al., 2019a;
Wolfe et al., 2020; Scott et al., 2020; Salomon et al., 2021;
Bello et al., 2021; Scott et al., 2022). We can group these
approaches into six main categories:

• Manual methods: for each profile, once the por-
tions of hangingwall, footwall and scarp are choose
manually, a line is empirically fitted as best as pos-
sible through the three portions (identified visu-
ally). This manual fitting will exclude non-tectonic
perturbations (tree, valleys). A measure of uncer-

tainty can be estimated by identifying the maxi-
mum and minimum scarp heights.

• Semi-manual methods such as ”Monte Carlo Slip
Statistics Toolkit” (MCSST) by Wolfe et al. (2020):
inspired by manual methods, here the fit is done
by least square optimization. The manual part
consists in choosing the limits of the three por-
tions. The uncertainty can be estimated from
Monte Carlo simulations which models all possi-
bility by considering the least square fitting uncer-
tainties of each three portions.

• Semi-automatic methods such as Scarp Parame-
ter Algorithm (SPARTA, Hodge et al., 2019a), which
needs a manual calibration by pointing manually
the portion boundaries on some reference pro-
files to then automatically estimate the portions on
other similar profiles. The topographic portions
are finally fitted to lines using least-squares opti-
mization. This method requires the user to choose
the filter applied to the topographic profile and as-
sociated filter parameters. Moreover, there is no
uncertainty estimation.

• Semi-automaticmethods such as proposed by Scott
et al. (2022), providing both a mapping and a scarp
height estimation. This method is semi-automatic
as it first requires a manual calibration on a re-
stricted zone of the study area. Once this calibra-
tion is done, the algorithm can be run on the whole

Table 1 Overview of published approaches that focus on onshore normal fault scarp.

References Approach Fault Detec-
tion

Scarp height estimation
method Uncertainties

Classic manual estimation Manual No Empirical Minimum and Maximum
Wolfe et al. (2020): MCSST Semi-Manual No Least-square Monte Carlo
Hodge et al. (2019a): SPARTA Semi-Automatic No Least-square No

Sare et al. (2019) Automatic Yes Template matching but it is
not the focus Overall quality of the fit

Scott et al. (2022) Semi-Automatic Yes Least-square and grid
search Percentile

This study: ScarpLearn Automatic No Convolution Neural Net-
work Bayesian Inference
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study area. The height estimation is obtained by
a parameter grid search and by fitting lines to the
topographic flats bordering each fault using least-
squares optimization. To obtain the uncertainty of
the scarp height, the algorithm takes the 16th - 84th
percentiles of the heights obtained from satisfac-
tory setting conditions of confidence theyhave cho-
sen.

• Automatic methods using an analytical solution
such as Sare et al. (2019): it recovers the loca-
tion and amplitude of the scarp through template
matching. In this study the aim is mainly to test
the detection capability, while the validation of
the scarp amplitude estimation is only slightly dis-
cussed. The uncertainty in height is not directly es-
timated, but it is indicated by the overall quality of
the fit of the template.

• Automatic method using Linear Discriminant
Analysis (LDA) (such as Vega-Ramírez et al., 2021)
for offshore settings. This approach consists in
a segmentation operation to isolate the objects
to classify (here faults). The object are profiles
extracted from the bathymetry. Once identified as
a fault, the method extracts the semi-scarp height
by regressing the profiles against the equation of
Nash (1980) as a scarp degradation model (that
assumes the fault’s vertical offset is accrued in
a single rupture event). Although this approach
seems to offer an automatic solution, it only fo-
cuses on offshore environment having a smoother
topography. It seems difficult to transfer this
approach for the onshore environment.

Most of these methods have systematized detection
and/or height measurements (Tab. 1). However, among
thosewho focus on estimating the scarpheight, they are
all time-consuming because still at least partly manual,
and sometimes even needing a person-dependent cal-
ibration step. If this calibration is not frequently per-
formed, the methods can either perform a wrong esti-
mation or not provide any estimation. In other words,
manual and semi-automaticmethods are prone to oper-
ator error, though they retain human oversight, which
can be beneficial for aspects of the estimation process.
Fully automated methods, while more time-efficient,
may introduce artifacts that require a level of critical
evaluation to identify and interpret appropriately.
To overcome these issues,machine learningmethods

and in particular deep learning can represent an inter-
esting solution. Today, artificial intelligence techniques
have proven to be efficient in performing many auto-
matic tasks in Geosciences (i.e., Ren et al., 2020), in par-
ticular using Convolutional Neural Networks (CNN), a
deep learning architecture designed to process images
or time series. Specifically in the field ofmorphotecton-
ics,machine deep learning has only been scarcely used,
such as for the automatic mapping of fractures and
faults (Mattéo et al., 2021) or to quantify the rock trait
distributions of rocky fault scarps (Chen et al., 2023).
Here we propose to automatize the fundamental task

of scarp height estimation by evaluating the ability of a

supervised CNN (ScarpLearn) trained on realistic syn-
thetic topographic profile catalogs to characterize any
normal fault scarp height within a second.

Figure 3 Synthetic normal fault scarp produced by our
simulator SimScarp to train the CNN ScarpLearn. The sec-
ondary fault (created in Step 2) is subjected to diffusion.
Step 4 is repeated as many times as required in order the
follow the inputparameters (here the total numberof earth-
quakes). The total cumulative scarp height (in meters) is
used as the ground truth label by ScarpLearn. At the Step
5, the perturbations are not subjected to diffusion, they are
persistent.

2 Scope

The purpose of this investigation is to develop and eval-
uate an algorithm (ScarpLearn) that automatically es-
timates the cumulative scarp height for normal faults
from a topographic profile with an uncertainty quan-
tification. ScarpLearn targets natural cumulative nor-
mal fault scarps, i.e. scarps that may have been created
by one or more earthquakes. The results are indepen-
dent of the user, and thus reproducible with the trained
ScarpLearn machine learning model. The profiles, per-
pendicular to the fault, are first extracted from terrain
elevation models. Here ScarpLearn measures the scarp
height with an uncertainty localized at the middle of
the profile. ScarpLearn is able to ingest topographic
profiles disturbed by erosion, drainage, vegetation, and
other perturbations. We have developed two versions:
ScarpLearn, a generic version for profiles withmultiple
fault scarps, and ScarpLearn_1F, specifically trained for
profiles featuring a single fault scarp.
As there are not enough real data labelled in the lit-

erature (i.e. profiles with known ground truth scarp
heights) to train the neural network, ScarpLearn is
trained on synthetic topographic profiles created by our
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Table 2 Parameters chosen from statistical distributions to create topographic profiles in SimScarp. See Supplementary
Text S1.1 for more detail.

Parameters Distribution Minimum Maximum Mean Standard De-
viation

Regional
slopes

Hanging wall slope βh Uniform -5° 10° / /
Footwall slope βf Uniform -5° 10° / /

Secondary
faults

Number of secondary fault Uniform 2 2 / /
Dip secondary fault δ Uniform 25° 80° / /

Secondary fault location Uniform Borders profile
5% away of the
middle of the
profile length

/ /

Main fault

Dip main fault δ Uniform 25° 80° / /

Main fault location Gaussian / / Middle of the
profile

5% of the pro-
file length

Throw per event Uniform 0.1 m 5m / /
Total cumulative throw Uniform 1m 50m / /
Diffusion Uniform 0.5 m2/Kyr 10 m2/Kyr / /
Slip rate Uniform 0.05 mm/yr 20 mm/yr / /
Minimumnumber of events Uniform 1 1 / /

Perturba-
tions

Gaussian noise Gaussian / / 0 (0.1-1)
Parabolas A number Uniform 0 1 / /
Parabolas A width Uniform 0.1 150 / /
Parabolas A height Uniform -10 10 / /
Trees number Uniform 0 10 / /
Trees width Uniform 0.1 10 / /
Trees height Uniform 1 15 / /

simulator SimScarp. The chosen characteristics to cre-
ate the catalog are crucial as it can restrict the scope of
ScarpLearn. Synthetic topographic profiles are offset by
a fault affecting the profile in its center (range of ±5 %,
Fig. 3). This fault can rupture several times creating a
cumulative fault scarp. At each inter-seismic period the
scarp is subjected to some diffuse erosion, and random
perturbations, such as trees, are also added to produce
a realistic profile. For the generic version ScarpLearn,
several secondary faults are also simulated in order to
perturb the profile. Broadly, we are attempting to simu-
late first order geomorphologic imprints using theoret-
ical knowledge. For example, we have excluded back-
tilting or rotation of the hangingwall, regolithmobiliza-
tion, non-colluvial geomorphic processes, pedogenic
processes.

In this manuscript we will then validate the algo-
rithm with synthetic data not included in the training
set. Then we will apply this algorithm on real cases
from Mexico and Malawi in order to test ScarpLearn
in real conditions. In addition, we have compared
ScarpLearn’s results with existing semi-manual and
semi-automatic methods: MCSST (Wolfe et al., 2020)
and SPARTA (Hodge et al., 2019a) both on synthetic and
real data. These methods are selected because they use
the same scarp heightmeasurement convention as cho-
sen in this paper (measured in the middle of the scarp
width such as in Fig. 2) except forMCSST thatmeasure it
to the point of maximum slope on scarp and are repre-
sentative of existing approaches for comparison (semi-
manual and semi-automatic).

3 Methodology

3.1 Synthetics created with numerical
model: SimScarp

Convolutional neural networks require a large and var-
ious (balanced) dataset for training, this is a chal-
lenge for morphotectonic studies because there are not
enough real examples of normal fault scarp precisely
characterized in the literature. This is due to the time-
consuming anddifficult task of building such a database
(i.e., Nurminen et al., 2022). In fact studies summa-
rizing the characterized normal fault scarps can be in-
complete due to sparse measurements. Moreover, the
height estimation can never be certain, as there is no
cross-validation by multiple experts. In consequence,
we have opted to create synthetic catalogs although
it implies simplifications of natural processes. For
this purpose we have developed a simulator SimScarp,
which can create topographic profiles of synthetic nor-
mal fault scarp with random parameters resulting from
robust statistical distributions (Fig. 3). These distribu-
tions are designed to reflect realistic morphologies (see
Tab. 2, Fig. 3, and Supplementary Fig. S2) but also to
represent awide range of examples, therefore SimScarp
is based on a set of parameter values picked from con-
trolled uniform distributions.
For each training set, we can control the length and

resolution of the profiles, as well as statistical distribu-
tions of the parameters used. For each profile, the sim-
ulator SimScarp randomly samples: the diffusion con-
stant, the hanging wall slope, the footwall slope, the
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Figure 4 Schematic representation of the pipeline for scarp height characterization: ScarpLearn (1D convolutional neu-
ral networks). Between input layer and output layer, there are 3-convolutional layers fully connected layers including an
Bayesian inference. The input is a topographic profile across the fault trace. The output of the ScarpLearn is the value of the
scarp height with an uncertainties (at 1σ). The link to download ScarpLearn is https://gricad-gitlab.univ-grenoble-alpes.fr/
poussel/scarplearn.

number of faults, the fault dip, the fault location, the
total cumulative slip, the slip rate, the number of event
and someperturbations parameters (seeTab. 2 and Sup-
plementary Text S1.1). Using the slip rate, the total cu-
mulative slip and the number of event, the model re-
calculates the throw per events and the period between
each event. For each event the model creates a scarp at
the center of the scarp. Then a diffusive erosion is ap-
plied during the inter-event period, following Smith and
Bretherton (1972)’s equation simulated as proposed in
Nash (1980):

(1)
dZ

dt
= κ

d2Z

dx2

where Z is the elevation, t the time, x the horizontal dis-
tance and κ the diffusion constant (m2/Kyr). We sam-
ple the random diffusion constant κ once, as a uni-
form distribution between 0.5 and 10 m2/Kyr. This
range includes arid conditions (0.5-5 m2/Kyr) and semi
arid to humid temperate condition (up to 10 m2/Kyr)
(Hanks et al., 1984; Andrews and Hanks, 1985; Arrow-
smith et al., 1996; Hanks, 2000; Carretier et al., 2002;
Kokkalas and Koukouvelas, 2005) . We also allow sec-
ondary fault scarps as perturbations both on the hang-
ing wall and footwall (but not in the center), submitted
to diffusion as well. The total scarp height SH is finally
calculated as the sum of scarp heights from each event
(without taking into account the secondary scarps on
the sides).
Lastly, Simscarp adds non-tectonic perturbations at

random locations along the profile in order to create a
realisticmorphologies using randomparabolas or steps
functions such as in Hodge et al. (2019a) to simulates
hills, valleys or trees. More details are provided in the
Supplementary Text S1.1 .

We simulate with SimScarp a database of 5000 differ-
ent topographic profiles with their related scarp height
SH (the label), to be used as training set by themachine
learning model ScarpLearn. Each profile is 1km long,
with a resolution of 5m (it is a vector of size 200). The
total scarp height SH ranges between 0 and 50 m.

3.2 CNN: ScarpLearn

To learn the scarp height, we designed a 1-dimentional
regression convolutional neural network (CNN) with 3
layers called ScarpLearn. This choice is based on the
fact that each profile is an ordered vector, similar to a
time series, which thus benefits from convolution op-
erations able to extract meaningful features at different
scales. Each of the 3 layers is a convolutional layer fol-
lowed by a pooling layer and a ReLu activation function
(Fig. 4). To have an uncertainty (or confidence interval)
associatedwith eachprofile, crucial formorphotectonic
analysis in particular for the scope of probabilistic seis-
mic hazard models, we use variational Bayesian learn-
ing. We follow themethodBayes by Backprop of Blundell
et al. (2015) incorporated in Pytorchby the packageBlitz
(Esposito, 2020) that allows to assign probability distri-
butions on the weights of a neural network. During its
training, the weights of the CNN will be iteratively op-
timized in order to reduce the error between predicted
and real offsets while estimating consistent uncertain-
ties (i.e. confidence interval). The balance between the
two factor is adjusted by the complexity cost weight,
here that we defined following Shridhar et al. (2019a,b)
as a Blundell method.
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3.3 Training using synthetic catalogs
We train ScarpLearn on our synthetic set (5000 sam-
ples) using a batch gradient descent of 32 samples per
batch. For each batch, the model error is calculated us-
ing a loss function that is further back-propagated to up-
date all the model parameters in order to minimise the
Kullback-Leibler (KL) divergencewith the trueBayesian
posterior (Blundell et al., 2015). For each prediction, on
the batch, we measure the accuracy by simulating the
prediction distributions and extract a mean to compare
with the correct label. This process is repeated for 300
iterations (i.e. epochs). After each epoch, we estimate
the validation error of the validation set. We follow the
evolution through the epochs of the ELBO loss which
consists of the sum of the KL Divergence of the model
with themean squared error and the accuracy (here the
mean absolute error) of themodel optimization (Fig. 5).
Loss and accuracy curves decline rapidly over epochs,
indicating a good convergence of the model. Training
ScarpLearn on the synthetic data yields a mean accu-
racy on the validation set of 3.8 m. The accuracy is here
the Mean Absolute Error (MAE), i.e. the average of the
absolute differences between the scarpheight predicted
by ScarpLearn and true the scarp height known for the
synthetic dataset. Concerning the confidence interval,
10% (Fig. 5) of thepredicted target intervals are integrat-
ing the ground truth value. To convert this confidence
interval into uncertainties, we thus multiply it by 10 to
simulate a 1σ uncertainty.
In addition, we also trained ScarpLearn_1F; another

version that is based on a learning database consisting
only of 1-fault profiles (see Supplementary Text S1.2).
This version can be used when only a single fault trace
affects the topography. To ensure this condition, an
accurate geomorphological mapping is required. With
this version, we reached a Mean Absolute Error on the
validation set of 1.6 m.

3.4 Application and comparison using syn-
thetic and real study cases

First, using the same synthetic database (with known
true scarp heights), wewill estimate scarp heights using
ScarpLearn, MCSST, and SPARTA. Additionally, we will
compare the time required for each method to perform
this estimation. Specifically, we ranMCSST on the same
profiles, for each profile the user manually selects the
boundaries of the hanging wall, footwall, and scarp, we
slightly modified MCSST to also estimate scarp height.
The MCSST then performs a least-squares fitting for
each of the three sections. Then it performs a Monte
Carlo simulations (10000 simulations) to generate a dis-
tribution of scarp heights. Similarly, SPARTA was ap-
plied to the same profiles. To do so, we conductedman-
ual calibration by manually marking the boundaries of
portions on reference profiles, allowing SPARTA to au-
tomatically estimate the boundaries on all the profiles.
Finally, the topographic portions arefitted to lines using
least-squares optimization, and only one scarp height
estimate is obtained for each profile.
Testing ScarpLearn on real data is more challeng-

ing as there will always be unknowns due to the in-

Figure 5 Loss (A) and accuracy (B) function through the
epochs for the training and the validation. (C) Confidence
Interval range prediction. Those plots show if labels (syn-
thetic ground truths for the validation) fall in the predicted
confidence interval for each epochs.

herent nature of scarp measurement (no ground truth
available). We would require a measurement just be-
fore and just after an earthquake (in terms of hours),
which is an impossible task, especially for cumula-
tive Holocene scarps. InSAR (Interferometric Synthetic
Aperture Radar), optical or Lidar (Laser imaging de-
tection and ranging) data before and after an earth-
quake are currently available with a revisit time of sev-
eral days at most, and most frequently months. How-
ever, these measurements have either low spatial reso-
lutions (>10m) for measurements with small temporal
baselines (days, e.g. InSAR) or high spatial resolutions
(cm) for measurements but with large temporal base-
lines (months, e.g. LiDAR), the latter being more likely
to have undergone erosion processes.

Since it is not possible to validate with real data, we
are limited to compare the results of real samples to ex-
isting methods. Performing a test by comparing with
other methods is however challenging. Indeed studies
on repeatability of geomorphology measurements or
mapping show there is always a variability of the result,
making it challenging to achieve precise unique valida-
tion (i.e., Arrowsmith et al., 2012; Salisbury et al., 2015;
Kozacı et al., 2021; Scott et al., 2023). Therefore, scarp
height measurements from manual, semi-manual, or
semi-automaticmethods include simplifications and er-
rors, making them not a ground truth, yet the compari-
son is crucial for analyzing each method’s benefits and
limitations.
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Table 3 Main results to compare ScarpLearn, MCSST, SPARTA using synthetic datasets (see Fig. 6). The relative error, corre-
sponds to themedianof absolute relative errors (seedistributions in supplementary Fig. S3). RMSE is theRootMeanSquared
Error. NLL is theNegative Log Likelihood, lowerNLL is, thebetter themodel fits thedata in caseof comparingpredictionswith
uncertainties to a truth value. Relative uncertainties are expressed as mean ± std using 1σ. PICP is the Prediction Interval
Coverage Probability, a 100% means that all truth values fall in the prediction interval. * SPARTA does not give results in all
cases.

Sets Metrics ScarpLearn ScarpLearn MCSST SPARTA* SPARTA*

Simple
Dataset

Number of profiles 100 (on 50) 50 52 over 100 (29 over 50 )
Time to process <1 min <1 min 3-4 hours < 1 hour
Mean scarp height 23.3 m 24.6 m 23.8 m 32.3 m 32.5 m
Mean Absolute error
(MAE) 3.9 m 4.8 m 3.2 m 8.5 m (9.0 m)

Absolute Relative error
(median) 11.3% 9.3% 6.0% 16.4% 19.1%

RMSE 6.4 m 8.1 m 7.1 m 14.7 m (15.2 m)
PICP at 1σ, 2σ, 3σ 75%, 88%, 94% 68%, 84%, 88% 92%, 96%, 96% -
Mean and std of uncer-
tainties (at 1σ) 4.8 ± 1.9 m 4.5 ± 1.9 m 10.7 ± 9.1 m -

NLL 3.9 4.8 3.3 -
Relative uncertainties
(median) 22 ± 30% 20 ± 12% 31 ± 5559 % -

Complex
Dataset

Number of profiles 100 (50) on 50 21 over 100 (12 over 50)
Time to process <1 min <1 min 3-4 hours < 1 hour
Mean scarp height 23.5 m 22.7 m 19.0 m 30.5 m 34.0 m
Mean Absolute error
(MAE) 5.7 m 6.0 m 5.4 m 10.6 m (13.6 m)

Absolute Relative error
(median) 25.0% 27.4% 15.6% 15.1% 14.8%

RMSE 7.6 m 8.1 m 7.9 m 18.1 m (22.5 m)

PICP at 1σ, 2σ, 3σ 74%, 93%, 97% 68%, 92%, 96% 94%, 100%,
100% -

Mean and std of uncer-
tainties (at 1σ) 9.5 ± 5.0 m 9.5 ± 5.1 m 23.4 ± 19.3 m -

NLL 3.8 3.8 3.7 -
Relative uncertainties
(median) 36 ± 39 % 36 ± 32 % 100 ± 1101 % -

4 Results

4.1 Validation and comparison using syn-
thetic cases

First, to compensate for the lack of ground truth data,
we propose to compare scarp heights obtainedwithMC-
SST (semi-manual method), SPARTA (semi-automatic
method) and ScarpLearn on synthetic tests. We test on
two new test sets of synthetic samples of 100 profiles
each:

• a simple set, with 1, 2 or 3 faults, with low regional
slopes (between -5° and 10°), and few perturbations
(see appendix Tab. S1)

• a complex set, also with 1, 2 or 3 faults, but with
a wide range of regional slopes (between -10° and
25°), andmoreperturbations (see appendixTab. S3)

4.1.1 Validation of ScarpLearn using synthetic
cases

We apply ScarpLearn to the two test sets of synthetic
data (as for the training set, each profile is 1km long
at 5m resolution): the whole inference takes less than
1 minute. By comparing with the ground truth value,
ScarpLearn yields amean absolute error (MAE) of 3.9m
for the simple set and 5.7m for the complex set. For ab-
solute relative error (median), it yields 11.3 % and 25.0
% ,respectively, for the simple and complex set (Fig. 6-a
and Tab. 3 for other metrics). Furthermore we observe
that when the predictions are correct, the uncertainty
bars are small, while the wrong predictions also show
larger estimated uncertainties allowing to encompass
the true values (Fig. 6). We obtain 4.8 ± 1.9 m (mean
± std) of uncertainty (at 1σ) for the simple test set and
9.5 ± 5.0 m (mean ± std) of uncertainty for the complex
test set. The relative uncertainties obtained show a scat-
tered distribution (22 ± 30 % and 36 ± 39 %)
We also analyzed the results by separating the sam-

ples containing with only one fault, only two faults, or
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only three faults (Supplementary Tab. S3, and Figs. S4,
S5, 56). ScarpLearn yields, respectively, for the simple
setting an MAE of 2.3 m, 3.6 m and 4.4 m. As the num-
ber of faults increases, themodel becomes less accurate
for simple setting. For the complex setting, theMAEnot
show the same trend as we obtain MAEs of 8.8 m, 5.7 m
and 7.6 m.

4.1.2 Validation of ScarpLearn_1F using syn-
thetic cases

Here we used 25 synthetics profiles containing only 1-
fault trace (Supplementary Tab. S4 and Fig. S4). For the
simple test set, ScarpLearn_1F achieves a mean abso-
lute error (MAE) of 1.3 m and a median abs. relative
error of 5.8%. The uncertainties are quantified as 2.9
± 0.8 m (mean ± standard deviation) with a relative un-
certainty averaging 16 ± 23%. For the complex test set,
the MAE is 6.0 m, with a median absolute relative er-
ror of 31.4%. The uncertainties are measured at 7.4 ±
3.0 m, and the relative uncertainty averages 38 ± 206%.
Comparingwith the ScarpLearn genericmodel (Supple-
mentary Tab. S4), the generic model does not perform
as well on single-scarp (1-fault) profiles as a model that
is trained exclusively on them (ScarpLearn_1F).

4.1.3 Evaluation of MCSST on synthetic cases

The semi-manual estimation by MCSST was performed
on 50 profiles, and it required 3 to 5 min per profile, so
for a fault segment it requires 3 to 4 manpower hours to
process them. By comparing with the true values, MC-
SST yields an MAE of 3.2 m for the simple set and 5.4
m for the complex set. For abs. relative error, it yields
6.0 % and 15.6 % , respectively, for the simple and com-
plex set (Fig. 6-b and Tab. 3 for other metrics). To be
noted, fewer samples were processed compared to sec-
tion 4.1.1, so theMAE cannot be directly compared. We
obtain an uncertainty of 10.7 ± 9.1 m (mean ± std) (at
1σ) for the simple test set and 23.4± 19.3m (mean± std)
for the complex test set. The high standard deviations
show how the uncertainties have a scattered distribu-
tion.
We analyzed separately theMCSST results of the sam-

ples containing only a single fault ( 25 profiles for each
simple and complex sets, see Supplementary Fig. S4 and
Tab. S4 for others metrics). MCSST yields an MAE for
the simple setting of 1.0 m and 7.2 m for the complex
setting.
Regarding the impact of internal operator error in

the application of the MCSST method, Wolfe et al.
(2020) recognize that identifying fault scarp compo-
nents (hanging wall, scarp, and footwall) involves hu-
man input, which introduces the potential for bias.
They emphasize the importance of users verifying the
accuracy of each selected component. To mitigate this
in real cases, we typically select components while si-
multaneously verifying the hillshade DEM and the geo-
morphological mapping. But here, it is not possible be-
cause these are synthetic profiles, and we do not have
associated DEM or mapping. Therefore, inter-operator
comparisons could be interesting for the analysis of the
impact of internal operator error.

4.1.4 Evaluation of SPARTA on synthetic cases

In less than anhour, we calibrated and applied the semi-
automatic SPARTAmethod on both simple and complex
synthetic sets. However, SPARTA does not provide un-
certainties and out of 50 tested profiles, we obtained
results only on 29 profiles (for the simple set) and on
12 profiles (for the complex set). By comparing with
the true values for the few estimated profiles, SPARTA
yielded an MAE of 8.5 m for the simple set and 10.6 m
for the complex set. (Fig. 6-c and Tab. 3 for other met-
rics).
When analyzing the results of SPARTA on the 25 of

1-fault profiles only (see Supplementary Tab. S4 and
Fig. S4 and Tab. S4 for othersmetrics), we obtain results
for more profiles: 13 for the simple setting and 10 for
the complex setting. We obtained also better MAE for
the simple setting. Respectively for the simple and the
complex settings, we obtained aMAE of: 6.4 m and 15.4
m. In all synthetic cases with our calibration, SPARTA
yields less accurate results than ScarpLearn andMCSST.

4.1.5 Comparison of ScarpLearn, MCSST and
SPARTA using synthetic cases

With our calibration, SPARTA was only able to provide
results on 20% to 50% of the profiles. Moreover, in all
tests, it gives higher mean absolute errors than MCSST
and ScarpLearn (Tab. 3). In the synthetic cases with 1, 2
or 3 faults, by comparingMCSSTwith ScarpLearnon the
same 50 profiles, we can observe that both codes give
similar accuracy (Tab. 3). Compared to ScarpLearn, we
can see that MCSST generally has a better absolute rela-
tive error 6.0% (vs 9.3% for ScarpLearn), because there
are fewer outliers in the smaller scarps (Fig. 6). For
the complex case, where MCSST is also better 15.6% (vs
27.4% for ScarpLearn), because despite the many out-
liers, there are more cases where MCSST is more ac-
curate. Distribution for MCSST is here more hetero-
geneous. The main discrepancies come from the un-
certainties, which are divided by two for ScarpLearn,
but still allowing to reach the true value (the Prediction
Interval Coverage Probability (PICP) between 68% and
68% at 1σ).
On the simple data set with only 1 fault (Supple-

mentary Tab. S4), MCSST yields a lower MAE than
ScarpLearn. However, ScarpLearn yields higher uncer-
tainties at 1σ (5.4 m instead of 4.3 m). For the complex
samples, MCSST and ScarpLearn are very similar (7.1m
for MCSST, 7.9 m for ScarpLearn in mean absolute er-
ror), yet the uncertainty of MCSST (15.3 ± 14.0 m at 1σ)
is higher that the one obtained by ScarpLearn (11.4 ±
3.9 m).
In summary, ScarpLearn is much faster than MC-

SST with a speed gain factor of 2 orders of magnitude,
achieves similar accuracy with a smaller uncertainty.
To note, for the simple cases of 1-fault profiles, MCSST
performs better. To obtain the better results for these
cases with ScarpLearn, we have re-trained ScarpLearn
with a learning database consisting only of 1-fault pro-
files. This new ScarpLearn_1Fmodel gives globally bet-
ter results in terms of uncertainties than MCSST for
the set only capturing 1 fault branch (Supplementary
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Figure 6 Labels (true values of scarp height) from synthetic dataset versus predictions (ScarpLearn in A, MCSST in B and
SPARTA in C) for two set of synthetic datasets. We test on two sets of synthetic profiles : i) a simple set, with 1, 2 or 3 faults,
with low regional slopes (between -5° and10°), and fewperturbations (see appendix Tab. S1) and ii) a complex set, alsowith 1,
2 or 3 faults, but with a wide range of regional slopes (between -10° and 25°), andmore perturbations (see appendix Tab. S2).
Left plots correspond to the simple setting and the right plots correspond to the complex setting. See Table 3 for comparison
metrics. In both setting, we have the possibility of creating profiles with 1, 2 or 3 faults. In A) and B), uncertainty bars show
1σ. SPARTA does not provide uncertainties.

Tab. S4 and Fig. S4). For ScarpLearn_1F we have 5.8%
of absolute relative error unlike MCSST where there is
2.1% of abs. relative error for easy samples. On the
other hand, ScarpLearn_1F is better for complex sam-
ples 31.4% (vs 37.4%). We therefore recommend using
ScarpLearn_1F in cases where the user is confident that
the profile contains only one fault scarp.

4.2 Application and comparison using real
study cases

We will compare the scarp heights obtained with
ScarpLearn, MCSST (semi-manual method), SPARTA

(semi-automatic method) on 2 real study sites.
We will thus extract topographic profiles perpen-

dicular to the fault in different areas unaffected by
significant disturbances not taken into account by
ScarpLearn. This means areas that correspond to the
conditions in which ScarpLearn has been trained, i.e.
areas with :

• no or little anthropogenic infrastructure

• where the scarp is not totally degraded by gravita-
tional erosion

The results of each method are compared and dis-
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Table 4 Main results to compare ScarpLearn, MCSST, SPARTA using real fault datasets that corresponds to sampled profiles
(see maps in Figs. 7 and 9 and results in Figs 8 and 10). See above Tab. 3 caption for metrics’s definitions.

Sets Metrics ScarpLearn ScarpLearn MCSST SPARTA*

Ameca Fault
Dataset

Number of profiles 117 (all) 98 (where MCSST is) 98 17
Time to process <1 min <1 min 6-8 hours < 1 hour
Mean scarp height 8.6 m 8.7 m 8.7 m 6.8 m
Median scarp height 7.5 m 7.6 m 5.9 m 7.1 m
Mean of uncertainties (at 1σ) 3.0 m 2.9 m 3.6 m -
Absolute difference with respect to
ScarpLearn (mean and std) - - 2.9 ± 1.8 m 2.3 ± 18 m

Absolute Relative difference with respect to
ScarpLearn (median) - - 31 % 24 %

Bilila-
Mtakataka

Fault Dataset

Number of profiles 161 (all) 161 (where MCSST is) 161 89
Time to process <1 min <1 min 6-8 hours < 1 hour
Mean scarp height - 22.3 m 22.3 m 22.6 m
Median scarp height - 21.1 m 21.1 m 24.7 m
Mean of uncertainties (at 1σ) - 3.5 m 6.5 m -
Absolute difference with respect to
ScarpLearn (mean and std) - - 6.1 ± 5.9 m 5.7 ± 5.7 m

Absolute Relative difference with respect to
ScarpLearn (median) - - 22 % 11 %

cussed.

4.2.1 Case study 1: Ameca Fault, Mexico

The Ameca Fault is located in the Trans-Mexican Vol-
canic Belt in Mexico (Fig. 7). This region is affected by
more than 600 potentially active normal faults yet less
than 5%have been correctly characterized by paleoseis-
mological studies (Lacan et al., 2018; Núñez Meneses
et al., 2021). In this context, a robust and automatic
method to characterize the active normal fault scarp in
a global, reproducible, robust (not expert-dependent)
quantitative way is very valuable and a great step to-
wards a better characterization of the regional seismic
hazard. We focus on Ameca-Ahuisculco fault system
(Fig. 7). This fault crosses three distinct geomorphic
formations, distinguished by their age. First, there is
an active alluvial fan, which is offset by the fault gen-
erating scarps of approximately 5 meters height. Fur-
ther East, there is an older alluvial fan, also offset by the
fault forming scarps of approximately 10 to 15 meters
height. Finally, the fault crosses the base of the moun-
tain front, marking the boundary between the intrusive
basement of the Sierra Ameca and the sedimentary fill
of theAmeca basin (Supplementary Fig. S9-A).Here, the
cumulative displacement along the fault is estimated to
exceed 20 meters. Due to the presence of multiscarps,
we extract multiple profiles covering the same areas: in
fact, for each parallel scarp the is one profile crossing
it at their middle. ScarpLearn estimates the height of
the scarp located near the center of the profile. To do
so, we used a DEM from the Mexican National Institute
of Statistics andGeography (INEGI), resulting frompho-
togrammetric correlation processes to high resolution
satellite images captured in stereoscopic mode. From
this 5m resolution DEM, we sampled profiles every 100
meters, perpendicular to the Ameca-Ahuisculco fault

system (Fig. 7) mapped in Núñez Meneses et al. (2021).
These profiles are single pixel derived profiles and each
of the 117 profiles is 1 km long.
We use SPARTA, MCSST and ScarpLearn to process

these profiles (Figs. 8, S7, S8, and Tab. 4). ScarpLearn
and MCSST allow us to obtain results for all profiles,
which is not the case with SPARTA (only 17 out of 117).
SPARTA with our calibration is less accurate. When we
compare MCSST and ScarpLearn, we get similar results
(mean height around 9 m), and a t-student test shows
that 74% of their results are in agreement (t-student
value <1) and only 3% of results are in complete dis-
agreement (t-student value >3) (Fig. 8-E). The results in
disagreement are for cases where the scarps are either
very small (<1m) or very large (>30m) (Fig. S7-A-B). The
differences between the results give a distribution cen-
tered around 0 (mean -0.1 ± 4.4 m (std)), which means
that neither MCSST nor ScarpLearn tend to under- or
over-estimate the scarp heights relative to each other
(Fig. 8-F). The mean absolute difference is 2.9 ± 1.8 m,
but when we look at the cumulative distribution of this
difference, it appears that 75% of absolute difference is
less than 3.8 m (Fig. 8-G). So there are only strong out-
liers having large differences. When we look at the dis-
tribution of the absolute relative difference, it appears
that half of the differences are less than 31% (Fig. S7-G).
The uncertainties obtained by MCSST and ScarpLearn
are similar (Tab. 4). Their distributions show, how-
ever, that MCSST has strong outliers (Fig. S7-C-D) and
that ScarpLearn uncertainties tend to increase with the
value of the scarp height (Fig. S7-C).

4.2.2 Case study 2: Bilila-Mtakataka Fault,
Malawi

The second area studied is in Malawi (Fig. 9), along the
Bilila-Mtakataka Fault that is part of theMalawi Rift sys-
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Figure 7 A) Map view of the Ameca fault system in Mexico. Insets show the localization of the studied site. In red, the fault
mapped in Núñez Meneses et al. (2021). Black profiles are topographic profiles used for the comparison. Profiles are single
pixel derived. Red profiles are plotted in plot B. Blue profiles are plotted in Fig. 11. The DEM is from the Mexican National
Institute of Statistics and Geography (INEGI) (see Section ”Data and code availability” for more detail). B) Four examples of
profiles analyzed. Here the vertical axis values are shifted to provide a better visualization of the profiles.

tembelonging to the East African Rift System (e.g., Jack-
son and Blenkinsop, 1997). We extracted topographic
profiles (single pixel derived) from the 5 meters reso-
lution DEM. Hodge et al. (2019a,b) obtained the DEM
byprocessing bi-stereo Pleiades imagery (50 cmpixel-1)
using the Leica PhotogrammetryToolboxwithin ERDAS
Imagine. We focus on the Ngodzi fault segment, here
the orientation of the fault scarp follows a zigzag pat-
tern due to the presence of transfer faults. This fault

intersects the foliated gneissic bedrock and a Quater-
nary sedimentary fill (Hodge et al., 2018) (Supplemen-
tary Fig. S9-B). Profiles are perpendicular to the fault
trace mapped in Hodge et al. (2019a). We extracted 161
profiles of 1 km long of 200 points each (Fig. 9).
We compared SPARTA, MCSST and ScarpLearn on

these profiles (Figs. 10, S10, S11 andTab. 4). ScarpLearn
obtains on average a scarp height of 22 m. With
SPARTA we obtain 89 results out of 161 on this study

12 SEISMICA | volume 4.2 | 2025



SEISMICA | RESEARCH ARTICLE | ScarpLearn

Figure 8 A) Scarp height results obtained for Ameca Fault, using Sparta (orange), ScarpLearn (black) ans MCSST (green)
from the profiles sampled across the 5 m DEM (see Fig. 7). The DEM from the Mexican National Institute of Statistics and
Geography (INEGI) (see Section ”Data and code availability” for more detail). Uncertainty bars represent 1σ. B) Zoom in the
pink area from the plot A. C) Zoom in the blue area from the plot A. D) Absolute difference between MCSST and ScarpLearn
(in green) and between Sparta and ScarpLearn (in orange). E) T-student test betweenMCSST and ScarpLearn. Values below 1
mean that the distributions are in agreement. Values between 1 and 3mean that the distributions are in tension, while values
above 3 indicate that the distributions are in disagreement. F) Histogram of the difference between MCSST and ScarpLearn.
G) Cumulative histogram of the absolute difference between MCSST and ScarpLearn results. See Tab 4 for a summary of the
main results. See in appendix the Fig. S7 and Fig. S8 for more metrics.
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Figure 9 A) Map view of the Bilila-Mtakataka Fault. Insets show the localization of the studied site. In red fault mapped in
(Hodge et al., 2019a). Black are topographic profiles used for the comparison. Profiles are single pixel derived. Red profiles
are the ones plotted in the plot B (see below). Blue profiles are plotted in Fig. 11. The DEM is fromHodge et al. (2019a,b) (see
Section ”Data and code availability” for more detail). B) Four examples of profiles analyzed. Here the vertical axis values are
shifted to provide a better visualization of the profiles.

site, and when compared with ScarpLearn, the mean
absolute difference is 5.7 m. Examining the distribu-
tion of relative difference between ScarpLearn, MCSST
and SPARTA, ScarpLearn is amiddle position, showing -
8% (median) compared toMCSST and +7% compared to
SPARTA (Supplementary Fig. S10-F). When considering
the absolute relative difference with ScarpLearn, half
of the profiles show less than 11% with SPARTA, while
less than 22% with MCSST (Supplementary Fig. S10-G).
When comparing MCSST and ScarpLearn scarp height
estimations, the t-student test shows that 59% of results
agree, while 6% of results disagree completely (Fig. 10-
E). The difference between the results shows a distribu-
tion that appears to be symmetrical, although themean
difference of 0.5 ± 8.5 m (std) shows that MCSST gives
slightly higher scarp heights than ScarpLearn (Fig. 10-
F). The mean absolute difference between MCSST and
ScarpLearn is 6.1 ± 5.9 m, and the cumulative absolute

difference distribution shows that 50% of results have
an absolute difference < 5.0 m (Fig. 10-G). MCSST gives
higher uncertainties than ScarpLearn, and is not corre-
lated with scarp height (Supplementary Figure S10 -C-
D).

5 Discussion

5.1 Comparison of ScarpLearn, MCSST and
SPARTA

In our tests with synthetic data, ScarpLearn yields re-
sults comparable to MCSST. Yet, ScarpLearn demon-
strates significantly faster processing times (∼ 2 orders
of magnitude faster) and provides smaller uncertain-
ties compared to MCSST. Specifically, ScarpLearn ap-
pears to be slightly more accurate for in scenarios in-
volving 2 or 3 faults than MCSST. This is because mul-
tiscarp cases assign shorter hanging wall and footwall
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Figure 10 Bilila-Mtakataka Fault results. See legend in Fig. 8 and Table 4 for a summary of the main results. See in Supple-
mentary Material the Fig. S10 and Fig. S11 for more metrics.

surface, which pose challenges for precise fitting inMC-
SST. Conversely, MCSST is more precise for the 1-fault
case, likely due to its effective fit on larger hanging wall
and footwall slopes. For this reason, we have trained
a specialized version of ScarpLearn just for the 1-fault
case, ScarpLearn_1F, giving then better results to MC-
SST for these cases. ScarpLearn is a thus good alterna-

tive that achieves a compromise between rapidity and
accuracy while providing uncertainties.
SPARTA was not able to provide an estimation for a

majority of profiles, especially from the synthetic test
set and from the Ameca fault. This can be explained by
the fact that SPARTA is not designed for multiscarp pro-
files. It can also be explainedby the calibration. Indeed,
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on the Ameca F. site, manual calibration would have to
be performed separately for each fault segment, as the
profiles cross several geomorphologies (long term, al-
luvial fans of different ages, etc.). In addition, a generic
calibration is impossible on our synthetics, as we ran-
domly parameterize the profiles (slopes, diffusion, dip,
etc.). However, on the Bilila-Mtakataka Fault zone, its
performance is higher, probably because the code has
been designed, tested and published on these data. In
this case study, ScarpLearn and SPARTA show less dis-
crepancy than ScarpLearn and MCSST. In the few pro-
files where SPARTA worked, namely the synthetic pro-
files with one fault (Supplementary Fig. S4-C) and the
real case of the Bilila-Mtakataka Fault Zone (Fig. 10-F),
we observe that SPARTA tends to underestimate the val-
ues of scarp height. One explanation is that SPARTA
uses the point of maximum inflection as the measure-
ment reference rather than the middle of the scarp.

5.2 Perturbation sensitivity
The synthetic database allows us to train ScarpLearn ef-
fectively, since in the real cases we obtain similar re-
sults than MCSST. However, we can study the sensitiv-
ity of MCSST and ScarpLearn to certain types of per-
turbations by analyzing real-case profiles whereMCSST
and ScarpLearn give different scarp heights. Among the
profileswhere the results differ (Fig. 11), we can identify
different reasons:

• For cases with many trees, MCSST seems to be per-
turbed to find the scarp height. This is probably
because trees perturb the fit of the hanging wall
and footwall, MCSST thus yields large uncertainties
(e.g. profile 8 in Fig. 11-B)

• For cases with cumulative long-term scarps (scarp
height > 50 m) (e.g. profile 59 in Fig. 11-A or profile
118 in Fig. 11-B), there is often a slope’s change in
the scarp (see profile 118). The upper part of the
scarp is less steep than the lower part. This dif-
ference could result from a change in surface pro-
cesses. A scarp with two slopes seems to pose a
problem for ScarpLearn, since it has only learned
cases with one slope, and thus seems to only take
into account the steeper slope. Moreover, for semi-
manual methods (MCSST), it is difficult to know
which slopes to take into account (only one slope or
both). Here, we have taken the whole scarp (with
the two slopes), which explains why MCSST gives
higher scarp heights.

• For particular cases, such as flat-bottomed rivers
close to the foot of the scarp, theywerenot included
in ScarpLearn (we have only used hyperbola-
shaped valleys). This prevents ScarpLearn from
differentiating between a flat river-bottom surface
and the slope of the hanging wall (see profile 76 in
Fig. 11-A and profile 34 in Fig. 11-B).

• Cases where fault mapping is poorly done, such as
profile 168 in Fig. 11-B, where the scarp is far from
the center of the profile. In this case, ScarpLearn
estimates the scarp height at the wrong location.

• Multiscarp cases, as with synthetic data, this con-
figuration makes the fit in MCSST of hanging wall
and footwall slopes more complicated (shorter
zones) (e.g. profile 20 in Fig. 11-A)

• Cases where erosion is not only due to diffusion,
for example the profile 115 in Fig. 11-A which is
affected by a landslide exhibits high uncertainty
in MCSST. In such instances, landslides may also
compromise the performance of ScarpLearn. Fur-
thermore, the Bilila-Mtakataka scarps are bedrock
scarps which are subject to gravitational processes
involving rock-fracturing. Then in such instances
ScarpLearn can also be compromise since the
scarp won’t diffuse in the way ScarpLearn was
trained.

MCSST and ScarpLearn methods are more consistent
for Ameca F. study than Bilila-Mtakataka F. study. We
explain this because:

• the fault is better mapped in the case of Ameca, in
fact in Malawi we used a simplified mapping from
a study of a regional scale, whereas in Ameca the
mapping was obtained from a local paleoseismo-
logical study.

• the presence of trees in Malawi disturbs MC-
SST, which has difficulties in fitting slopes, while
ScarpLearn can probably better filter out high-
frequency noise.

5.3 Operator errors
MCSST and SPARTA, being manual and semi-automatic
methods, are prone to operator error. Human input is
required in SPARTA during calibration, and in MCSST
to identify fault scarp components (hangingwall, scarp,
and footwall).
For synthetic cases, profiles cannot be cross-checked

using the geomorphological mapping, a process that
can help reduce operator error in real cases. Conse-
quently, results for synthetic cases with SPARTA and
MCSST could greatly benefit from inter-operator com-
parisons to quantify the operator-induced variability.
This would also enhance the precision of comparisons
between MCSST, SPARTA, and ScarpLearn.
For real cases, operator error in SPARTA calibration

remains significant (see section 5.1), while in MCSST it
is mitigated by thorough verification of hillshade DEMs
and geomorphological mapping for each profile. This
process makes MCSST more time-consuming for real
cases than for synthetic ones. Even so, inter-operator
comparisons would also provide amore precise estima-
tion of uncertainties for real cases.
Overall, this measurement redundancy would enable

us to account for ”operator” uncertainties (epistemic
uncertainties) in addition to those directly calculated
by MCSST (aleatoric uncertainties) (e.g. Salisbury et al.,
2015). However, Bond et al. (2007) and Salisbury et al.
(2015) explain that the epistemic uncertainties of ex-
perts often are due to confirmation bias. A potential
approach to achieve more accurate epistemic uncer-
tainty estimates would be to use blind measurements,
as demonstrated by Zielke et al. (2015).
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Figure 11 Profiles whose scarp heights are not in agreement between MCSST and ScarpLearn. See profiles localization in
Figs. 7 and 9. Profiles 59 and 118 are those that pass through long-term scarps (> 50m). In those profiles, lines are showing
the marker ties. Here several interpretations can be made: red for the scarp, gray for the footwall surface and blue for the
slope that can be either consider as a scarp that undergonemore erosion or either as a footwall. Here the vertical axis values
are shifted to provide a better visualization of the profiles.

ScarpLearn is largely exempt from these epistemic bi-
ases, as the measurements do not depend on the opera-
tor. However, what remains operator-dependent, is the
selection of the input profile for ScarpLearn. For ex-
ample, ScarpLearnmeasurements can be influenced by
the quality of fault mapping (e.g., if the fault is not cen-
tered in the profile), which again relies on significant in-
terpretive work by the operator. That said, if outliers,
strong uncertainties, or unexpected results are identi-
fied, it is straightforward and quick to rerun ScarpLearn
with adjusted inputs to obtain new results.

5.4 Scope of ScarpLearn

Using ScarpLearn, for the first timewe can calculate the
scarp height continuously over the whole fault in just a
few seconds, giving us much more information about
the fault. ScarpLearn presents thus as a robust alter-
native; however, it is important to ensure its use un-
der appropriate conditions. In fact, there’s a tradeoff
between larger number of scarp height measurements
and the average noise in the measurements (or just in
appropriatemeasurements). In other words, when con-
ditions deviate from ScarpLearn’s training parameters
(e.g., the fault is not centered in the profile or there
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is the presence of a landslide), the measurements are
likely to be less accurate or show a high degree of un-
certainty. ScarpLearn will always provide a result value
even when the profile has too much noise, whereas a
geomorphologist can evaluate when to discard a result
if it seems unreliable. Nonetheless, ScarpLearn can be
useful even in less suitable conditions. It then requires a
following step of critical evaluation and numerousmea-
surements. In such cases, the ScarpLearn results could
beused for a preliminary, rapid assessment of an area to
identify potential targets for more detailed work. If the
user want to use ScarpLearn robustly, it is important to
ensure its usage good operating conditions. To ascer-
tain these conditions, meticulous expert mapping is re-
quired. This mapping should encompass fault traces,
flat river areas, landslide contours, and other potential
scenarios to verify under which conditions ScarpLearn
can be used. Operators cannot work blindly but need
to understand the context. In fact this was also true for
any previous methodology (MCSST, SPARTA, etc...). In
the future, it will be interesting to complete the learning
database, either with real cases, or with more complex
processes that will enable ScarpLearn to be effective on
more various scenarios.

6 Conclusion
We have developed a machine learning model called
ScarpLearn capable of estimating the cumulative scarp
height of normal faults as well as estimating its un-
certainty based on 1-dimensional topographic profiles
(extracted from Digital Elevation Models). Training
with synthetic data has enabled us to obtain a effi-
cient CNN model that can be applied to a variety of
real datasets (here on case study DEMs of 5m resolu-
tion in Mexico and Malawi). In our tests with syn-
thetic data, ScarpLearn gives similar results as exist-
ing semi-manual methodology (MCSST). On the other
hand, ScarpLearn is two order ofmagnitudes faster and
achieves smaller uncertainties. The same applies to
real data: ScarpLearn is comparable to semi-manual
method and only disagrees on less than 6% of the cases,
completely agrees on 74% of the cases in Mexico and
59% in Malawi, leaving the rest of the cases ( 33% and
35% respectively) in ambiguity. Although the distribu-
tion of residuals is centered around zero, there are com-
plicated cases where the ScarpLearn differs from the
MCSST. It’s reflecting the fact that ScarpLearn has been
trained by synthetic data that does not take into account
some complex field configurations: long term cumu-
lative scarp (with diffusion rates variations, flat rivers,
etc). Although ScarpLearn is automatic, it is still nec-
essary to have an expert overview on the fault map-
ping, the geomorphological mapping and on the local
climatic and topographic context in order to verify if
ScarpLearn can be applied or not, depending on the
fault scarp training model. Nonetheless, once these
conditions are fulfilled, ScarpLearn allows to: 1) gain a
considerable expert time (few minutes instead of mul-
tiple hours), 2) quickly scan an area and identify tar-
gets for more detailed work, 3) obtain reproducible re-
sults not user-dependant, and 4) obtain high resolution

estimations with realistic uncertainties. This provides
therefore a reliablemethod to perform fault scarp anal-
ysis, to be developed for strike-slip or reverse faults as
well.
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