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For author and editor 
 
Dear editor, 
 
Dear authors, 
 
  
 
This manuscript describes a combination of the SOLA method (a variant of Backus-
Gilbert inversion) with finite-frequency theory for surface waves. Following a detailed 
introduction into surface wave tomography and the need to quantify uncertainties, the 
authors provide a derivation of their method and a synthetic inversion at global scale. 
 
  
 
The manuscript is well written and a pleasure to read. I have no doubt that the method, 
maybe after some improvements to increase computational eSiciency, will be an 
attractive alternative to existing approaches, especially when uncertainty quantification 
is critical for the scientific question that one actually aims to answer. Also, the paper 
will surely become a valuable addition to the existing seismic tomography literature. 
 
  
 
Most of my comments are minor and contained in the annotated manuscript. They 
primarily concern inaccuracies in some lines of arguments. Two more significant 
concerns, detailed below, are related to (1) sources of model uncertainty that may be 
more significant than the ones addressed by the authors, and (2) the concept and 
treatment of forward modelling (theory) errors. 
 
  
 
In summary, all of my comments can be addressed with improvements of the text and 
maybe some additions to the discussion section. Since no additional simulations are 
needed, I would classify this as a minor revision. 
 
  
 
Please find more details below, as well as in the annotated manuscript. 
 
  
 



With kind regards 
 
  
 
   Andreas Fichtner 
 
  
 
  
 
Major comments 
 
  
 
Sources of model uncertainties 
  
 
The authors mainly consider two sources of model uncertainties: errors in the data and 
forward modelling errors, i.e., inaccuracies of the underlying theory. While these two are 
certainly important, they are only part of the story. 
 
  
 
Nonlinearity can have a major impact, and not taking it into account is a limitation of the 
method that deserves a more honest discussion. There are nonlinear versions of the 
Backus-Gilbert method, e.g., by Roel Snieder, that should probably be mentioned. 
Using a fixed, and unavoidably inaccurate, crustal model is related to nonlinearity, too. 
Iteratively improving tomographic models can have an enormous impact, as evidenced 
by recent models that use hundreds instead of just a few tens of iterations (e.g., REVEAL 
by Thrastarson et al., or WUS324 by Rodgers et al.). 
 
  
 
Probably the most important source of model uncertainties are all the little choices that 
we make along the way. This includes the shape and size of the target resolution 
kernels, the code used to compute artificial data, approximations made to compute 
sensitivity kernels, and, again, the choice of the crustal model. Without being able to 
proof this, my gut feeling is that this is the zeroth-order contribution to model 
uncertainties. Of course, I would not request the authors to solve this issue, but it 
deserves to be mentioned in the discussion. 
 
  
 
Theory errors 
  
 



I can understand the authors' idea behind the estimation of forward modelling errors. 
Loosely speaking, everything above an rms misfit of 1 is interpreted as forward 
modelling errors, which are added to the observational errors. Apart from the fact that 
this line of arguments breaks down for non-Gaussian errors, there are a few other 
issues: (1) An rms significantly above 1 can also result from a parameterisation that is 
too coarse, or from a target resolution that is too low. This has nothing to do with 
forward modelling errors. Hence, by changing these subjective choices, the forward 
modelling error changes, thereby turning it into an arbitrary quantity. (2) Forward 
modelling errors are not random but deterministic. Hence, it does not make sense to 
add them to the data errors and to treat them as a random variable. 
 
  
 
Going a bit further, I would even argue that there is no such thing as a forward modelling 
error. In fact, the notion of "error" is meaningful only in the context of a reference. Error 
with respect to what? For a forward model such a reference does not exist because all 
models are wrong from the outset, and there is no universal measure for the quality of a 
model. (They are mere abstractions of nature.) It follows that it does not actually make 
sense to introduce a forward modelling error, because it is an arbitrary quantity anyway. 
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Recommendation: Revisions Required 
Reviewer Comments 
 
For author and editor 
 
Dear authors and editor, 
 
The authors have provided an interesting exploratory paper, trying to bring togheter 
several well-known problematic aspects in seismic imaging and possible directions to 
address them. I think this study could be important for people interested in mantle 
imaging with methods that deviate from the common assumptions adopted (damped 
least squares or probabilistic sampling). The manuscript is well written, even if I think 
some additional details could be beneficial to it (see comments below), the title and the 
abstract fits well the topics discussed. All the pictures are relevant in the context they 
are presented in. 
 
I had to familiarize a little with the methodology used, reading the work of Latallerie et 
al. 2022 and the precedent works of Zaroli et al. 2016 and Zaroli et al. 2017. Considering 
this, my first comment is that this study works well following up the precedent papers, 
but it could be not enough self-explanatory to be fully understandable by itself. For this 
reason, I suggest expanding the methodology section to provide some additional 
information about the SOLA algorithm (eventually, this could be even presented in the 
Appendix). At the end, this study revolves mostly around methods, not results, so I 
suppose the methodology should be outlined with some additional details. 
 
These are the aspects of the inversion scheme I would like to see investigated further by 
the authors (lines in the manuscript are referred to as Lx, where x is the number/range): 
 
L275-279: I suppose that the idea of building the generalized inverse matrix assuming 
uncorrelated equal errors in all the observations (data covariance matrix = identity 
matrix) rises from the diSiculty in assessing the true uncertainty (measurement + 
theorical) and the influence this can have in the inversion process. However, since you 
are working with a wide range of surface waves’ periods, I would expect the noise in the 
measurements to manifest some kind of correlation with the frequency. So, either - by 
using the estimated uncertainties you consider more “robust” - you justify assuming the 
same error (i.e., weight) at all periods in the first step, or I would like to see discussed 
the impact diSerent weights attributed to the data can have on the generalized inverse 
and on the final solution. I suppose fixing the data covariance matrix with reasonable 
uncertainty estimates and building multiple solutions can illuminate this. Another 
reason why I consider this relatively important is because of the strong – and 
unexplained (not undescribed) - deviations your solution model manifests from the 
input filtered model. I wonder if one possible cause could be in the way the generalized 
matrix is built. The deviations between the solution model and the filtered input model 
seems to be largely due to fine scale structures, I would not be surprised if the average 
deviation could be reduced by a more appropriate weighting scheme. 



L303-304: the part about resolved deep kernels representing an average of the 
shallower portions of the model is particularly interesting. I suppose this is dependent 
on the choice of the trade-oS parameter “eta” that prioritizes low covariances for the 
model increasing the deviation of the resolved kernels from the target ones. However, 
this makes me wonder if the trade-oS parameter could be selected to partially prevent 
these cases (?). If I understood correctly, error propagation factor decreases around 200 
km depth (fig. 5) because resolved kernels represent the average of large shallower 
regions of space (fig. 4), enclosing many finite frequency kernels, resulting in low 
resolution and low model’s uncertainty. Is this correct? I would like to see a comparison 
between target and resolved kernels toward 400 km depth, where the uncertainty 
propagation factor seems to drop to 0. 
L331-341: since your method uses a subset of the dataset to reduce the storage 
required, it is my opinion that an approach more robust than randomly selecting rays 
excluding similar paths would be i) using a binning technique to merge similar-paths, 
extracting more robust estimates for the observables (and also uncertainties…), or ii) 
using a procedure similar to bootstrapping, where the dataset is randomly subsampled 
multiple times, and the solution models resulting from each subset are brought 
together in an ensemble of solutions. This allows, using metrics like average and 
standard deviation, to explore central features and poorly constrained anomalies highly 
dependent on the specific subset. Considering that many of your measurements have 
the uncertainties potentially underestimated, method ii) could be interesting to 
compare the uncertainties in your model coming from bootstrapping with the error 
propagation you use to compute model’s covariance matrix. I will not explicitly ask to 
add these to the study, but if you agree that these approaches could work, maybe this 
discussion should be added to the text, or considered for future experiments. 
L359-366: I find a little concerning that your forward modeling strategy can describe 
only 30% of the selected dataset. Considering that the - relatively accurate - 
approximations adopted in this study should account for the primary elements 
controlling surface wave phase observables (especially if simulated), I cannot fully 
understand why almost 70% of the measurements deviate so much from the 
predictions of the true model. I suppose phenomena like cycle-skipping could be 
identified by comparing the same event-station phase measurement at diSerent 
periods and checking if one breaks an expected trend (since it should be wavelength 
dependent…). If a wide range of frequencies gives rise to cycle-skips, like in fig. 6, I 
wonder if alternative measurement methods based on nearby stations cross-
correlations (Jin & Gaherty, 2015), could provide more reliable observations, at least for 
some problematic cases. In the pictures you show in Fig. 6 (top), the case representing 
a class III measurement is shown as a surface wave traveling across North America, 
while in the other two – non problematic – cases the propagation is across the Pacific. 
Could you plot a map with the “rays” connecting events to stations (like Latallerie et al. 
2022, fig.1a) colored by the deviation (measurement – input prediction)? Just to check if 
the deviations manifest some sort of correlation with the waves’ paths. Does using finite 
frequency sensitivity kernels improve data-misfit with respect to ray-theory predictions 
(considering the true model)? I would like to better understand if this is mostly a 
problem with the measurement algorithm, or with the forward modeling you adopt in 
the code. Either way, this could aSect real data applications of the inference code, 
where no true model predictions exist to compare with the measurements. 



L438: since many deviations from the input filtered model are small scale features, I 
wonder if varying the trade-oS parameter “eta” could have any eSect. In this study I 
don’t see any trade-oS curve, or a similar criterion, for the selection of the trade-oS 
value. How did you choose this parameter? Is there trade-oS value that could decrease 
significantly chi^2? Would that be far from your choice (50)? 
This is a general comment about the discussion section. I agree that SOLA is an 
interesting option to consider when compared with damped least squares methods, 
even if lack of smoothing constraints in SOLA seems to give rise to relatively coarse 
solution models. However, it remains non-trivial to interpret the robustness of 
anomalies bringing together resolution and uncertainty propagation (especially in an 
unambiguous quantitative way). Moreover, the method remains limited to linear(ised) 
problems, because any sort of iterative linearization would make error propagation non-
trivial (due to the iterative perturbative approach). In Bayesian Monte Carlo inference, I 
agree that prior probability functions have their influence on the posterior density, but i) 
non-informative priors (like uniforms) can be chosen for the fields directly investigated 
in the inversion, ii) even if informative priors were chosen, Bayesian inference at the end 
is all about comparing priors with posteriors, to see where information deviates from 
prior knowledge. These solvers provide uncertainty estimation directly sampling from 
the posterior models that fit the data within the uncertainty. Moreover, in the case of the 
trans-dimensional (t-dim) methods you mention (Bodin and Sambridge, 2009), many 
parameters that typically need to be selected a priori for the model’s parametrization 
are removed, resulting in a self-parametrized multi-resolution approach. I have not fully 
understood your claim that t-dim solvers are approximate (??) and provide partial 
information about the resolution (L475-477), because this is the entire point behind 
trans-dimensional imaging. If data strongly requires a feature, small or large scale, that 
will be manifested in many models in the ensemble, resulting in the average and 
uncertainty maps. I have also some thoughts about your claim that hierarchical 
methods, where noise is a random variable in the posterior, use a single noise 
parameter for all data (L568-572). This is a partial consideration because of the 
following reasons: i) data can be divided in “classes”, or diSerent observables, and 
independent noise parameters can be introduced for each one (Zhang et al., 2018; 
surface-waves phase and group travel times; Del Piccolo et al. 2024; body-waves P&S 
delays and splitting intensity). The “classes” of observables can be chosen arbitrarily; 
hypothetically, I could also separate diSerent ranges of periods for surface waves and 
invert for independent noise parameters, or diSerent classes based on a “measurement 
quality metric”... Another option is ii) to use more complicated parametrizations to 
represent noise depending on physical quantities, for example introducing polynomial 
functions (or other basis functions) depending on the wave-paths’ ranges (Bodin et al., 
2012; Zhang et al., 2020), on the periods, etc… defining the coeSicients of the 
polynomials as posterior’s random variables to be inferred during the inversion. In this 
process, noise enters directly the posterior definition with the possibility to be inferred, 
but also directly controls model’s total uncertainty acting on the width of the likelihood 
functions. 
These were my main comments about the manuscript submitted. Again, since this 
study in mostly about methods and uncertainty assessment, I think that the additional 
discussion and general aspects mentioned above could really help to better frame this 



work and its relationship with already existing methodologies to address the problem of 
uncertainty estimation in seismic imaging. 
 
Here, some additional minor points follow. 
 
L56-59: I would say that the reason why data-misfit based methods do not directly 
account for resolution is because this metric is influenced by the grid choice (model’s 
parametrization) and smoothing constraints in a non-trivial combination. It is not clear 
what you mean by “computational reasons”. Are you referring to full-waveform 
inversions? Because otherwise these solvers are typically extremely eSicient when 
working with secondary observables (like travel-times). 
L60: what do you mean exactly by “crude approximation” of the resolution? 
L161-163: does the model’s covariance matrix also show non-zero elements outside the 
diagonal representing covariances between parameters? Would accounting for 
covariances change significantly the estimated model’s uncertainty? 
L185-187: it is my understanding that, if we refer to linear problems, matrix G (and the 
generalized inverse) does not depend on the values of data d (also for “data-fitting” 
methods). A typical example is a body wave imaging experiment with fixed rays and a 
grid parametrization for the velocity model; the element Gij would represent the length 
of the segment of the i-th ray in the j-th voxel, so also the generalized inverse – as a 
manipulation of G, would not depend on data d (travel times). Probably you were 
referring to iterative linearized solvers, where G represents the Fréchet derivatives, and 
it is in general a function on the data d, but this would make the comparison with SOLA 
(only linear) unfair I suppose. Could you elaborate this point further? 
L193: please, specify what kind of data delta_phi_l in eq. (6) represents. 
L230-231: do you expect that an alternative 3D parametrization in voxels diSerent from 
2°x2°x25 km would significantly impact your conclusions about resolution? Or is this 
strategy robust for even smaller voxels? 
2(b): correct title “data sensitivity”. 
L267-270: do you think that a diSerent choice for the target resolution, for example 
depending on the coverage, could lead to an improved data-misfit with respect to the 
chi_2 = 33 you achieved in this study? 
L275: I would think that data uncertainty always (not potentially) influences solution 
models in multi-observables (like multi-period) inversions. 
L285-287: was the L-curve used to select a trade-oS parameter value equal to 50 in this 
study? 
L336: this is where I suppose something like bootstrapping could produce more 
informative models in terms of uncertainty. 
L361-362: is the undetected cycle-skip at 8mHz responsible for all the discrepancies 
between analytical predictions and measurements in that 70% fraction of the dataset? 
It is not completely clear from the manuscript how you justify the deviations of such a 
significant fraction of the dataset. 
Looking at figure 7(a), it looks like there is weak tilt in the relationship between the 
measured and the analytical phase delays. Would applying a rotation (meaning that 
either measured delays are systematically overestimated or predictions are 
systematically underestimated) lead to the analytical delays describing a wider range of 
observations (more than the current 30%)? 



L397-400: I wonder if there could be a correlation between the rays corresponding to 
class III measurements (poor measurement unrealistically low uncertainty) and regions 
where you recover stronger anomalies with respect to the filtered input. This would also 
follow up the comment above about the possibility of predictions systematically 
underestimated due to the local average of resolved kernels. Would this mean that 
resolved kernels are too wide? Or the trade-oS parameter not appropriate?. 
Fig. 8: I would add a map showing the deviation (filtered input – model solution). It can 
be diSicult to directly compare the two solution maps. Less important and not 
necessary to add, but I would really like to see what the input model looks like applying 
a filter with the target kernels. 
L475-479: as mentioned in the main comments, some words here like “approximate” 
and “partial” probably needs some additional context. Moreover, some recent studies 
using Monte Carlo inference adopt a single-step scheme for the inversion of surface 
waves (Zhang et al., 2018; Zhang et al., 2020), providing more reasonable estimates for 
uncertainty compared to the 2-steps inversions. 
L487-488: I agree that no explicit global constraints are applied to the model’s 
parameters. However, it is my opinion that limiting the model’s covariance acts similarly 
to an implicit “smoothing” constraint on the parameters, since a smooth model is 
typically expected to be more “stable” than a model with very rough (i.e., small-scale) 
features. I would expect that by changing the trade-oS parameter, and promoting lower 
covariance models, they would also look smoother than the one in this study (because 
of the increasing size of the resolving kernels). 
L479-480: I suppose the large-scale features are also the ones on which almost all the 
surface waves tomography models agree on…(?) 
L504-510: this point is extremely interesting. I suppose that this would manifest as well 
in teleseismic imaging with body waves using SOLA algorithm. Anomalies tend to be 
smeared up to the surface, meaning the shallow parameters’ kernels are likely to 
represent the average of deeper sections. Again, interesting how the trade-oS 
parameter could control these biases, but probably there is not an intuitive way to tune 
it for this purpose. 
Thank you for submitting such an interesting study about uncertainty and resolution in 
mantle imaging, hopefully my comments can contribute to this manuscript. It was really 
interesting to go over the methodology you have adopted as alternative to dampled 
least squares. 
 
Regards 
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Abstract Surface-wave tomography is crucial for mapping upper-mantle structure in poorly in-12

strumented regions such as the oceans. However, data sparsity and errors lead to tomographic13

models with complex resolution and uncertainty, which can impede meaningful physical inter-14

pretations. Accounting for the full 3D resolution and robustly estimating model uncertainty re-15

mains challenging in surface-wave tomography. Here, we propose an approach to control and pro-16

duce resolution and uncertainty in a fully three-dimensional framework by combining the Backus-17

Gilbert-based SOLA method with finite-frequency theory. Using a synthetic setup, we demonstrate18

the reliability of our approach and illustrate the artefacts arising in surface-wave tomography due19

to limited resolution. We also indicate how our synthetic setup enables us to assess the theoretical20

model uncertainty (arising due to assumptions in the forward theory), which is often overlooked21

due to the difficulty in assessing it. We show that in the current setup the theoretical uncertainty22

components may be much larger than the measurement uncertainty, thus dominating the overall23

uncertainty. Our study paves the way for more robust and quantitative interpretations in surface-24

wave tomography.25

Non-technical summary In the oceans, several surface features such as isolated volcanic26

islands or variations in the depth of the seafloor, result from dynamic processes in the underly-27

ing mantle. To understand these processes, we need to image the three-dimensional structures28

present in the subsurface. While long-period surface waves can be utilised, the data are typically29

noisy and provide poor data coverage of the oceans. This limits the quality of our images and30

therefore the interpretations that can be drawn from them. In addition, limitations of our images31

are difficult to quantify with current methods, which makes interpretations even more difficult. In32
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this study, we propose an approach that uses elaborate computational methods to produce high-33

quality maps of 3D structures in the upper mantle, at the same time informing on the quality of34

our images. As a proof of concept, we present the method in a synthetic framework, which serves35

to demonstrate our ability to retrieve an input Earth model and enables us to estimate theoret-36

ical model uncertainties. Our approach will enable more robust interpretations of surface-wave37

tomography models in future.38

1 Introduction39

Many important geological processes (e.g. melting at mid-ocean ridges, spreading, subduction and hotspot volcan-40

ism) occur in oceanic regions. To improve our understanding of these processes, we need to robustly image the41

structure of the upper mantle. In poorly instrumented oceanic regions, this imaging relies heavily on surface-wave42

tomography. However, surface-wave data have poor spatial coverage, both laterally due to the uneven distribution of43

earthquakes (sources) and seismic stations (receivers), and vertically due to how their sensitivity varies with depth.44

Surface-wave data also contain errors due to imperfectmeasurement andphysical theory. Poor data coverage renders45

the inverse problem ill-posed and togetherwith data errors leads to complexmodel resolution andmodel uncertainty46

(e.g. Parker, 1977; Menke, 1989; Tarantola, 2005). This complex model resolution and uncertainty explain the strong47

discrepancies between published tomographymodels (e.g. Hosseini et al., 2018;Marignier et al., 2020; DeViron et al.,48

2021). With time, seismic tomography is moving towards more detailed imaging, while it is also increasingly utilised49

in other fields. However, to guarantee the usefulness of surface-wave tomographic images, we need to account for50

their full 3D resolution anduncertainty (e.g. Ritsema et al., 2004; Foulger et al., 2013; Rawlinson et al., 2014). Equipped51

with these, we will be able to avoid interpreting non-significant anomalies (e.g. Latallerie et al., 2022), set up mean-52

ingful comparisons with theoretical predictions (e.g. Freissler et al., 2020), or include tomographymodels in further53

studies such as earthquake hazard assessments (e.g. Boaga et al., 2011; Socco et al., 2012; Boaga et al., 2012).54

Many approaches have been proposed to solve ill-posed inverse problems in seismology (e.g. Wiggins, 1972;55

Parker, 1977; Tarantola and Valette, 1982; Nolet, 1985; Scales and Snieder, 1997; Trampert, 1998; Nolet, 2008). Most56

take a data-misfit point of view and search for a model solution whose predictions are ‘close enough’ to observations.57

However, such approaches usually do not account directly for model resolution and uncertainty, mainly for compu-58

tational reasons. Several methods have been proposed to estimate resolution once a model solution is obtained, but59

they are usually computationally expensive or provide only crude approximations to the resolution (Nolet et al., 1999;60

Barmin et al., 2001; Ritsema et al., 2004; Shapiro et al., 2005; Ritsema et al., 2007; Fichtner and Trampert, 2011; An,61

2012; Fichtner and Zunino, 2019; Simmons et al., 2019; Bonadio et al., 2021). Synthetic tests, sometimes in the form of62

checkerboard tests, can be useful to assess resolution, but these have been shown to be potentially misleading (e.g.63

Lévêque et al., 1993; Rawlinson and Spakman, 2016).64

Other approaches for solving ill-posed inverse problems move away from the data-misfit point of view and in-65

stead concentrate on directly optimisingmodel resolution and uncertainty. These approaches are typically based on66

Backus–Gilbert theory (Backus and Gilbert, 1967, 1968, 1970). One such approach, the SOLA (Subtractive Optimally67
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Localized Averages) formulation, was derived for helioseismology by Pijpers and Thompson (1992, 1994) before be-68

ing introduced and adapted to linear body-wave tomographic inversions by Zaroli (2016) and Zaroli (2019). Besides69

body waves, the method has been successfully applied to normal-mode splitting data to constrain ratios between70

seismic velocities (Restelli et al., 2024) and to surface-waves dispersion data to build group-velocity maps (Ouattara71

et al., 2019; Amiri et al., 2023) or 2D maps of the vertically polarised shear-wave velocity VSV (Latallerie et al., 2022).72

Although SOLA can be applied only to linear problems, it requires no prior on the model solution, provides direct73

control on model resolution and uncertainty, and produces solutions free of averaging bias as shown by Zaroli et al.74

(2017).75

Traditionally, surface-wave tomography studies are based on ray-theory. This infinite-frequency approximation76

requires a two-step procedure that can be done in either order. One way is to first solve the inverse problem laterally77

(to produce 2D phase or group-velocity maps) and to subsequently solve for velocity structure with depth (to produce78

1D velocity profiles) (e.g. Ekströmet al., 1997;Montagner, 2002; Yoshizawa andKennett, 2004; Ekström, 2011; Ouattara79

et al., 2019; Seredkina, 2019; Isse et al., 2019; Magrini et al., 2022; Greenfield et al., 2022). The other approach is80

to first solve for velocity structure with depth for independent source-receiver pairs (to produce 1D path-averaged81

velocity profiles) and to subsequently solve for lateral variations (to produce 2D velocity maps) (e.g. Debayle and82

Lévêque, 1997; Lévêque et al., 1998; Debayle, 1999; Debayle andKennett, 2000; Simons et al., 2002; Lebedev andNolet,83

2003; Priestley, 2003; Debayle and Sambridge, 2004; Maggi et al., 2006b,a; Priestley andMckenzie, 2006). This second84

approach was adopted by Latallerie et al. (2022) who applied the SOLA method to the second step (lateral inversion)85

to produce 2D lateral resolution and uncertainty information, together with their tomography model. Because the86

first step is a non-linear depth inversion, it could not be performed using SOLA – a purely linear method. Therefore,87

this study was not able to provide high-quality information about vertical resolution, a significant drawback given88

the complex depth sensitivity of surface-waves.89

In this study, we extend the approach of Latallerie et al. (2022) to 3D using the framework of finite-frequency90

theory (e.g. Snieder, 1986; Snieder and Nolet, 1987; Marquering et al., 1998; Dahlen and Tromp, 1999; Yoshizawa and91

Kennett, 2004; Zhou et al., 2004, 2005; Yoshizawa and Kennett, 2005; Zhou, 2009a,b; Ruan and Zhou, 2010; Tian et al.,92

2011; Zhou et al., 2006; Liu and Zhou, 2016b,a). In this framework, surface-wave dispersion data are linearly related to93

perturbations in the 3D upper-mantle velocity structure. This makes it possible to perform a one-step inversion and94

thus to obtain 3D resolution information using SOLA. Finite-frequency inversions come with higher memory costs95

because the sensitivity kernels are volumetric (with both a lateral and depth extent) and the whole 3D model must96

be stored all at once (large number of model parameters). However, with smart data selection and ever increasing97

computational power, this memory cost is becoming less of an issue.98

SOLA offers a way to propagate data uncertainty into model uncertainty. However, the robustness of model un-99

certainty in turn relies on the quality of data uncertainty, which is challenging to estimate. It is often estimated by100

comparing the dispersion ofmeasurements for nearby rays (e.g.Maggi et al., 2006b). However, this approach dramat-101

ically underestimates the data uncertainty and poorly accounts for systematic biases (e.g. Latallerie et al., 2022). This102

is less of an issue if we are only interested in the relative uncertainty between individual data (e.g. when we weigh103

data contributions in a data-driven inversion). However, it is not sufficient if we want to interpret the true magni-104
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tude of the model uncertainty. It therefore becomes important to estimate data uncertainties carefully. Since data105

errors stem from imperfect measurements and inaccurate forward theory, it is natural to split them into two com-106

ponents: measurement and theoretical. Measurement uncertainty is estimated during the dispersion measurement107

and accounts for imperfections in the measurement algorithm (including cycle-skipping and mode contamination).108

Theoretical uncertainty is defined in a broad sense and accounts for errors not captured by the measurement algo-109

rithm. In particular, it includes assumptions in the forward problem, where we identify several main contributions,110

such as: single-scattering, discretisation and the sensitivity of the data to multiple physical parameters. The theo-111

retical component is often missing in uncertainty estimates based on measurement uncertainty only, which partly112

explains why model uncertainty appears to be dramatically underestimated.113

In this study, we show that it is possible to obtain detailed 3D resolution and robust uncertainty information using114

surface waves with SOLAwithin a finite-frequency framework, thus extending the approach of Latallerie et al. (2022)115

to 3D. By working in a synthetic setup, we demonstrate the feasibility of our approach, and quantitatively discuss sta-116

tistical estimates of theoretical uncertainty. To achieve these aims, we develop a complete workflow from dispersion117

measurements on the waveforms to analyses of the resulting 3D model, its resolution and uncertainty. In Section 2,118

we introduce the SOLA method and the forward modelling approach. Section 3 details the tomography setup, in-119

cluding the data geometry, target resolution and generalised inverse. Subsequently, we discuss the data and their120

uncertainty in detail in Section 4, before presenting our tomographic results, both qualitatively and quantitatively121

in Section 5. Finally, we discuss the 3D resolution and uncertainty estimates of our model in Section 6 and indicate122

possible future directions.123

2 Theory124

Wepresent here themain building blocks of our approach. Firstly, we briefly introduce the general forward problem.125

We thendiscuss the inverse problem, introducing the discrete linear SOLA inversemethod (Zaroli, 2016) that provides126

control and produces full resolution and uncertainty information together with the tomographic model. Finally, we127

present the finite-frequency theory that allows the surface-wave inverse problem to be expressed in a linear and fully128

three-dimensional framework.129

2.1 General forward theory130

Let d ∈ RN be a data vector and letm ∈ RM be a model vector containing model parameters given a pre-defined131

parameterisation. LetG ∈ M(N ×M) be the sensitivity matrix (in the set of matrices of size N ×M ), describing a132

linear relationship between model parameters and data. We can then write the forward problem as:133

d = Gm (1)134

Rows ofG are the sensitivity kernels andG thus contains all the information regarding the sensitivity of the entire135

dataset to all model parameters; this is what we refer to as the data geometry.136

To account for data errors, we treatd as a normally distributedmulti-variate randomvariablewith data covariance137

matrix Cd ∈ M(N × N). We assume uncorrelated noise, thus the data covariance matrix is diagonal and we can138
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write Cd = diag(σ2
di
), i ∈ [|1, N |], where σdi is the standard deviation of the error on the ith datum, i.e. the data139

uncertainty. Note that under the Gaussian hypothesis both theoretical errors (due to imperfect forward theory) and140

measurement errors (due to imperfect measurements) are included in σ2
di
(see e.g. Tarantola, 2005).141

2.2 SOLA inverse method142

Poor data geometry in seismic tomographymakes the inverse problem ill-constrained: the sensitivitymatrixG is not143

invertible. This justifies the use of various methods for obtaining model solutions (see e.g. Parker, 1977; Trampert,144

1998; Scales and Snieder, 1997; Nolet, 1985; Tarantola and Valette, 1982; Wiggins, 1972; Nolet, 2008). Let G† be a145

‘generalised inverse’ such that the model solution is expressed as linear combinations of the data:146

m̃ = G†d. (2)147

Using Equation 1, we obtain a relation between the model solution and the ‘true’ model:148

m̃ = G†Gm. (3)149

Each parameter in themodel solution is a linear combination of the ‘true’ model parameters linked by the resolution150

matrixR = G†G. In other words, this means that the value of a model parameter in the model solution represents151

a spatial weighted average of the whole true model (plus some errors propagated from data noise). The resolution152

for one model parameter is determined by one such averaging and is referred to as ‘resolving’ or ‘averaging kernel’.153

In general, we will want the averaging for a model parameter to be focused around that parameter location. The full154

resolutionmatrix thus acts as a ‘tomographic filter’ (e.g. Ritsema et al., 2007; Schuberth et al., 2009; Zaroli et al., 2017).155

Note that in the hypothetical case where the data geometry constrains all model parameters perfectly, the sensitivity156

matrix is invertible, the generalised inverse is the exact inverse, the resolution matrix is the identity matrix, and, in157

the case of error-free data, the model solution is exactly the true model.158

The model uncertainty is propagated from the data uncertainty using the diagonal elements of:159

Cm̃ = (G†)TCdG
†, (4)160

where T denotes the matrix transpose. We define the model uncertainty as the square root of the diagonal of the161

model covariancematrix, i.e. σm̃k
=

√
Cm̃kk

is defined as themodel uncertainty formodel parameter k. In summary,162

the generalised inverseG† determines the model solution, model resolution and model uncertainty.163

Most inverse methods are based on a data-misfit point of view. They solely consider the forward problem (Equa-164

tion 1) and seek a model solution that minimises the distance between predicted and observed data. These ap-165

proaches do not directly control the resolution and uncertainty of the solution and estimating these can be chal-166

lenging depending on the inverse method used. To overcome this issue, we use the SOLAmethod, which is based on167

Backus-Gilbert theory (Backus and Gilbert, 1967, 1968, 1970; Pijpers and Thompson, 1992, 1994; Zaroli, 2016). With168

SOLA, we explicitly designG† to achieve certain objectives for the resolution and model uncertainty. In particular,169

we design a target resolution T and seek a generalised inverse that leads to a resolution close to the target. At the170
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Figure 1 Examples of sensitivity kernels at (a) 6 mHz and (b) 21 mHz for two source-receiver pairs. The maps are plotted
at depths of 87 km and 237 km depth respectively, which are the depths where the kernels reach their respective maximum
amplitudes. Below each map, we also show a vertical cross-section through each kernel, as indicated on the maps. The
northern kernel is for a Mw=6.1 earthquake in Borneo (2015) recorded by station DSN5. The southern kernel is for a Mw=6.1
earthquake in the Easter Island region (2011) recorded by station BDFB. Note the difference in amplitude between the two
frequencies.

same time, we aim to minimise model uncertainty. These are two contradictory objectives that are balanced in an171

optimisation problem:172

argmin
G†k

∑
j

[Ak
j − T k

j ]
2Vj + ηk

2
σ2
m̃k

, s.t.
∑
j

Rk
j = 1, (5)173

where k is the index of the model parameter we are solving for (the target), j is a dummy index that iterates over174

model parameters, Vj is the volumeof cell j,Ak
j = Rk

j /Vj is the averaging (or resolving) kernel (normalised by the cell175

volumes), and ηk is a trade-off parameter that balances the fit to the target resolution with theminimisation ofmodel176

uncertainty. The constraint
∑

j R
k
j = 1 guarantees that local averages are unbiased, another striking difference with177

data-fitting approaches as demonstrated by Zaroli et al. (2017). The optimisation problem leads to a set of equations178

(see Appendix A1 from Zaroli, 2016) that we solve for each model parameter using the LSQR algorithm of Paige and179

Saunders (1982), as suggested by Nolet (1985).180

The SOLA inversion is point-wise, i.e. theminimisation problem is solved for each parameter independently from181

the others. This makes SOLA inversions straightforward to solve in parallel. Note that we do not need to solve for182

all model parameters nor do we need to solve for the whole region to which the data are sensitive (a necessity in183

data-fitting inversions): we have the possibility to solve only formodel parameters of particular interest (the targets).184

We provide information on the computational costs of this study in Appendix B. Also note that the solution of the185

SOLA optimisation problem,G†, does not depend on the data values themselves d, which is an important difference186

with data-fitting methods.187
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2.3 Finite-frequency forward theory188

In order tomake the implementation of SOLA for surface-wave tomography fully three-dimensional, we need a linear189

relation between surface-wave data and 3D physical properties of the Earth mantle. Here, we consider vertical-190

component Rayleigh-wave phase delays measured at given frequencies ω for particular source-receiver pairs l. If191

we assume these are primarily sensitive to perturbations in the vertically polarized S-wave velocity δVSV in the 3D192

mantle
⊕
, we have the following relationship between data δϕl(ω) and model δ lnVSV (x):193

δϕl(ω) =

∫∫∫
⊕ Kl(ω;x)δ lnVSV (x)d

3x, (6)194

where x indicates the physical location, andKl(ω;x) is the sensitivity kernel.195

Analytical expressions of surface-wave sensitivity kernels have been derived based on the scattering principle in196

the framework of normal mode theory. Here, we use formulations from Zhou et al. (2004), later extended to multi-197

mode surface waves and anisotropy by Zhou (2009b). These assume far-field propagation, single forward scattering,198

and use a paraxial approximation. Thanks to the single-scattering assumption, also known as Born approximation,199

the resulting relationship between data and model is linear, which makes it tractable with SOLA. The sensitivity ker-200

nels can be expressed as:201

K(ω;x) = Im

∑
n′

∑
n′′

S′
n′Ωn′′ R′′e−i[k′∆′+k′′∆′′−k∆+(s′+s′′−s)π

2 +π
4 ]

S R
√

8π(k
′k′′

k )( sin|∆
′||sin|∆′′|

|sin∆|

 . (7)202

Symbols with prime ′ refer to the source-scatterer path, ones with double prime ′′ to the scatterer-station path, and203

those without prime to the great-circle source-station path. n is the overtone number (here we consider only fun-204

damentals, so n′ = n′′ = 0), k the wave-number and s the Maslov index (here s = 0 or s = 1, i.e. single orbit). ∆205

is the path length, S the source radiation in the direction of the path, and R the projection of the polarisation onto206

the receiver orientation. The exponent term indicates the phase delay due to the detour by the scatterer, while the207

other terms express the relative amplitude of the scattered wave relative to the initial unperturbed wavefield. This208

relative strength depends on the source and receiver terms (the scatteredwave leaves the source and arrives at the re-209

ceiver with some angle compared to the unperturbedwave), on the geometrical spreading (the scattered wavemakes210

a detour compared to the unperturbed wave), and on the scattering coefficientΩ. The scattering coefficient depends211

linearly on physical model properties, for which detailed expressions can be found in Zhou (2009a). In practice, we212

use a slightly different form of Equation 7 to include the effect of waveform tapering in the measurement algorithm213

(see Zhou et al., 2004, for more details).214

We use routines from Zhou (2009b) to compute the sensitivity kernels for the fundamental mode, assuming self-215

coupling. We only compute these in the top 400 km of the mantle as their amplitude decreases sharply with depth.216

We consider the first two Fresnel zones laterally as their side-lobes become negligible further away. Examples of217

sensitivity kernels are given in Figure 1, where they are projected onto the tomographic grid. The kernels have par-218

ticularly strong amplitude at the source and station. This is caused by a combination of natural high sensitivity219

at end-points of a path and the far-field approximation (e.g. Liu and Zhou, 2016b). Low-frequency kernels peak at220
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deeper depths, have a broader lateral and vertical extent, and have weaker amplitudes than high-frequency kernels.221

Although the projection onto the tomographic grid degrades the shape and amplitude of the sensitivity kernels, their222

main properties are retained on a sufficiently-fine tomographic grid as is the case here.223

3 Tomography setup224

In this section, we present the construction of the forward problem (the sensitivity matrix) and the inverse solution225

(the generalised inverse) that determines the resolution, the propagation of data uncertainty into model uncertainty226

and data values into model estimate. We will describe the data and data uncertainty in the next section. These will227

feed into the inverse solution to produce the tomography model and the measurement model uncertainty.228

3.1 Parameterisation229

We use a local model parameterisation and split the 3D spatial domain into voxels of size 2◦ × 2◦ laterally (latitude230

and longitude) and 25 km depth vertically. We parameterise only the top 400 km depth, since the sensitivity of fun-231

damental mode surface waves to VSV becomes negligible at greater depths. This leads to M = 259 200 voxels to232

parameterise the top 400 km depth of the mantle globally. It is worth recalling that with SOLA we do not need to233

solve for allM model parameters nor for the whole region to which the data are sensitive. For example, we could234

solve only for cells where the data sensitivity is sufficiently high or only for a particular region of interest.235

3.2 Data geometry236

We select 312 earthquakes with Mw between ∼6.0 and 7.7 and a depth between ∼12 and 87 km, all located in the237

Pacific region, occurring between July 2004 andDecember 2020. We consider 1228 stations, also located in the Pacific238

region (see Fig. 2). Sources and stations are both selected in a way to avoid strong spatial redundancy. For all paths,239

we consider 16 frequencies ranging from 6 to 21 mHz (48-167s), in steps of 1 mHz.240

Compared to ray-theory, finite-frequency theory is fully three-dimensional. This makes the sensitivity matrix241

larger because we need to consider the whole 3D spatial extent of the model domain all at once, and less sparse be-242

cause finite-frequency sensitivity kernels have a volumetric extent. This is a challenging issue that limits the number243

of data we can take into account in the inversion. For a computational node with 254 GB of RAM, and our current244

strategy for storingmatrices in RAM, we estimate that we can incorporate at mostN = 300 000measurements (more245

information on the computational costs of this study is given inAppendix B).Here, we restrict ourselves toN ≈ 50 000246

measurements, making it possible to expand our work to overtones in the future. To achieve N ≈ 50 000 data, we247

carefully select our data with the aim to homogenise the lateral distribution of rays (see Section 4). We end up with248

47,700 data in total, with approximately 3,000 data per frequency (figure 2).249

For each selected measurement, we compute the corresponding 3D finite-frequency sensitivity kernel to build250

the sensitivity matrixG, with examples shown in Figure 1. As a measure of the constraint offered by the data on the251

structure of the 3D upper mantle, we compute the decimal logarithm of the data sensitivity, log10
∑

i |Gij |, where i252

and j designate a particular datum and model parameter respectively (see figure 2, lower right).253
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Figure 2 Data geometry of our tomography, showing (a) the distribution of sources and receivers, (b) the selected ray paths
at 6 mHz and (c) at 21 mHz, and (d) the decimal logarithm of the data sensitivity, log10

∑
i |Gij |. The data sensitivity is plotted

at 112 km depth, with a N-S oriented vertical cross-section below it, indicated by the grey line on the map view.
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3.3 Target resolution, uncertainty propagation, and tradeoff254

The shape of the target kernels used in the SOLA inversion is arbitrary. Ideally, it is chosen such as to produce results255

oriented towards addressing a specific key question. In this study, we wish for the resolution to represent simple,256

easy-to-interpret 3D local averages. For a given model parameter, we therefore choose the target kernel to be a 3D257

ellipsoid. The lateral resolution we can achieve with surface-wave data is controlled by the distribution of sources258

and receivers (and, to some extent, frequency). Our experience shows that it is rarely better than a few hundreds of259

kilometers for the frequency range used here. The vertical resolution is mostly controlled by the frequency content260

of the signal and it is typically on the order of tens to hundreds of kilometers. Therefore, a reasonable target kernel261

at a given point in the 3D grid would resemble a flat pancake centered at the query point. More formally, we design262

the target kernel of a model parameter as an ellipsoid whose major and semi-major axes are equal and aligned with263

the north-south and east-west directions at the location of the model parameter, and whose minor axis is vertical.264

The resulting target kernels are thick versions of the 2D kernels of Latallerie et al. (2022) and Amiri et al. (2023) and265

they represent a horizontally isotropic target resolution.266

With SOLA, it is possible to adapt the size of the target kernels for each model parameter (i.e. for each location).267

For example, we could choose to achieve the best resolution possible at each location in themodel given the data cov-268

erage, or we may prefer a homogeneous resolution or constant uncertainty across the spatial domain (see Freissler269

et al., 2024). This freedom illustrates the typical non-uniqueness of tomographic inversions. Any choice that fits the270

purpose of the study can be considered ‘good’, so long as the tomographic model is analysed together with its resolu-271

tion and uncertainty. In this study, for simplicity, we make all target kernels the same, with 200 km long horizontal272

major and semi-major axes and 25 km long vertical minor axis. Figures 3 and 4 illustrate the extent of our target273

kernels for a selection of 10 model parameters (blue ellipses).274

The data uncertainty potentially influences the solution to the inverse problem (second term of Equation 5). How-275

ever, as we aim to study the robustness of the data uncertainty itself in this study, we decide not to take them into276

account in solving the inverse problem. Thus, we initially set Cd = I and therefore Cm̃ = (G†)TG. Note that277

this is only a choice for solving the optimisation problem: once the generalised inverse has been computed, we still278

consider non-unitary data uncertainty and propagate it into model uncertainty throughCm̃ = (G†)TCdG.279

The optimisation problem involves the minimisation of the difference between target and actual resolution on280

the one hand, and the magnitude of model uncertainty on the other hand. These two terms are balanced by the281

trade-off parameter η, which we set equal to 50 for all parameters. Again, it is possible to choose different values of282

η for different model parameters, but in practice it is computationally easier to keep η constant (see Appendix A1 of283

Zaroli, 2016). If, for example, one wants to give more weight to the resolution of a particular model parameter, this284

can also be obtained by designing a smaller size target kernel. If we vary the trade-off parameter, we obtain a typical285

L-shaped trade-off curve for resolution versus model uncertainty (Latallerie et al., 2022; Restelli et al., 2024), which286

could be used to pick the appropriate η value for the study at hand.287
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Figure 3 Resolution at 112 km depth illustrated for a selection of 10 model parameters. The centre map shows the locations
of the 10 target and resolving kernels. This is shown as a sum, which may exaggerate the apparent strength of the tails. The
surrounding panels are close-ups on individual kernels, both in map-view and as cross-section. All maps represent depth
slices at 112 km depth and below each map is a∼ 3100 km long, N-S oriented (left to right) cross-section as indicated in green
in the maps. The depth in km is indicated on the right of each cross-section. Blue ellipses show the lateral extent of the target
kernels. All averaging kernels are normalised by their maximum, and the color scale indicated in the lower right applies to all
panels.
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Figure 4 Same as figure 3, but for target locations at 212 km depth.
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Figure 5 Illustration of the propagation of data uncertainty into model uncertainty. The map shows the ‘propagation factor’
at 112 km depth, defined as the model uncertainty given unit data uncertainty. The cross-section below the map indicates
the depth dependence of the propagation factor along a vertical 2500-km long N-S oriented profile as indicated by the green
line on the map.

3.4 Generalised inverse: Resolution and uncertainty propagation288

The seismic tomography inversion is fully characterised by the generalised inverseG†: it determines the resolution289

(fromR = G†G) as well as the propagation of data uncertainty into model uncertainty (from Cm̃ = (G†)TCdG
†).290

Lastly, it determines the propagation of data into model solution (from m̃ = G†d).291

It is difficult to represent the full 3D resolution as it is most easily understood in terms of an extended 3D resolv-292

ing kernel associated with each model parameter. A detailed analysis thus requires 3D rendering software or the293

production of simple proxies, for example those proposed by Freissler et al. (2024). Here, we instead illustrate the294

resolution by selecting example resolving kernels. At 112 km depth (Figure 3), the resolving kernels match the target295

location well laterally. Their lateral size is roughly 250-450 km (if we take the radii of a circle containing 68% of the296

kernel). This can be compared to the length of the major and semi-major axes of the target kernels of 200 km. Some297

averaging kernels are significantly anisotropic, indicating lateral smearing due to the heterogeneous ray path distri-298

bution. Vertically, the resolving kernels appear also to be focused with a half-thickness of roughly 50 km. This can299

be compared to the length of the minor axis of the target kernels of 25 km. However, they appear slightly shifted up-300

ward from the target. Deeper down, at 212 km depth (Figure 4), the resolving kernels still match the target locations301

laterally, but they appear broader (300-700 km). They now also poorly match the target kernel depth-wise. Instead of302

peaking at 212 km depth, the resolving kernels peak at 112 km depth and tail off deeper down. This implies that what303

we observe in the tomographic model at 212 km depth is actually an average of the ‘true model’ at shallower depth.304

We show the ‘error propagation factor’ in Figure 5. This can be interpreted as the model uncertainty for unit305

data uncertainty (Cd = I), obtained from (G†)TG†. We observe a positive correlation between data coverage and306
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error propagation factor: the error propagation tends to be high where data coverage is high (e.g. North America,307

South-East Asia). We also clearly see patches of high error propagation in the Pacific Ocean at locations of isolated308

stations. This is due to the high data sensitivity at stations where many oscillatory sensitivity kernels add together.309

Furthermore, we note linear features with high error propagation that follow great-circle paths radiating away from310

some isolated stations. These probably outline sensitivity kernels that repeatedly sample similar regions. With depth,311

we find that the propagation factor increases down to 87 km depth and then decreases again deeper down. While312

this decrease may be surprising, it is balanced by poor resolution at greater depth. In general, SOLA tends to pro-313

duce models with better resolution where data sensitivity is high, at the cost of a larger error propagation factor. By314

choosing different sizes for the target kernels, this can be balanced (Freissler et al., 2024).315

4 Input data and measurement uncertainty316

Wemeasure phase delays between ‘observed’ and ‘reference’ seismograms for 16 different frequencies ranging from317

6 to 21 mHz (48-167s), in steps of 1 mHz. In this synthetic study, we use as ‘observed seismograms’ waveforms com-318

puted using SPECFEM3D_GLOBE (Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 2002) for the 3D inputmodel319

S362ANI (Kustowski et al., 2008) combined with CRUST2.0 on top (Bassin et al., 2000). Hereafter, we refer to these320

as SEM seismograms or SEM measurements. These were obtained from the GlobalShakeMovie project data base321

(Tromp et al., 2010) and downloaded from Earthscope, formerly IRIS (IRIS DMC, 2012; Hutko et al., 2017). Refer-322

ence seismograms were computed using normal-mode summation with the Mineos software (Masters et al., 2011)323

for the 1D radialmodel stw105 (Kustowski et al., 2008), consistent with S362ANI. For both sets of seismograms, we use324

source solutions obtained from the Global-CMT project (Ekström et al., 2012) and stationmetadata from Earthscope.325

To measure the phase delay between the two sets of seismograms, we use a multi-taper measurement algorithm as326

suggested by Zhou et al. (2005) and detailed in appendix A. Themulti-taper technique has the advantage of providing327

an estimate for the measurement data uncertainty as the standard deviation of the measurements across all tapers.328

This uncertainty estimate is particularly sensitive to cycle-skipping and contamination by higher modes and other329

phases.330

Considering only source-receiver combinations for which the measurement time window does not include the331

event origin time (150 s before to 650 s after the predicted group arrival time), we obtain 2,414,515 measurements of332

Rayleigh wave phase delays. We select a subset of thesemeasurements based on the following criteria: similarity be-333

tween the seismograms (cross-correlation > 0.8), source radiation in the direction of the station (> 80% of maximum334

radiation), measurement uncertainty (< 1.9 radians), outliers removal (1% of the dataset). This leads to 564,940 poten-335

tial measurements. Due to memory limitations (as explained in section 3.2), we select a subset of N = 47, 700 data336

to reduce the size ofG. This is achieved by randomly selecting one ray, then removing all rays whose endpoints are337

within 800 km radius of the endpoints of the selected ray, and repeating this process until we reach the desired num-338

ber of measurements, at the frequency of interest. This gives the vector of measured data that we denote dmeasured.339

As a check, we also compute the corresponding analytical data danalytical by applying our forward theory G to the340

3D input model S362ANI (minput), i.e. danalytical = Gminput.341

As we do not invert for the crustal structure, we need to apply a crustal correction to our measurements (e.g.342
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Marone and Romanowicz, 2007; Bozdağ and Trampert, 2008; Panning et al., 2010; Liu and Zhou, 2013; Chen and343

Romanowicz, 2024). For consistency with the synthetic ‘observed’ waveforms, we also use CRUST2.0 to compute the344

crustal correction (Bassin et al., 2000). We first construct 1D radial models for a combination of stw105 and CRUST2.0345

at every location in a 2◦x2◦ grid. For each grid point, we then solve a normal-mode eigenvalue problem usingMineos346

(Masters et al., 2011) to obtain the local phase velocity, thus building phase velocity maps for the reference model347

with the added crustal structure. For each source-receiver path and all frequencies in our dataset, we subsequently348

compute the phase accumulated in thismodelϕref+crust as well as in the referencemodelϕref , assuming ray-theory349

(i.e. great-circle approximation). The difference in phase due to the crustal structure δϕcrust = δϕref − δϕref+crust
350

is then used to correct the measured data: dcorrected = dmeasured − δϕcrust.351

Examples of our dispersion measurement procedure and results are given in Figure 6 and used to illustrate three352

typical cases. Someof ourmeasurements agreewellwith the analytical predictions andhave lowuncertainty (left col-353

umn). This case is representative of 19% of the final dataset, with a difference of less than 1 radian betweenmeasured354

and analytical data. This difference is also less than 3 times themeasurement data uncertainty. Othermeasurements355

do not agree well with the analytical predictions (middle column), but this is compensated by high data uncertainty.356

This case is representative of 10% of the final dataset, with a difference of more than 1 radian between measured357

and analytical data. This difference is still within 3 times the measurement data uncertainty. The last column shows358

a more problematic case: the measurement has low uncertainty, but does not match the analytical prediction. It359

appears that the measurement algorithm has failed to detect a cycle-skip around 8 mHz. Since the measurements360

are consistent for all tapers, the uncertainty remains low in this case. Therefore, the final measurement includes a361

cycle-skip difference with the analytical data above 8 mHz that is not reflected in the uncertainty. This case is repre-362

sentative of 67% of the final dataset, with a difference of more than 1 radian between measured and analytical data.363

This difference is greater than 3 times themeasurement data uncertainty. Note that these discrepancies are due both364

to errors in the measurement (poorly measured data), that may be underestimated, but also to errors in the forward365

theory (poor analytical data), which we ignore at this stage.366

Figure 7 presents statistics summarising our measurements and associated uncertainty. Our measured phase367

delays are typically larger than the analytical predictions (danalytical = Gminput) for both positive and negative368

delays, possibly due to non-linear effects. Wemay therefore expect increased positive and negative anomalies in our369

resulting tomographic model. We also observe a parallel branch of negative measured phase-delays with respect to370

the analytical predictions, likely due to non-detected cycle-skips. Ourmeasurement uncertainty peaks around 0.3-0.5371

radians, with the peak uncertainty shifting to higher values (to the right) for higher frequencies (darker colours). The372

effect of this shift on the resulting model uncertainty is not easy to predict as different frequencies impact the model373

solution in different ways (e.g. low frequency data have overall lower sensitivity). We also observe two additional374

peaks for higher uncertainty values, probably due to cycle-skipping and contaminationwith highermodes. However,375

measurements with these uncertainty values are not included as we apply a cutoff of 1.9 radians in our data selection.376

We now have a dispersion data set with an estimate of the measurement uncertainty. As described above, the377

measurement uncertainty provided by the measurement algorithm accounts for cycle-skips and contamination by378

other phases or higher modes, but not fully. Moreover, it does not capture the theoretical errors. We aim to estimate379
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Figure 6 Example dispersion measurements, showcasing three typical cases. For each case, we include the sensitivity ker-
nel at 16 mHz, plotted at 112 km depth (top row); the seismic traces (second row) for 8000 s after the event origin time (ref-
erence in black, SEM in red), filtered around each measurement frequency, and the green vertical lines indicate the start and
end times of the applied tapers, around the predicted group arrival time; the measured dispersion for each taper (third row);
and the final dispersion measurement (bottom row) averaged over all tapers (black) with the estimated uncertainty (grey),
compared with the analytical prediction (orange). In the last row, the crustal correction is also applied to the measurements
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Figure 7 Summary of data and measurement uncertainty. Left: Cross-plot of the measured phase delay (after crustal cor-
rection) versus the analytical phase delay prediction, coloured by frequency. Positive phase-delays typically indicate slow
velocity anomalies. Right: Distribution of measurement data uncertainty (coloured by frequency) before (grey) and after ap-
plying several selection criteria. Our selection criteria include a threshold for the data uncertainty (lower than 1.9 radians, as
visible in the plot). The distribution of the measurement uncertainty before applying the selection criteria is scaled by 0.003
to enhance its visibility.

these in the following section.380

5 Results381

In the perfect case of error-free analytical data danalytical, an inversion should produce a model solution that is382

exactly the same as the filtered input. We confirm that by comparing the analytical model solution m̃analytical =383

G†danalytical to the filtered inputRminput. When we instead use the measurements on SEM waveforms dcorrected,384

differences between the filtered input model Rminput (Figure 8b) and the obtained model solution m̃output (Fig-385

ure 8d) arise due to data errors. These errors are a combination of both measurement and theoretical errors. Only386

the former have been taken into account in the model uncertainty map shown in (Figure 8c). Note how the edges387

of the model solution appear rough. This is because we invert only for model parameters where the data sensitivity388

is higher than a certain threshold (depending on depth); this is possible due to the point-wise nature of the SOLA389

inversion.390

5.1 Qualitative proof of concept: velocity models391

The features in the input model (Figure 8a) are also mostly present in the filtered model (Figure 8b). This indicates392

that the model resolution is good, at least at 112 km depth. For example, we retrieve mid-ocean ridges (low velocities393

at the East-Pacific rise, Pacific-Antarctic ridge, the edges of theNazca plate), the lithosphere cooling effect (increasing394

velocity with distance from the ridge), the ring of fire (low velocity in the back-arc regions behind subduction zones395

such as the Aleutian trench, Okhotsk trench, edges of the Philippine sea plate and the Tonga-Kermadec trench),396

and cratons (fast velocities within the Australian and North American continents). The amplitudes of the velocity397

anomalies in thefilteredmodel are lower than in the inputmodel. This is expected since thefilteredmodel represents398

(unbiased) local averages (Zaroli et al., 2017). Thefilteredmodel is also rougher on short length scales compared to the399

input model. This can be explained by the local nature of SOLA inversions where each model parameter is inverted400

independently from the others. In this case, we notice this particularly because the inputmodel itself is very smooth.401
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Some artefacts appear such as the fast velocity anomaly of SW Australia extending through the slow velocity of the402

Australian-Antarctic ridge. Some striations also appear in the fast velocity region in the NW Pacific, trending in the403

SW-NE direction. These artefacts are probably the result of anisotropic ray coverage, with many sources in East-Asia404

mostly recorded by stations in North-America. In addition to these artefacts, some local features disappear in the405

filteredmodel, such as the lowvelocity finger extending southward from theAleutian trench, or the branch extending406

northwestward from Hawaii. Overall, the filtered input resembles the true input model well, as also reflected in the407

cross-sections underneath.408

The resulting model solution based on SEM seismograms (Figure 8d) appears very similar to the filtered input409

(Figure 8b). Compared to the input and filtered inputmodels described above, themodel solution appears somewhat410

rougher due to the propagation of data errors into themodel solution. The striations observed in theNWPacific in the411

filtered model are also stronger in the model solution than in the filtered input. Finally, the cross-section indicates a412

good agreement between the filtered model and our model solution.413

5.2 Quantitative proof of concept: uncertainty414

Our model measurement uncertainty map (Figure 8c) is very similar to the ‘uncertainty propagation factor’ map in415

Figure 5. Uncertainty is typically higher where there are clusters of stations and at isolated stations with linear fea-416

tures following great circle paths. Uncertainty peaks at ∼ 87 km depth and decreases strongly deeper. In our SOLA417

inversions, themodel uncertainty only arises from the propagation of data uncertainty (Equation 4). Thismeans that418

robust data uncertainties need to be estimated in order for model uncertainties to be reliable. We estimate measure-419

ment data uncertainty at the measurement step. However, this estimate does not encompass the full uncertainty420

that should include effects due to theoretical errors. Howmuch these contribute to the data uncertainty is generally421

difficult to determine, but the synthetic nature of this study allows us to estimate theoretical uncertainty and inform422

future studies.423

We propose the following strategy to estimate the magnitude of the theoretical model uncertainty. Let minput
424

and m̃output be the input model and model solution respectively. Any discrepancy between the input model and425

model solution arises from the limited resolution and propagation of data uncertainty into model uncertainty. To426

rule out the effect of limited resolution, we apply the resolution to the inputmodel to obtain the ‘filtered’ inputmodel427

Rminput. Therefore, in this synthetic setup, it is only the propagation of data errors into model errors that explains428

the discrepancy between the ‘filtered’ input model and the obtained model solution. This is confirmed by the fact429

that the model solution based on error-free analytical data reproduces the filtered input exactly. Let us define the430

model misfit normalised by the model uncertainty as:431

χm̃ =

√√√√ 1∑
k∈P Vk

∑
k∈P

Vk
[(m̃output)k − (Rminput)k]2

(σm̃)2k
, (8)432

where k refers to themodel parameter index, Vk is the volume of voxel k,P is the set ofmodel parameters considered433

for the analysis, and σm̃ refers to the model uncertainty estimate.434

If the data uncertainty is well-estimated, then χ2
m̃ = 1. As an experiment, we add random noise with a known435

distribution to the analytical data (i.e. to those obtained using danalytical = Gminput). In this case, the simulated436
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Figure 8 Summary of synthetic inversion results, comparing (a) input model S362ANI, (b) input model S362ANI filtered
using our resolution matrix, (c) the model measurement uncertainty (propagated from data measurement uncertainty), and
(d) the model solution retrieved using the measured data values (based on the SEM seismograms). All maps represent depth
slices at 112 km depth, as in Figure 3. Below each map is a N-S vertical cross-section with the location indicated by the grey
or green line on the maps.
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data uncertainty is perfectly known and we obtain exactly χ2
m̃ = 1. In the case of our synthetic tomography with437

phase delays measured on SEM waveforms, we obtain χ2
m̃ ≈ 33 ≫ 1 when we only consider the propagation of data438

measurement uncertainty into model measurement uncertainty. This model uncertainty estimate is dramatically439

under-estimated as we may have underestimated the data measurement uncertainty and/or lack the theoretical un-440

certainty. We thus need to either upscale or add another component to themodel uncertainty to account for this. We441

can write:442

σtotal
m̃k

2
= α2σmeasurement

m̃k

2
+ β2 (9)443

Here, α is the factor needed to upscale themodel measurement uncertainty to account for the fact themeasurement444

uncertainty itself might be underestimated. β is the theoretical uncertainty term that appears as an added compo-445

nent. We can now vary α and β independently and investigate for which combinations we obtain χ2
m̃ = 1. Note that446

in this analysis the scaling factor α and the added uncertainty component β are both assumed to be constant over all447

model parameters involved (consisting here of all model parameters for VSV at 112 km depth).448

Figure 9 shows the evolution of χ2
m̃ for various combinations of α and β. We use this plot to illustrate three449

distinct cases. (i) Themodelmeasurement uncertainty serves as total model uncertainty, i.e. no upscaling nor added450

component, i.e. α = 1 and β = 0. In this case, χ2
m̃ ≈ 33 falls in the under-estimated uncertainty region. (ii) We451

upscale the model measurement uncertainty without adding a component to obtain χ2
m̃ = 1, i.e. β = 0, which452

requires α ≈ 5.74. (iii) We add an uncertainty component without upscaling the model measurement uncertainty to453

obtainχ2
m̃ = 1, i.e. α = 1, which requires β ≈ 0.49. In this last case, β is very close to the totalmodel uncertainty. This454

shows that the model measurement uncertainty explains only a small part of the discrepancy between the filtered455

input and themodel solution. For comparison, themeanmeasurementmodel uncertainty is 0.09 (without upscaling).456

This means that the theoretical model uncertainty that needs to be added to the measurement uncertainty for a457

correct totalmodel uncertainty is 0.49/0.09 ≈ 5.5 times themodelmeasurement uncertainty (without any upscaling).458

Therefore, in this case, the total model uncertainty is thus dominated by what we refer to as theoretical uncertainty.459

In other words, the uncertainty provided by the measurement algorithm explains only a small fraction of the total460

magnitude of the uncertainty.461

6 Discussion462

The SOLA-finite-frequency framework for surface-wave tomography we present in this study makes it possible to463

obtain 3D resolution and uncertainty estimates in surface-wave tomography. Here, we discuss our findings regarding464

resolution and uncertainty in more detail and discuss possible future directions.465

6.1 Full 3D resolution466

Our setup offers many advantages for estimating seismic model resolution: we obtain the full resolution matrix in a467

computationally efficient way, the resolution is fully 3D, it is unbiased by construction (local averaging weights sum468

to 1), while at the same time we control the resolution we obtain by choosing the target kernels. This is in contrast469

with most other studies that typically have assessed the resolution through either inverting synthetic input models470

(e.g. French et al., 2013), checkerboard test (e.g. Zhou et al., 2006; Auer et al., 2014; Rawlinson and Spakman, 2016),471
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Figure 9 Model uncertainty analysis. The central plot shows the value of χ2
m̃ (the misfit between the model solution and

the filtered input model, normalised by the model uncertainty) for various combinations of the scaling factor α and added
theoretical component β. In general, one should aim to find values of α and β that lead to χ2

m̃ = 1 (the black line in the white
area). For small values of bothαandβ (blue region, or lower-left part of the plot),χ2

m̃ > 1, meaning that the model uncertainty
is under-estimated, while the red regions indicate the model uncertainty is overestimated. The three cross-plots show the
velocity variations in the model solution versus those in the filtered input model for three cases: (i) upscaled measurement
uncertainty and no added component (upper-left), (ii) no upscaling nor added component (lower-left), and (iii) an added
component, but no upscaling (lower-right). Note that only the error bars representing the total model uncertainty for various
combinations of α and β change between these plots.
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point spread functions (Ritsema et al., 2004; Bonadio et al., 2021), using the Hessian in the context of full-waveform472

inversion (e.g. Fichtner and Trampert, 2011), statistical methods using Monte Carlo approaches or transdimensional473

tomography (e.g. An, 2012; Bodin et al., 2012b; Sambridge et al., 2013), or other algebraicmanipulations (e.g. Fichtner474

and Zunino, 2019; Shapiro et al., 2005; French and Romanowicz, 2014). While these approaches can handle non-475

linear inverse problems, they are typically computationally expensive, approximate, and only partially assess the476

resolution. In addition, since surface-wave tomography is often based on a two-step approach, estimates for the477

resolution are typically only 2D (lateral) or 1D (vertical). Moreover, data-fitting methods have great difficulties to478

provide direct control over the resolution, which can lead to biased local averages (e.g. Zaroli et al., 2017).479

In this (synthetic) study, we find that the resolution is good enough laterally to qualitatively retrieve the main480

features of the input model (compare Figure 8a and b). This may be surprising given the small number of data in481

our inversion (47 700). We believe there are three main reasons for this: (i) we carefully select our input data, (ii)482

finite-frequency theory provides improved constraints compared to ray theory since one 3D sensitivity kernel con-483

strains more model parameters than a thin ray, while it is also more accurate, and (iii) the SOLA inversion performs484

well in optimally utilising the data sensitivities. Point (ii) shares some similarities with adjoint methods used in full485

waveform inversion, given the volumetric nature of the adjoint sensitivity kernels (e.g. Monteiller et al., 2015).486

The SOLA method consists of individual inversions for each model parameter without imposing any global con-487

straint onallmodel parameters together (other than the target kernels). Therefore, the fact thatwe recover large-scale488

structure in the filtered model and model solution that are consistent with the input model is encouraging (Zaroli,489

2016). However, compared to the inputmodel, some short-scale variability arises in the filtered input, where adjacent490

cells show relatively strong differences. This is due to the pointwise nature of the SOLA inversion, combined with491

the absence of a smoothness criterion, and the smooth nature of the input model itself.492

In the above, we typically assess the performance of the resolution by comparing the filtered model to the input493

model. In doing this, we must keep in mind that there is a dependency on the roughness of the input model itself.494

In particular, if the input model had shorter scale structure, we might not have been able to resolve it. While the495

resolution itself remains reliable, the comparison of input versus output models depends on the input itself; this496

bears some similarity with the inherent limitations of checkerboard tests (e.g. Lévêque et al., 1993; Rawlinson and497

Spakman, 2016). The full resolution itself remains necessary for robust model interpretations.498

Since the data sensitivity and the resolution is fully 3D, we can confidently interpret the model resolution and499

uncertainty at all depths. This is a great advantage compared to our earlier 2D work (Latallerie et al., 2022), where500

the data sensitivitywas imposedbased on the lateral ray coverage (assuming ray theory). As a consequence, this study501

was likely too optimistic about the resolution at greater depth and therefore it was not possible to clearly state up to502

what depth the resolution and uncertainty estimates could be robustly interpreted. Moreover, since our resolution is503

fully 3D, we can investigate vertical resolution effects here. In addition to the well-known lateral smearing that arises504

in surface-wave tomography (discussed by Latallerie et al. (2022)), our averaging kernels indicate also significant505

vertical smearing (or depth leakage) in the cross-sections (Figures 3 and 4). Similar observations have been made506

in the context of full waveform inversion through assessment of the Hessian (e.g. Fichtner and Trampert, 2011). For507

somemodel parameters, the averages we recover relate primarily to structure above or below the true location as the508
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averaging kernel is shifted upward or downward relative to the target kernel. In particular, the structure obtained at509

greater depth tends to be an average over shallower structure, with the effect becoming strongerwith depth. Ignoring510

this full 3D resolution could thus lead to biased interpretations of surface-wave tomography, for example in studies511

of the age-depth trends of the oceanic lithosphere (e.g. Ritzwoller et al., 2004; Priestley and Mckenzie, 2006; Maggi512

et al., 2006b; Isse et al., 2019). This synthetic study thus emphasises the importance of taking vertical resolution into513

account when interpreting surface-wave tomography models and provides a quantitative way to estimate the depth514

to which a surface-wave tomography model should be interpreted.515

Resolution and uncertainty are closely related; regions with high resolution tend to have high uncertainty, and516

vice versa. In this study, we find that the propagation of uncertainty decreases with depth (Fig. 5). This might be517

counter-intuitive as we expect the sensitivity of surface waves to decrease with depth. However, this observation has518

also been noted in other studies (e.g. Zhang et al., 2018; Earp et al., 2020; Latallerie et al., 2022). Our 3D resolution519

provides a robust explanation for the the decrease of uncertainty with depth. As depth increases, the resolution520

typically degrades (averages are estimated over larger volumes), leading to lower uncertainties. This illustrates that521

a combined analysis of uncertainty and 3D resolution is necessary to fully understand the limitations of surface-wave522

tomographic models.523

6.2 Robust uncertainty estimates?524

In this study, we estimate model uncertainty by propagating data uncertainty into model uncertainty using SOLA,525

whichworks for linear(ised) inverse problems. Other studies have used Bayesian approaches (e.g. Bodin et al., 2012b;526

Sambridge et al., 2013; Zhang et al., 2018), recently helped by machine learning approaches (e.g. Earp et al., 2020),527

where the posterior probability density function for the model can be interpreted as a measure of uncertainty. The528

Hessian has also been used in full waveform inversions (e.g. Fichtner and Trampert, 2011). However, in non-linear529

problems, the interpretation becomesmore difficult. In both cases, we are leftwith the problem of estimating robust530

data uncertainty, which in the Bayesian philosophy entails finding the right prior probability distribution.531

Since errors in the tomographic problem stem from both imperfect measurement and forward theory, we have532

separated the data uncertainty into two components: measurement and theoretical uncertainty. We have estimated533

the measurement uncertainty with repeated sampling, changing the time window using the multi-taper technique.534

This is similar to previous studies, which have used summary rays, bootstrapping or perturbation methods to esti-535

mate the data mean and measurement uncertainty (e.g. Maggi et al., 2006b; Koelemeijer et al., 2013; Amiri et al.,536

2023; Asplet et al., 2020). The general conclusion in such studies is that data uncertainty is typically underestimated.537

This is clear from the meta-analysis of published tomography models that show that the discrepancies are stronger538

than the typical error bars (e.g. Hosseini et al., 2018; Marignier et al., 2020; De Viron et al., 2021). This has led authors539

to use simple ad hoc criteria for upscaling the measurement uncertainty. For example, Latallerie et al. (2022) use540

a least-squares χ-test to upscale the uncertainty by a factor up to 3.4, while Lin et al. (2009) multiply their random541

error uncertainty estimates by 1.5 to obtain a more realistic model uncertainty estimate. While the measurement542

uncertainty might indeed be underestimated (which led us to define the factor α in section 5.2), the total uncertainty543

needs to account for additional theoretical uncertainty (the factor β in section 5.2).544

Theoretical uncertainty has typically been estimated using synthetic tests during which input parameters are545
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varied and the range of recovered data values is recorded as uncertainty. For example, for surface-wave disper-546

sion measurements, Bozdağ and Trampert (2008) investigated the theoretical errors induced by imperfect crustal547

corrections, while Amiri et al. (2023) estimated the theoretical error induced by source mislocation. Similarly, Ak-548

barashrafi et al. (2018) investigated the theoretical error produced by different coupling approximations on normal549

mode measurements, finding that reported data uncertainties need to be at least doubled to account for the errors550

due to theoretical omissions. In this work, we instead estimated the effect of the theoretical uncertainties on the551

model using a synthetic tomography setup that included many sources of theoretical uncertainty simultaneously.552

The effect of resolution was removed by filtering the input model so that discrepancies between our model estimate553

and the filtered input model represent the total uncertainty. Since we obtained the model measurement uncertainty554

resulting from the propagated data measurement uncertainty, we estimated the theoretical model uncertainty to555

be ∼ 5.5 times larger than the model measurement uncertainty. The theoretical model uncertainty is thus larger556

than previously proposed factors of 1.5–3.4 (Lin et al., 2009; Latallerie et al., 2022), providing further evidence that557

the model uncertainty is indeed severely underestimated if we only propagate the data measurement uncertainty.558

Whether there is a need to upscale themeasurement uncertainty naturally also depends on the specifics of the study559

and on the reliability of the measurement uncertainty estimate itself.560

The main aim of this study is to provide a framework for surface-wave tomography with robust model statistics,561

including both the 3D resolution and total uncertainty. However, we still suffer from several drawbacks. For in-562

stance, although our measurement uncertainty should account for contamination by other phases or higher modes563

and cycle skipping, visual inspection indicates that this is not always the case (Figure 6). In the case of poor mea-564

surements (e.g. due to a missed cycle skip) with low uncertainty, we underestimate the measurement uncertainty565

and consequently overestimate the theoretical uncertainty. This is the rationale behind the factor α to upscale the566

measurement uncertainty in Section 5.2 and illustrates the difficulty of correctly estimating themeasurement uncer-567

tainty. An interesting alternative approach was presented by Bodin et al. (2012a) who proposed to use a hierarchical568

transdimensional Bayesian approachwhere the data uncertainty is an output of the inverse process itself, rather than569

an input. However, this approach assumes a single uncertainty value for all data, which can be problematic since570

the relative magnitude of the data uncertainty is of interest in the inverse process itself as well as for obtaining the571

robust model uncertainty.572

Another drawback of our approach is that our estimates of theoretical uncertainty depend on the input model573

used, i.e. S362ANI (Kustowski et al., 2008). The validity of the forward theory depends on several assumptions (e.g.574

forward scattering, paraxial approximation) whose validity depends on the properties of themedium inwhichwaves575

propagate (e.g. Liu and Zhou, 2013; Parisi et al., 2015). It is therefore important to perform our analysis in an Earth-576

like model and further work could investigate the dependency on the input model.577

Additionally, the scaling factor α (upscaling of the measurement uncertainty) and the added component β (rep-578

resenting the theoretical uncertainty) need to be determined for a sufficiently large number ofmodel parameters for579

the results to be statistically significant (here we considered all model parameters at 112 km depth). In particular, we580

would recommend to determine these parameters for each depth in the model independently, as velocity structure581

and the magnitudes of measurement and theoretical uncertainties likely change with depth.582
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We further assume the data uncertainties to be uncorrelated, whereas in reality we expect them to be correlated583

to some extent – e.g an error in the source location or mechanism will impact several measurements. In theory,584

it is possible to account for correlations between data uncertainties, but estimating these correlations remains a585

challenge in surface-wave tomography. Furthermore, our assumption of a zero-mean Gaussian distribution for the586

data errors seems reasonable, but the use of more general probability distributions could be also investigated (e.g.587

Tarantola, 2005).588

Lastly, we estimate the theoretical uncertainty from the discrepancy between the filtered input model and the589

model solution based on measurements on SEM seismograms. Since the crustal model we assume for the crustal590

corrections is exactly the same as in the input model, and the source parameters used for generating the reference591

seismograms are exactly the same as for the SEM seismograms, there is no theoretical error associated with errors592

in the crustal model or source solution in our synthetic framework. Nevertheless, these two components likely in-593

troduce non-negligible errors in reality (e.g. Marone and Romanowicz, 2007; Bozdağ and Trampert, 2008; Panning594

et al., 2010; Ferreira et al., 2010; Liu and Zhou, 2013; Latallerie, 2022; Amiri et al., 2023). Model uncertainty related to595

these components could be incorporated in the theoretical uncertainty estimate proposed in this study.596

Despite the drawbacks outlined above, we believe that our study provides a valuable starting point to obtain 3D597

resolution and estimate theoretical model uncertainty in surface-wave tomography, upon which future work can598

build. This information is vital for robust model interpretations and to reconcile existing discrepancies between599

published tomography models (e.g. Hosseini et al., 2018; Marignier et al., 2020; De Viron et al., 2021).600

6.3 Future directions601

The depth sensitivity and thus resolution in this study is limited by the restriction to fundamental surface-wave data.602

This can be mitigated by adding measurements for surface-wave overtones. In theory, including these in the pre-603

sented framework is trivial, but it will be important to carefully estimate the data uncertainty for these new mea-604

surements. The resolution and uncertainty produced in our setup can be used to inform other tomographic studies.605

Our 3D resolutionmaps indicate howwell certainmodel parameters are constrained depending on their position and606

particularly with depth. Based on this, we may choose sets of source-receiver paths and frequencies that best suit a607

certain target. For example, to better homogenise the resolution with depth, we may want to increase the number608

and/or the relative weight of low frequency data.609

The obvious next step is to apply the approach presented here to real data, using the lessons learned in this syn-610

thetic study. The information on 3D resolution and uncertainty obtained using SOLAwould be particularly useful for611

testing geodynamic predictions (Freissler et al., 2022). In addition, this information would ensure that we only inter-612

pret the tomographicmodels to their limits, and not beyond, being aware of potential resolution artefacts, especially613

with depth.614

There are many other directions for further development. For example, it is possible to extend the SOLA-finite-615

frequency framework for surface-wave tomography to other data and physical parameters, e.g. amplitude measure-616

ments to study anelasticity in the upper-mantle (e.g. Zhou, 2009b). These could be investigated independently, or617

through a joint approach, thus reducing theoretical uncertainty due to neglecting the effect of other physical param-618

eters.619
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Conclusion620

In this contribution, we have combined the Backus-Gilbert-based SOLA inversemethod with finite-frequency theory621

in a synthetic study of the Pacific upper mantle. Our 3D modelling and inversion framework enables us to control622

and produce uncertainty and resolution information together with the surface-wave tomography model. We have623

used a synthetic framework to demonstrate the reliability of our approach and to investigate the effect of 3D reso-624

lution, laterally and vertically, in surface-wave tomography. We find that the limited resolution induces well-known625

artefacts, including lateral smearing effects where data coverage is poor or highly anisotropic. More importantly,626

we show that limited vertical resolution can induce strong artefacts with model parameters potentially representing627

averages of true Earth properties at much shallower depth. Knowledge of this full 3D resolution is crucial for robust628

interpretations of surface-wave tomography models. Our synthetic setup allows us to also explore the reliability of629

model uncertainty estimates. We find that the theoretical uncertainty, required to match the filtered input model,630

might bemuch larger than themeasurement uncertainty in the data. This demonstrates the need to account for both631

measurement and theoretical uncertainty in surface-wave tomography. We believe that our study is a starting point632

towards better use and interpretation of surface-wave tomography models.633
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Appendix A: Phase delay measurements using multi-taper technique901

Let s(ω) = A(ω)eϕ(ω) be the mathematical expression of the reference seismogram computed for the 1D reference902

model for a given source-receiver pair at some frequency ω, with amplitude A and phase ϕ. Let o(ω) = Ao(ω)eϕ
o(ω)

903

be defined equivalently for the observed seismogram, or the SEM seismogram in the case of this synthetic study. The904

accumulated phase results from source and receiver effects, caustics and the propagation itself (e.g. Ekström, 2011;905

Ma et al., 2014; Moulik et al., 2021). We typically assume the first three terms are the same for both the reference and906

observed seismograms. In that case, the phase delay canbe directly related to the propagation and thus perturbations907

in the Earth model. These phase delays are what we are interested in measuring here.908

Waveforms are first pre-processed (e.g. resampled at 1 Hz, instrumental response removed if necessary). As sug-909

gested by Zhou et al. (2005) and Zhou (2009a), we then use a multi-taper technique to measure the phase-delays and910

to obtain an estimate of the measurement uncertainty (e.g. Thomson, 1982; Park et al., 1987a,b; Laske et al., 1994;911

Laske andMasters, 1996; Hjörleifsdóttir, 2007). The technique uses the first few Slepians (after Slepian, 1978) defined912
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Figure 10 Overview of the measurement workflow. We compute a reference seismogram for the reference radial Earth
model, which we use to measure the phase-delay of a SEM-computed seismogram (acting in this synthetic setup as observed
seismogram). We apply a set of tapers (the five first Slepians), thus leading to 5 tapered traces. We filter each in a set of
frequency bands, before we take the FFT. In the frequency domain, we then compute the phase difference for all frequencies
for all tapers, producing a set of 5 dispersion curves. We apply a cycle-skip correction and then take the mean of all 5 tapers
as the final measurement, with the measurement uncertainty given by the standard deviation of the five tapers.

over a 801 s window. Slepians are an infinite series of functionswith optimal frequency spectrum (therefore reducing913

frequency leakage) that weigh different parts of the waveform (thus reducing bias in the time-domain). With a 801 s-914

long time-window and 1 Hz sampling rate, we should use only the first 5 Slepians (see Percival and Walden, 1993,915

pp. 331). To position the Slepians, we compute the predicted group arrival time at the frequency of interest, starting916

the Slepian time window 150 s before the expected arrival. We then apply a 4 mHz-wide bandpass filter around the917

frequency of interest before we compute the Fast Fourier Transform. Finally, we subtract the phase component of918

the tapered and filtered observed (or SEM here) waveform from the reference waveform in the frequency domain.919

Usually, we obtain a smooth dispersion curve, except for when the phase delay reaches ±π, where the dispersion920

curve makes jumps of ±2π. Low frequencies are less likely to suffer from cycle-skips. Therefore, we make our mea-921

surements at increasingly higher frequency, starting at 6 mHz. When we detect these so-called cycle-skips (we use a922

threshold of ±4 radians for the detection), we add or remove 2π to obtain a smooth dispersion curve and apply this923

correction accordingly to all higher frequencies.924

For each source-receiver pair, we end up with 5 dispersion curves for the 5 Slepians, corrected for cycle-skipping.925

We use the average of these 5 curves as our final measurements and the standard deviation as the data measure-926

ment uncertainty. In some cases, we note an inaccurate detection of cycles-skipping (either as false-positive or false-927

negative). These false detections typically do not occur on all five tapers, leading to a sharp increase inmeasurement928

uncertainty. In addition, some fundamental mode measurements are contaminated by the interference of other929

phases or higher modes. This usually does not affect all five tapers, thus also leading to an increase in the measure-930

ment uncertainty.931
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Appendix B: Computational considerations932

In this study, we use N = 47 700 fundamental mode phase delays as data and we parameterise the spatial domain933

intoM = 259 200 voxels (cells of size 2◦×2◦ laterally and 25 km depth for the first 400 km depth of the wholemantle).934

Therefore, the sensitivitymatrixG of sizeN×M is reasonably large. To optimise the sparsity of the sensitivitymatrix,935

we only consider the sensitivity kernels in the two first Fresnel zones laterally, since their amplitude is negligible936

further away. The sensitivity is alsonegligible at depths greater than 400 kmdepth. Our resultingmatrix thus contains937

645 282 622 non-zero elements, i.e. the sparsity is approximately 5.2%. The SOLA optimisation problem (Equation 5)938

leads to a set of normal equations taking the form of another (M + 1) × (N − 1) matrix Q that is less sparse than939

G (see Zaroli, 2016, Appendix A). Reordering the lines ofG with the sparsest row first helps to improve the sparsity940

of Q. In this study, Q contains 657 124 288 non-zero elements, i.e. sparsity is approximately 5.3%. On disk, we use941

a ‘coordinate list’ (COO) storage strategy, and Q takes up ∼17 GB. On RAM, we use a reversed linked-chain storage942

strategy to improve compute time. In this case, theQmatrix takes up∼35 GB. This largememory requirement is the943

primary limiting factor for increasing the number of data and model parameters.944

The computation time of the LSQR inversion for a single model parameter depends on the target resolution and945

trade-off parameter. With the choicesmade in this study, it takes∼100 s permodel parameter. As we invert for 69 200946

model parameters, a full model estimate thus requires∼ 692 000 s CPU time (or 192 CPUh). In practice, we invert for947

model parameters in parallel on several nodes with 128 CPU each using a multi-threading approach with OpenMP.948

The scaling is not fully linear due to input/output operations, but this strategy reduces the wall time to∼ 20 h.949
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Response to the reviewers

We thank the Editor for handling the review process and both reviewers for their critical assessment
of our work. Below, we provide a summary of their primary concerns and the main changes we
have made to address these, before responding to each comment in detail. We have included the
sticky notes provided by Reviewer 1 in an annotated PDF with line numbers to facilitate the review
process. Corresponding changes in the manuscript are indicated in blue (new) or red (removed)
text. Line numbers correspond to line numbers in the PDF with tracked changes.

Summary

The concerns of Reviewer 1 and 2 relate to a few main points. A primary point of concern raised
by Reviewer 1 (Point 1.1 and 1.2) focused on our definitions of uncertainties. Particularly, they did
not like our treatment of theoretical uncertainty, and how we defined it as a component of the data
uncertainty. We agree with their comment, and we have amended the text accordingly throughout
the paper, while we specify early on what the theoretical uncertainty entails. In addition, some
concepts related to the SOLA inversion were not sufficiently clear in the submitted manuscript.
As suggested by Reviewer 2 (Point 2.1) and the Editor, we have added an appendix (Appendix A
in the revised manuscript) to provide more details on the SOLA inversion, making this paper
more self-contained, and hopefully clarifying some fundamentals on the SOLA inversion. Several
comments of Reviewer 2 concern the choice of η, the trade-off parameter and how this was chosen.
While this is a choice in SOLA, all models based on different values of η are valid solutions, as
long as they are interpreted together with their respective uncertainty and resolution. We have
clarified this in responses to Point 2.3 and Point 2.6. Other comments focus on the choice of input
model, the weighting of data (Point 2.2), the data and measurement procedure (Points 2.4 and
2.5 and non-linearity Point 2.7). We hope our responses, together with the changes made in the
manuscript, address the comments satisfactorily.

Reviewer 1

This manuscript describes a combination of the SOLA method (a variant of Backus-Gilbert inver-
sion) with finite-frequency theory for surface waves. Following a detailed introduction into surface
wave tomography and the need to quantify uncertainties, the authors provide a derivation of their
method and a synthetic inversion at global scale. The manuscript is well written and a pleasure to
read. I have no doubt that the method, maybe after some improvements to increase computational
efficiency, will be an attractive alternative to existing approaches, especially when uncertainty
quantification is critical for the scientific question that one actually aims to answer. Also, the
paper will surely become a valuable addition to the existing seismic tomography literature. Most
of my comments are minor and contained in the annotated manuscript. They primarily concern
inaccuracies in some lines of arguments. Two more significant concerns, detailed below, are related
to (1) sources of model uncertainty that may be more significant than the ones addressed by the
authors, and (2) the concept and treatment of forward modelling (theory) errors. In summary, all
of my comments can be addressed with improvements of the text and maybe some additions to
the discussion section. Since no additional simulations are needed, I would classify this as a minor
revision.
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Reply: We thank Reviewer 1 for their critical review and we hope our answers to the following comments
and subsequent changes in the manuscript will have addressed their concerns.
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Major

Reviewer Point P 1.1 — Sources of model uncertainties

1. The authors mainly consider two sources of model uncertainties: errors in the data and
forward modelling errors, i.e., inaccuracies of the underlying theory. While these two are
certainly important, they are only part of the story.

2. Nonlinearity can have a major impact, and not taking it into account is a limitation of the
method that deserves a more honest discussion. There are non-linear versions of the Backus-
Gilbert method, e.g., by Roel Snieder, that should probably be mentioned. Using a fixed, and
unavoidably inaccurate, crustal model is related to nonlinearity, too. Iteratively improving
tomographic models can have an enormous impact, as evidenced by recent models that use
hundreds instead of just a few tens of iterations (e.g., REVEAL by Thrastarson et al., or
WUS324 by Rodgers et al.).

3. Probably the most important source of model uncertainties are all the little choices that we
make along the way. This includes the shape and size of the target resolution kernels, the
code used to compute artificial data, approximations made to compute sensitivity kernels,
and, again, the choice of the crustal model. Without being able to proof this, my gut feeling
is that this is the zeroth-order contribution to model uncertainties. Of course, I would not
request the authors to solve this issue, but it deserves to be mentioned in the discussion.

Reply:

1. The forward modelling uncertainty estimate accounts for a number of errors mentioned below by
Reviewer 1. Non-linearity, approximations in the sensitivity kernels and reference seismograms,
should contribute to the discrepancy between the filtered input and output models, and therefore
contribute to what we regard as theoretical error, though non-linearities are undoubtedly stronger
in reality than in the input model we have chosen. It is true however that some contributions to
the theoretical uncertainty are not accounted for, particularly uncertainties in the crustal model
or the earthquake source parameters.

We have clarified what should be accounted for what we regard as the theoretical uncertainty
estimate when introducing it in the introduction at L115-123. Additionally, the paragraph in the
discussion (section 6.2, L710-716) makes clear what errors are lacking in the theoretical uncertainty
estimate (where we also added the the fact we use a optimal reference model as factor, and that
non-linearities in the Earth are expected to be stronger than in S362ANI).

2. We completely agree that iterative non-linear methods are important and that is certainly a
direction that seismology is heading. However, that does not mean there is no merit in linearised
methods. They allow us to test and investigate assumptions in data and modelling, while the
results can often be a valuable starting point for non-linear approaches. In addition, the resolution
and uncertainty of models developed using non-linear methods are more difficult to assess.

We have added this limitation in the discussion (L724-730) and mentioned here also several of
the suggested studies suggested to contrast with SOLA.
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3. Most of ’the little choices that we make along the way’ should contribute to our definition of the
theoretical uncertainty. In our linearised setup, we can separate resolution and uncertainties, in
contrast with non-linear approaches. Specifically, the model uncertainty is defined as the variance
attached to local average estimates. Therefore, the resolution itself does not contribute to the
uncertainty.

We have emphasised this in the text at L192-193, and we hope that the added appendix with
further details on the SOLA method (as suggested by Reviewer 2 and the Editor) will make this
point clearer.

Reviewer Point P 1.2 — Theory errors
I can understand the authors’ idea behind the estimation of forward modelling errors. Loosely
speaking, everything above an rms misfit of 1 is interpreted as forward modelling errors, which are
added to the observational errors.

1. Apart from the fact that this line of arguments breaks down for non-Gaussian errors, there
are a few other issues

2. An rms significantly above 1 can also result from a parameterisation that is too coarse, or
from a target resolution that is too low. This has nothing to do with forward modelling errors.
Hence, by changing these subjective choices, the forward modelling error changes, thereby
turning it into an arbitrary quantity.

3. Forward modelling errors are not random but deterministic. Hence, it does not make sense
to add them to the data errors and to treat them as a random variable.

4. Going a bit further, I would even argue that there is no such thing as a forward modelling
error. In fact, the notion of ”error” is meaningful only in the context of a reference. Error
with respect to what? For a forward model such a reference does not exist because all models
are wrong from the outset, and there is no universal measure for the quality of a model.
(They are mere abstractions of nature.) It follows that it does not actually make sense to
introduce a forward modelling error, because it is an arbitrary quantity anyway.

Reply:

1. The reviewer is correct in pointing out that our argumentation breaks down in the case of non-
Gaussian errors. This is a simplification that we cannot avoid in the current work, but others
have worked on this with SOLA. The only thing we can do at present is to be honest about this
limitation.

We mention this limitation in the theory section at L161-162 and we also remind the reader of it
in the discussion at L701-707.

2. We also agree that the parameterisation contributes to the theoretical errors.

We mention this at L121-122 (when addressing point P 1.1).

It is true that the model uncertainty due to theoretical errors depends on the resolution. How-
ever, this is natural since the model uncertainty is for local averages in the SOLA approach. In
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other words, the theoretical uncertainty is constant, but its propagation into model uncertainty is
resolution-dependent.

We added this point in the discussion at L694-700.

3. Forward modelling errors are indeed deterministic. However, for mathematical convenience, we
treat them statistically as random variables.

We mention this now in the discussion at L651-652.

4. We agree that it is difficult, or maybe impossible, to define what the general impact of the
forward modelling is and how it relates to our theoretical uncertainty. However, we believe we
can clearly identify assumptions in our forward modelling that will lead to errors in the model
solution compared to the true Earth structure. In this study, this is relatively clear as we work in
a synthetic setup: the ‘true’ forward modelling is the Spectral Element Method used to compute
the SEM seismograms, which function as observations. Every assumption we make in the linear
finite-frequency approach used to compute the sensitivity kernels that deviates from the SEM leads
to an increase in the theoretical errors. This is nevertheless dependent on the SEM seismograms
representing thee ground truth.

We added text on this in the discussion section at L721-723.

Minor

Reviewer Point P 1.3 — L43: I do not quite understand why you want to limit the importance
of your work to the oceans. There are many more regions where you do not have good coverage:
the Antarctic, Russia, South America, most of Africa, ... .

Reply: Amended.

Reviewer Point P 1.4 — L49: This statement is only party correct. Even if you had perfect
coverage, you would still not have a unique inverse.

Reply: We have reformulated the text.

Reviewer Point P 1.5 — L60: This statement is obviously wrong. The vast majority of
tomographic models come with some sort of resolution estimate, although this may sometimes not
be very sophisticated.

Reply: We meant to say that these approaches do not account directly for these, with examples of
different strategies that have been used to provide estimates given in the following sentence.
We have adapted the text to clarify this, which also addresses point P 2.8 of Reviewer 2.

Reviewer Point P 1.6 — L97: I think you are missing a classic here: Yomogida et al., 1992

Reply: Added.
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Reviewer Point P 1.7 — L113-120: I think the logic here is not correct. Data errors and forward
modelling errors are two completely different creatures. Yet, when solving an inverse problem, you
can treat these two in a similar way.

Reply: We agree with Reviewer 1 that even if the maths is similar, the concepts are distinct. In the
revised paper, we now clearly distinguish between measurement (or data) uncertainty and theoretical
uncertainty, which propagate into model measurement uncertainty and model theoretical uncertainty,
respectively.
We have reformulated the whole paragraph (penultimate paragraph of the introduction) where we
introduce the different uncertainties to make this clear. We have also amended this throughout the
manuscript wherever needed.

Reviewer Point P 1.8 — L113: This statement is quite obviously wrong. Data have errors
due to noise, even when you do not even have a forward theory. My 4-year-old son can pick travel
times, but he does not know about ray theory!

Reply: It is useful to see that our statement can be interpreted in different ways.
We hope the rephrasing made to address point P 1.7 also addresses this comment of the reviewer.

Reviewer Point P 1.9 — L115-123: Sorry, but this is not very clearly expressed.

Reply: We agree that this was not phrased clearly (perhaps related to the fact that defining theoretical
uncertainty is difficult).
We have removed this sentence at L115-123, and instead now explicitly list all the contributions that
we identify as theoretical errors.

Reviewer Point P 1.10 — L133: I am curious to see how you do this later in the paper. At this
point, this sounds like a self-contradictory statement because theoretical errors are not random but
deterministic.

Reply: As mentioned in our response to point P 1.2, we primarily make this choice for mathematical
convenience. This is indeed discussed later in the paper.

Reviewer Point P 1.11 — L144: Control of what?

Reply: Rephrased.

Reviewer Point P 1.12 — L155-157: Note some inconsistency in your logic. In the introduction
you mention that accounting for forward modelling errors is a major contribution of your work.
Here, however, you write that you make simplifications that are probably much more important:
Gaussian uncorrelated errors!

Reply: The reviewer is correct that this is a significant drawback. However, it is a commonly made
assumption and therefore, we feel that even under this assumption, we can learn more about the
contribution of theoretical errors to the model uncertainty.
We added a sentence at L160-162 to make clear that this is a significant drawback that should motivate
future work. We have also rephrased the main text in the abstract and introduction to be more honest
on what we can achieve given this limitation.
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Reviewer Point P 1.13 — L164-170: I am struggling a bit with these sentences because they
do not seem to be connected. It may help to say more explicitly that ill-posedness motivates
regularised least-squares solutions, and then you provide a way of writing these down.

Reply: We agree that these sentences were poorly phrased.
We now clarify the main aim of data-fitting approaches, discussing that this is fundamentally different
from the SOLA philosophy, before we start describing the SOLA method in detail.

Reviewer Point P 1.14 — L178: Note that this is a contradiction in itself. There is no such
thing as a true model! Absolutely all models are wrong because they are simplified abstractions of
nature.

Reply: We refer here to the velocity structure and in our synthetic case, the ’truth’ is very clear and
well defined, as it is the Vs structure of model S362ANI that we aim to retrieve. In general, we agree
that there might be some subjectivity in how we define the ‘truth’, we also believe that it is the point
of statistical methods to find an estimator that estimates some ‘true’ physical property.
To make clear that there may be different definitions of ‘true’, we therefore have added simple quotes
around this word wherever it appears in the manuscript.

Reviewer Point P 1.15 — L185-187: A reference would be useful here.

Reply: This is the affine transformation of a multivariate normal distribution.
We have added this description in the text to make clear where this equation stems from, but there is
no straightforward reference for this.

Reviewer Point P 1.16 — L189-192: Maybe add that you define uncertainty to be the standard
deviation. Strictly speaking, however, this is not correct. Uncertainty is a much broader term,
which include inter-parameter covariances, for example. It may be better to just call it the standard
deviation.

Reply: Thanks for this comment. That we assume uncorrelated data noise is a limitation, but such
correlations would be difficult to estimate. However, in SOLA, we do not aim to consider off-diagonal
terms of the model covariance matrix for the uncertainty. While we could compute these, this information
is already embedded in the resolution kernels, and we therefore do not think there is a need to account
for them in the uncertainty.
We have now clarified that we use the standard deviation as the uncertainty, both for the data and
model estimate, at L158 and L189-193.

Reviewer Point P 1.17 — L195-199: Try to be fair to all the people who developed methods that
go far beyond that. With statements like that you implicitly say that the vast body of literature
on Monte Carlo methods, for instance, can be disregarded.

Reply: We did not mean to imply with this statement that the literature on these methods can be
disregarded. However, as far as we understand, Monte Carlo methods still stem from a data-misfit point
of view, in contrast to Backus-Gilbert methods. Both these methods and data-fitting approaches have
their pros and cons and we were primarily justifying the use of SOLA to achieve the particular objective
of accounting robustly for resolution and uncertainty.
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Nevertheless, we understand from the reviewer’s comment that this statement might have come across
as too strong, and we have therefore rephrased it.

Reviewer Point P 1.18 — L205: The left-hand side of this equation is missing. What is this
quantity that you are optimising?

Reply: Thanks for pointing this out, the equation has been corrected.

Reviewer Point P 1.19 — L209-212: Maybe add a sentence to explain this. Why exactly shall
we bother about this?

Reply: We have added a sentence to explain the importance of this constraint.

Reviewer Point P 1.20 — L219: This statement is incorrect. The generalised inverse never
depends on the data! This is not a particularity of SOLA.

Reply: We intended to state that the optimisation problem is not driven by the data, while the data
are directly involved when minimising the data misfit in other approaches.
We have reformulated this statement and believe that the new appendix may also help to clarify this.

Reviewer Point P 1.21 — L226-227: Is this one of the simplifications you consider in the
forward modelling errors? Maybe mention this here.

Reply: Indeed. We now mention this at L230-231, and we also include this in the list of theoretical
error contributions (see our response to point P 1.9).

Reviewer Point P 1.22 — L235-239: Not sure the logic of this statement is correct. Strictly
speaking, there is not approximation here. What you do is to compute a first derivative operator.
Such an operator is by definition linear and for wave propagation problems it corresponds to single
scattering because higher-order scattering corresponds to later terms in the Taylor expansion, i.e.,
not the first derivative anyway.

Reply: Yes, this is what we mean here. Stating that we use only the first order of the Taylor expansion
(in the mathematical sense) or assume single scattering (in the physical sense) is equivalent. This is an
approximation in that we ignore higher order terms or multiple scattering.
We have added a sentence to mention the equivalence with the terms of the Taylor expansion for clarity.

Reviewer Point P 1.23 — L244: Style: Sentences should not start with math symbols.

Reply: Amended.

Reviewer Point P 1.24 — L241: I would suggest to simplify the equation above if you do not
use this anyway.

Reply: Amended.
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Reviewer Point P 1.25 — L270-273: Maybe explain which kind of grid you use. It probably is
not latitude and longitude as this would make a very small spacing near the poles.

Reply: We do use a local parameterisation in latitude and longitude for the whole sphere, but only
the first 400 km depth, as stated in the manuscript. Note that we account for the norm of the basis
functions wherever it applies through the Vj terms.

Reviewer Point P 1.26 — L287-289: I think it would be good to explain why you actually need
to store that matrix explicitly. Most tomographic methods compute matrix-vector products on the
fly, avoiding matrix storage. Why exactly can you not do this?

Reply: We made this choice to improve data I/O, which we expect to be slower if the matrix is not
stored in RAM. We would however welcome suggestions on how to improve this. We have added a
sentence here to explain this.

Reviewer Point P 1.27 — Fig 2: Please add lat/lon labels to the figures and enlarge the labels
in panel d) bottom.

Reply: This is something we have thought about ourselves, but we believe that latitude/longitude
labels are not necessary here. The scale of the maps and the coastlines make clear what region we are
looking at, and we do not refer to lat/lon coordinates anywhere in the text. Therefore, to maximise the
aesthetic of these maps, we prefer not to add these labels.
In response to the reviewer’s comment, we have removed the depth labels in the cross-section and we
now refer to the meaning of the depth lines in the figure caption (for this figure and all other similar
figures in the paper).

Reviewer Point P 1.28 — L305: kilometres (I think you mostly write in BE.)

Reply: Amended everywhere.

Reviewer Point P 1.29 — L312-315: This exactly the point I was trying to make above. It
is this freedom of choice that controls the difference between tomographic models, and not the
forward modelling uncertainty.

Reply: We believe it is both, the resolution as well as the uncertainty due to choices in the forward
modelling. This is also what we write at L46-48.

Reviewer Point P 1.30 — L326-327: Sorry, but this statement contradicts itself! You ignore
effect X because you want to study effect X.

Reply: This is not what we intend to say or do. We ignore X (the uncertainty) in driving the inversion
(to obtain the generalised inverse), but then we do use X to study the effect of X, i.e. we do propagate
the actual uncertainty we measure into model measurement uncertainty. We do this intentionally to
purely analyse the propagation of errors, but we then return to this in the discussion.
We have reformulated the text to make this clearer.

Reviewer Point P 1.31 — L329: Note that “unitary” has a meaning that is different from what
you have in mind here!
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Reply: We have rephrased this sentence to remove this expression from the text.

Reviewer Point P 1.32 — Fig 3: The labels in this figure are a bit small.

Reply: As discussed in our response to point P 1.27 we have now removed the depth labels from the
cross-sections and instead added the meaning of the depth lines in the caption.

Reviewer Point P 1.33 — Fig 4: Please enlarge the labels a bit.

Reply: See the response above.

Reviewer Point P 1.34 — L372-373: I am wondering if this is a reasonable choice. S362ANI
is such a simple model that it can be reconstructed with any tomographic method. Would it not
have been more interesting to use an input model that is a bit more challenging? (Basically, with
such a simple model you can only find out that your method works, but you cannot explore its
limitations, which is more interesting.)

Reply: We thank the reviewer for this suggestion. It would certainly be interesting to test an indepen-
dent (not tomographically derived model of the mantle) and this is certainly something that could be
done in future. However, we also would not want to discard the value of the lessons learnt with model
S362ANI for which synthetic seismograms were already available (thus also providing a computational
advantage). With a more challenging model, we would likely note that the resolution does not allow
to resolve smaller-scale features. Additionally the uncertainties (measurement and theoretical) would
probably be larger for a model that is more complex. We mention this in the Discussion: in the 4th
paragraph of section 6.1 (L588-594) on the resolution, and in the 6th paragraph of section 6.2 (L684-
688) on the uncertainty. More importantly, since SOLA is mostly concerned with obtaining the statistics
underlying the model estimate, the method would perform better for a more challenging model as it
would inform us about specific features of that model that cannot be retrieved. As an aside, the SOLA
minimisation problem to find the generalised inverse does not depend on the input model. Therefore,
the approach should work for any model.

Reviewer Point P 1.35 — L377: Same comment as above. Is this not too much of an inverse
crime?

Reply: We commit three types of inverse crimes in this synthetic study: using the perfect 1D reference
model, the perfect crustal model, and perfect earthquake source solutions. The first favours linearity
and therefore limits the contribution of non-linear effects to the theoretical errors, the last two fully
remove the contribution of errors in the crustal model and source solutions to the theoretical errors.
It would certainly be interesting to investigate the impact of these errors on the model uncertainty.
Unfortunately, it is difficult to have reliable uncertainty estimates on the source, crustal model, and 1D
Earth model, and to investigate their effect would represent a significant amount of work. This truly
deserves a separate study and there is ongoing work in our group focused on the uncertainties due to
the source parameters.
We have extended the third to last paragraph of the discussion in section 6.2 ‘Robust model uncertainty?’
(L710-723) to mention the inverse crimes related to the earthquake source and crustal model and we
have added the contribution of the reference model. We also now mention these factors early in the
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manuscript in the introduction (L123 of the revised manuscript) when listing the contributions to the
theoretical errors.

Reviewer Point P 1.36 — L387: Since this is a synthetic study, this seems to eliminate the
data that are actually the most interesting.

Reply: Although this is a synthetic study, we aim to mimic a real study, where similar criteria would
be considered reasonable.

Reviewer Point P 1.37 — L397: Why not?

Reply: In our linear setup, we require these corrections as the inversion for crustal structure is highly
non-linear. We have added this reasoning at L397-398.

Reviewer Point P 1.38 — L400: I see your logic here, but still note that this amplifies the
extent to which this is an inverse crime.

Reply: Please see our response to point P 1.35.

Reviewer Point P 1.39 — Fig 6: The labels are too small.

Reply: Amended.

Reviewer Point P 1.40 — L462-463: This statement is not correct. No matter how perfect
your data are, there is still a nullspace! Hence, there are infinitely many models that are equally
good. That your output model looks the same as the input model simply means that your inversion
methodology has a bias towards producing a model that you like.

Reply: Reviewer 1 may have misinterpreted this sentence. We primarily state that in the case of
error-free data the output model is the same as the filtered input, not the input model itself. We can
show this mathematically: perfect data are computed with d = Gminput, and the output model is
computed with moutput = G†d, thus replacing by the perfect data we have, moutput = G†Gminput =
Rminput = mfiltered. As a note, with SOLA, we break the non-uniqueness by looking at local averages.
This philosophy allows us to retrieve the filtered input exactly in the case of error-free data.

Reviewer Point P 1.41 — L471: For my taste this paragraph is a bit too long. After all, this is
a synthetic study where it has limited meaning to discuss how different features do or do not come
out.

Reply: We agree that there is little value in analysing specific geological features in this synthetic
setup. However, we believe that there is value in checking whether the method is able or not to retrieve
particular features in the input model, as this will be a primary objective when applying the method to
real data. It is also informative to note where the method performs well, where it fails, and to infer why
this is the case (see also our response to point P 2.5.

Reviewer Point P 1.42 — L472-473: I do not think this logic is correct. Input = output can
also mean that your input model is so simple (smooth) that you can recover it well no matter what
you do. (See my earlier comment on choosing an input model that may be too simple.)
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Reply: Please see our response to point P 1.34 on this topic. This is now also discussed thoroughly in
the discussion section, but we have added a sentence here at L477-478 as well to specify that we would
likely miss smaller scale features when using a rougher input model.

Reviewer Point P 1.43 — L500: Should this be the other way around?

Reply: No, this is the correct way as can be seen on the maps, as well as in the cross-sections. This is
because poorly constrained regions are overcompensated by very poor resolution, which can lead to low
uncertainty. For example, it can be counter-intuitive that uncertainty decreases at large depth, but this is
simply explained by the fact that the resolution does not represent what we think we are looking at (but
represents shallower structure). This shows the importance of having both resolution and uncertainty
when interpreting a model. Reviewer 1’s comment also shows the importance of actually quantifying
resolution and uncertainty as these may vary in counter-intuitive ways.
We discuss this point in the last paragraph of section 6.1, where we link the variation of resolution with
that of model uncertainty: the model uncertainty can only be interpreted together with the resolution.

Reviewer Point P 1.44 — L525-526: I can follow the idea but I still think it is incomplete.
Please see main text of my review.

Reply: We hope our responses to previous comments and changes in the manuscript will have addressed
this concern concerning the definition of the measurement and theoretical uncertainties that is indeed
central in this review.

Reviewer 2

The authors have provided an interesting exploratory paper, trying to bring together several well-
known problematic aspects in seismic imaging and possible directions to address them. I think
this study could be important for people interested in mantle imaging with methods that deviate
from the common assumptions adopted (damped least squares or probabilistic sampling). The
manuscript is well written, even if I think some additional details could be beneficial to it (see
comments below), the title and the abstract fits well the topics discussed. All the pictures are
relevant in the context they are presented in.

Reply: We thank Reviewer 2 for their views and their comments that have helped to improve the
manuscript.

Reviewer Point P 2.1 — I had to familiarize a little with the methodology used, reading the
work of Latallerie et al. 2022 and the precedent works of Zaroli et al. 2016 and Zaroli et al. 2017.
Considering this, my first comment is that this study works well following up the precedent papers,
but it could be not enough self-explanatory to be fully understandable by itself. For this reason,
I suggest expanding the methodology section to provide some additional information about the
SOLA algorithm (eventually, this could be even presented in the Appendix). At the end, this study
revolves mostly around methods, not results, so I suppose the methodology should be outlined with
some additional details.

Reply: We appreciate that Reviewer 2 took the time to read through previous papers that have used
the SOLA inversion to familiarise themselves with the methodology. As suggested by Reviewer 2 and
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the Editor and to make this paper self-consistent, we have added an appendix on SOLA (Appendix A
in the revised manuscript), containing an illustration, that we hope will help future readers to grasp the
main ideas of the SOLA method without having to read through other literature.

Major

Reviewer Point P 2.2 — L324-327: I suppose that the idea of building the generalized inverse
matrix assuming uncorrelated equal errors in all the observations (data covariance matrix = identity
matrix) rises from the difficulty in assessing the true uncertainty (measurement + theoretical) and
the influence this can have in the inversion process. However, since you are working with a wide
range of surface waves’ periods, I would expect the noise in the measurements to manifest some kind
of correlation with the frequency. So, either - by using the estimated uncertainties you consider
more “robust” - you justify assuming the same error (i.e., weight) at all periods in the first step,
or I would like to see discussed the impact different weights attributed to the data can have on
the generalized inverse and on the final solution. I suppose fixing the data covariance matrix
with reasonable uncertainty estimates and building multiple solutions can illuminate this. Another
reason why I consider this relatively important is because of the strong – and unexplained (not
undescribed) - deviations your solution model manifests from the input filtered model. I wonder
if one possible cause could be in the way the generalized matrix is built. The deviations between
the solution model and the filtered input model seems to be largely due to fine scale structures, I
would not be surprised if the average deviation could be reduced by a more appropriate weighting
scheme.

Reply: The reviewer makes an interesting suggestion. In the current setup, our preference was to
use equal data weights, in order to limit the number of subjective choices for designing the generalised
inverse. Note that we do use the measurement uncertainty estimate and propagate this into model
uncertainty. We slightly rephrased this passage to make this clear.

Given the different sensitivities, we agree that setting all weights equal to one is not optimal.
Nevertheless, given this limitation, it is promising to see that the model estimate does not deviate much
from the input model. While it would be informative to build a range of generalised inverses with
different choices of weights, this also represents a significant computational burden that we prefer to
avoid here. However, this will be investigated further in future, and we will consider a better weighting
for constructing a more optimal generalised inverse in real applications.

We added a sentence on this at the end of the paragraph at L330-331

Reviewer Point P 2.3 — L355-357: the part about resolved deep kernels representing an average
of the shallower portions of the model is particularly interesting. I suppose this is dependent on
the choice of the trade-off parameter “eta” that prioritizes low covariances for the model increasing
the deviation of the resolved kernels from the target ones. However, this makes me wonder if
the trade-off parameter could be selected to partially prevent these cases (?). If I understood
correctly, error propagation factor decreases around 200 km depth (fig. 5) because resolved kernels
represent the average of large shallower regions of space (fig. 4), enclosing many finite frequency
kernels, resulting in low resolution and low model’s uncertainty. Is this correct? I would like to
see a comparison between target and resolved kernels toward 400 km depth, where the uncertainty
propagation factor seems to drop to 0.
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Reply: This is totally correct. We have tried to retrieve the deeper structure with different values of
‘eta’, but without much success. In fact, even when using ‘eta’ values to favour a low resolution-misfit,
we observe that averaging kernels tend to over-fit the targets laterally, which dramatically increases the
uncertainties without much improvement vertically. Instead, it is likely that the data themselves cannot
constrain the depth better, which make sense as we only use fundamental modes here.

A comparison of the target and averaging kernels is given in figures 3 and 4 (blue ellipses versus
coloured grid cells) for the depth 112 km and 212 km. While it would be interesting to investigate the
structure at 400 km depth, we did not run the inversion below 212 km depth where the depth leakage
is already strong and the structure is unconstrained. We are currently searching for an approach to
balance this depth leakage better, for example by changing the trade-off parameter with depth, but this
represents additional computational costs. We added a sentence on this at L611-614.

Reviewer Point P 2.4 — L384-396: since your method uses a subset of the dataset to reduce
the storage required, it is my opinion that an approach more robust than randomly selecting rays
excluding similar paths would be i) using a binning technique to merge similar-paths, extracting
more robust estimates for the observables (and also uncertainties. . . ), or ii) using a procedure
similar to bootstrapping, where the dataset is randomly subsampled multiple times, and the solution
models resulting from each subset are brought together in an ensemble of solutions. This allows,
using metrics like average and standard deviation, to explore central features and poorly constrained
anomalies highly dependent on the specific subset. Considering that many of your measurements
have the uncertainties potentially underestimated, method ii) could be interesting to compare the
uncertainties in your model coming from bootstrapping with the error propagation you use to
compute model’s covariance matrix. I will not explicitly ask to add these to the study, but if you
agree that these approaches could work, maybe this discussion should be added to the text, or
considered for future experiments.

Reply: We thank Reviewer 2 for these suggestions. We have considered approach i), but this would be
difficult to implement in our setup given that finite-frequency sensitivity kernels depend on the specific
source mechanism, so that they would not be straightforward to compute for the summary rays. Ap-
proach ii) however is very interesting for exploring features in the dataset. It would be more difficult to
investigate the effect on the model estimate, as this would require to build and invert several sensitivity
matrices, which requires considerable computational resources.
We now mention these approaches when presenting our approach for obtaining the measurement un-
certainty at L393-395, as well as in the discussion about uncertainty at L640-643, and we may consider
them in future work.

Reviewer Point P 2.5 — L409-429:

1. I find a little concerning that your forward modelling strategy can describe only 30% of the
selected dataset. Considering that the - relatively accurate - approximations adopted in this
study should account for the primary elements controlling surface wave phase observables
(especially if simulated), I cannot fully understand why almost 70% of the measurements
deviate so much from the predictions of the true model.

2. I suppose phenomena like cycle-skipping could be identified by comparing the same event-
station phase measurement at different periods and checking if one breaks an expected trend
(since it should be wavelength dependent. . . ).
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3. If a wide range of frequencies gives rise to cycle-skips, like in fig. 6, I wonder if alternative
measurement methods based on nearby stations cross-correlations (Jin & Gaherty, 2015),
could provide more reliable observations, at least for some problematic cases.

4. In the pictures you show in Fig. 6 (top), the case representing a class III measurement is shown
as a surface wave traveling across North America, while in the other two – non problematic –
cases the propagation is across the Pacific. Could you plot a map with the “rays” connecting
events to stations (like Latallerie et al. 2022, fig.1a) colored by the deviation (measurement –
input prediction)? Just to check if the deviations manifest some sort of correlation with the
waves’ paths.

5. Does using finite frequency sensitivity kernels improve data-misfit with respect to ray-theory
predictions (considering the true model)? I would like to better understand if this is mostly
a problem with the measurement algorithm, or with the forward modeling you adopt in the
code. Either way, this could affect real data applications of the inference code, where no true
model predictions exist to compare with the measurements.

Reply:

1. The volume of data falling in each class depends on the (arbitrary) definition of these classes, that
is the number of radians and the number of standard deviations between the analytical predictions
and measurements. The results presented in figure 8 make clear that the overall dataset is not
as bad as the volumes in each class portray it to be. We note that 56% of the dataset has a
difference of less than 3 radians between the predictions and the measurements.
We have adjusted the definition of the classes slightly to reflect the overall behaviour of the data
set, and we have clarified this situation in the text at L430-442.

2. Regarding the cycle-skip, we do correct for this by detecting ‘jumps’ as frequency increases in the
dispersion curve for each event-station pair, as described in Appendix A. However, the algorithm
misses some cycle-skips. This is a recognised issue in surface-wave tomography, as shown by
Moulik et al. [2021] who compare a range of published phase-delay datasets. In our synthetic
setup, we are able to spot these missed cycle-skips, but we keep them as we aim to mimic a
realistic situation where we may be unaware of them. An advantage of our measurement approach
is that most cycle-skips that are missed lead to an increased data measurement uncertainty. The
real problematic case is when this does not lead to an increased uncertainty, as discussed in the
manuscript.
We have clarified the situation regarding the cycle-skip at L418-425. We also refer the reader to
the appendix about the cycle-skip correction, and now cite Moulik et al. [2021] on this recurring
issue in surface-wave tomography.

3. We thank Reviewer 2 for the suggestion to use another measurement algorithm. However, it is
important to use a measurement algorithm that is tailored to the forward theory we use. For
example, in the current setup the sensitivity kernels are derived with the measurement algorithm
in mind, and the tapers that we apply to the waveforms are also applied to the sensitivity kernels.
Cross-correlation measurements at nearby stations as in Jin and Gaherty [2015] is difficult to apply
in our context, where most stations are isolated.
We may consider comparing our measurements to those obtained with other algorithms in future,
but for now we refer the reader to Moulik et al. [2021] who compared several global data sets.
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4. We have followed the reviewer’s suggestion and plotted the ray-paths coloured by the deviation
between the analytical predictions and measurements. There is indeed a spatial pattern that arises,
with higher deviations mostly found at ocean-continent boundaries or along ridges, as well as in
the central Pacific at lower frequencies. These are probably locations where non-linear effects are
stronger.
These plots are indeed informative, and we have therefore added them to Figure 7, as described
in the text at L453-456. This also relates to Point P 2.22 as the locations of the most discrepant
measurements correlate well with the locations where the model solution deviates the most from
the filtered input.

5. A general comparison between ray-theory and finite-frequency has been conducted by Zhou et al.
[2005]. Repeating this would be a study in itself and is therefore outside the scope of our study.
In addition, it would only provide limited insights for understanding the discrepancy due to the
assumptions that are made in ray-theory. It might be more useful to conduct more synthetic
experiments, varying some aspects that we include in our theoretical uncertainties. Again, this is
outside the scope of the current study.

Reviewer Point P 2.6 — L524:

1. since many deviations from the input filtered model are small scale features, I wonder if
varying the trade-off parameter “eta” could have any effect.

2. In this study I don’t see any trade-off curve, or a similar criterion, for the selection of the
trade-off value. How did you choose this parameter?

3. Is there a trade-off value that could decrease significantly chi2? Would that be far from your
choice (50)?

Reply:

1. Indeed, small-scale structures are the most difficult to resolve. The better the resolution, or the
smaller η, the more likely it is we can resolve them. However, better resolution also means higher
uncertainty. Therefore, while we may better recover small-scale structures, these are more likely
to be uncertain, i.e. we are still not able to interpret them. We have added a note on this at
L585-587.

2. This is legitimate question from the reviewer, teaching us that a fundamental aspect of SOLA
may remain unclear: the trade-off parameter η is fundamentally different between data-fitting
optimisation problems and in SOLA. In data-fitting optimisations, it controls the smoothness of
the model versus the data-fit and it is subjective in that the tomographer decides to what degree
they trust their data and want a ‘high-resolution’ model. In contrast, in the SOLA approach it
relates to the design of a local average: for a certain point in space, do we prefer a small, but
highly uncertain local average, or a large, but more certain average? This means that compared
to data-fitting inversion all choices of η are valid. We therefore do not need to rely on some
arbitrary criterion to select one value of η and there is no particular need for an L-curve (see also
the supporting information of Zaroli et al. [2017]). In practice, we do experiment with different
values of the trade-off parameter and target resolution, but only for a small selection of model
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parameters. This is primarily to make sure that the results are robust, rather than to make
subjective choice.
We hope that the added appendix on the SOLA approach will help to clarify this fundamental
aspect of the method. We have also added a note in the text about this at L315-320.

3. In this case, χ2 is a model misfit (normalised by model uncertainty), not a data misfit. To avoid
any confusion, we have swapped χ for ξ in the text. The trade-off parameter is related to the
resolution misfit, not the model misfit. The relationship with that (between resolution and the
ξ2 value) is not trivial because a higher resolution does not always correspond to a lower model
misfit. We have clarified this point in paragraph 8 of section 6.2 (L694-700).

Reviewer Point P 2.7 — This is a general comment about the discussion section.

1. I agree that SOLA is an interesting option to consider when compared with damped least
squares methods, even if lack of smoothing constraints in SOLA seems to give rise to relatively
coarse solution models.

2. However, it remains non-trivial to interpret the robustness of anomalies bringing together
resolution and uncertainty propagation (especially in an unambiguous quantitative way).

3. Moreover, the method remains limited to linear(ised) problems, because any sort of iterative
linearization would make error propagation non-trivial (due to the iterative perturbative
approach).

4. In Bayesian Monte Carlo inference, I agree that prior probability functions have their influence
on the posterior density, but i) non-informative priors (like uniforms) can be chosen for the
fields directly investigated in the inversion, ii) even if informative priors were chosen, Bayesian
inference at the end is all about comparing priors with posteriors, to see where information
deviates from prior knowledge. These solvers provide uncertainty estimation directly sampling
from the posterior models that fit the data within the uncertainty.

5. Moreover, in the case of the trans-dimensional (t-dim) methods you mention (Bodin and
Sambridge, 2009), many parameters that typically need to be selected a priori for the model’s
parametrization are removed, resulting in a self-parametrized multi-resolution approach. I
have not fully understood your claim that t-dim solvers are approximate (??) and provide
partial information about the resolution (L563-564), because this is the entire point behind
trans-dimensional imaging. If data strongly requires a feature, small or large scale, that
will be manifested in many models in the ensemble, resulting in the average and uncertainty
maps. I have also some thoughts about your claim that hierarchical methods, where noise is
a random variable in the posterior, use a single noise parameter for all data (L681-683). This
is a partial consideration because of the following reasons: i) data can be divided in “classes”,
or different observables, and independent noise parameters can be introduced for each one
(Zhang et al., 2018; surface-waves phase and group travel times; Del Piccolo et al. 2024;
body-waves P&S delays and splitting intensity). The “classes” of observables can be chosen
arbitrarily; hypothetically, I could also separate different ranges of periods for surface waves
and invert for independent noise parameters, or different classes based on a “measurement
quality metric”... Another option is ii) to use more complicated parametrizations to represent
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noise depending on physical quantities, for example introducing polynomial functions (or
other basis functions) depending on the wave-paths’ ranges (Bodin et al., 2012; Zhang et
al., 2020), on the periods, etc. . . defining the coefficients of the polynomials as posterior’s
random variables to be inferred during the inversion. In this process, noise enters directly
the posterior definition with the possibility to be inferred, but also directly controls model’s
total uncertainty acting on the width of the likelihood functions.

Reply: We agree that there are advantages and disadvantages to the SOLA method. In the revised
manuscript, we have adapted the text to be fair in our comparisons with other methods, as described
below.

1. Regarding the lack of smoothness, this is due to the fundamental difference of SOLA with damped
data fitting approaches. However, we believe it is not a drawback of the method. One must
remember that we are not looking for one single model that satisfies the tomographer (given that
the smoothing that other methods apply is arbitrary). We instead aim to obtain individual local
average estimates that we can quantitatively interpret with the resolution and uncertainty. It may
be misleading that we plot these local averages side by side, which gives the impression that they
can be interpreted together as ‘model’, but we have not yet found a more adequate visualisation.
See also our response to Point P 2.6.

2. It is true that interpreting the model solution, resolution, and uncertainty is not trivial, and
this is exactly the point made by Latallerie et al. [2022]. Studies that have used SOLA so
far have proposed various ways to make use of the model resolution and uncertainty for robust
interpretations, but given we work here in a synthetic setup, we prefer to leave this to a future
application of the method.

3. We acknowledge that the method remains limited to linear problems, and accounting for non-
linearity would be difficult. We do not aim to do otherwise here, but there are possible ways of
improvement, following the work of Snieder [1991]. This has also been discussed in response to
Point P 1.1.
We have added a paragraph in the discussion on this at L724-730 where we cite Snieder [1991].

4. We thank the reviewer for pointing this out. We have now clarified the role of priors in Bayesian
methods by mentioning that non-informative priors could be used and that prior distributions
could also be compared directly with the posterior distributions at L632-633.

5. We thank the reviewer for correcting these statements. We agree that our claim that t-dim was
‘approximate’ was not justified and we had missed the point that t-dim methods could indeed
treat data with different uncertainties.
We have removed the statements the reviewer refers to and now cite the relevant references [Bodin
and Sambridge, 2009, Zhang et al., 2020, Del Piccolo et al., 2024] at L678-683.

Minor

Reviewer Point P 2.8 — L58-61: I would say that the reason why data-misfit based methods do
not directly account for resolution is because this metric is influenced by the grid choice (model’s
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parametrization) and smoothing constraints in a non-trivial combination. It is not clear what
you mean by “computational reasons”. Are you referring to full-waveform inversions? Because
otherwise these solvers are typically extremely efficient when working with secondary observables
(like travel-times).

Reply: In linear problems, one could approximate the resolution using point spread functions for exam-
ple, which would be relatively efficient, while bootstrapping could be used to obtain the uncertainties.
For large-scale problems, however, it gets expensive (computationally), to obtain the generalised inverse.
In general, it is true that these statistics would also be biased by the parameterisation and regularisation,
which is not the case with SOLA.
We have changed the text to clarify the above points, see L58-66 in the revised manuscript.

Reviewer Point P 2.9 — L63: what do you mean exactly by “crude approximation” of the
resolution?

Reply: We meant to say that the resolution obtained is not always exact, but only an approximation
of the resolution.
We agree that this was not very clear, and we have removed this expression, also in response to
Point P 2.8.

Reviewer Point P 2.10 — L189-191: does the model’s covariance matrix also show non-zero
elements outside the diagonal representing covariances between parameters? Would accounting for
covariances change significantly the estimated model’s uncertainty?

Reply: Yes, the off-diagonal terms of the model covariance matrix can be non-zero. Actually, one
row of the model covariance matrix looks very similar to an averaging kernel when plotted, as we are
working in a linear setup. In SOLA we do not consider them explicitly because the information they
carry is already embedded in the resolution, and this is the point of view we take here.
We have added a note on this in the discussion, see the section about the uncertainty at L707-709.

Reviewer Point P 2.11 — L220-221: it is my understanding that, if we refer to linear problems,
matrix G (and the generalized inverse) does not depend on the values of data d (also for “data-
fitting” methods). A typical example is a body wave imaging experiment with fixed rays and a grid
parametrization for the velocity model; the element Gij would represent the length of the segment
of the i-th ray in the j-th voxel, so also the generalized inverse – as a manipulation of G, would not
depend on data d (travel times). Probably you were referring to iterative linearized solvers, where
G represents the Fréchet derivatives, and it is in general a function on the data d, but this would
make the comparison with SOLA (only linear) unfair I suppose. Could you elaborate this point
further?

Reply: In this instance, we are discussing linear problems. Indeed, the sensitivity matrix G does not
depend on the data, but the generalised inverse does. In fact, we meant that the minimisation problem
that we solve to produce a model solution is driven by the data in data-misfit approaches, while this is
not the case in SOLA. We agree that this was not very clear. This also relates to Points P 2.21 and
P 1.20.
We have changed the text to clarify this at L219, and also made this clear in the figure in the added
appendix.
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Reviewer Point P 2.12 — L227: please, specify what kind of data δφl in eq. (6) represents.

Reply: Now specified at L224-225.

Reviewer Point P 2.13 — L270-271: do you expect that an alternative 3D parametrization
in voxels different from 2°x2°x25 km would significantly impact your conclusions about resolution?
Or is this strategy robust for even smaller voxels?

Reply: The parameterisation will have no impact on our conclusions about the resolution, but it should
be chosen in such a way that the voxels are smaller than the target kernels if these are to be honoured.
However, it would have an impact on the theoretical uncertainty as discretisation onto the tomographic
grid degrades the accuracy of the sensitivity kernels.
We have added a note on this at L276-279.

Reviewer Point P 2.14 — 2(b): correct title “data sensitivity”.

Reply: Amended.

Reviewer Point P 2.15 — L312-315: do you think that a different choice for the target resolution,
for example depending on the coverage, could lead to an improved data-misfit with respect to the
chi2 = 33 you achieved in this study?

Reply: We should clarify that χ2 is a model-misfit (normalised by the model uncertainty), not a data-
misfit. To avoid this confusion in future, we have replaced the letter χ by the letter ξ in the revised
manuscript. While a better resolved model may lead to a lower model misfit, the model uncertainty in
the denominator would also likely increase. Therefore, the relationship between ξ2 and the resolution is
not trivial.
We have added a paragraph at L694-700 on this in the discussion on uncertainty.

Reviewer Point P 2.16 — L324: I would think that data uncertainty always (not potentially)
influences solution models in multi-observables (like multi-period) inversions.

Reply: Here, we meant to say that the data uncertainty could potentially influence the design of the
generalised inverse. As can be seen in the minimisation equation for SOLA (equation 5), the uncertainty
can play a role through the data covariance matrix. In our case, since we set all data uncertainty equal
to one when obtaining the generalised inverse, the data uncertainty does not influence the minimisation.
We have slightly rephrased the text at L324-328 to clarify this.

Reviewer Point P 2.17 — L338-340: was the L-curve used to select a trade-off parameter value
equal to 50 in this study?

Reply: As discussed in our response to Point P 2.6, there is no need for an L-curve for choosing the
value of η in the SOLA method. All target resolutions are possible, so long as the model solution is
interpreted in light of its resolution and uncertainty. In general, one would use a trade-off that is useful
for the object that is to be characterised, depending whether one wants to see a very detailed structure
with high uncertainty, or only broad features with low uncertainty. Here, since it is a synthetic study,
we have no reason to choose a particular value of η, but adopted one so that the model shows all main
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tectonic features. While we have not computed an L-curve to select η, we have experimented with
various values of η, as well as target resolution sizes and found that they do not alter our conclusions.

Reviewer Point P 2.18 — L389: this is where I suppose something like bootstrapping could
produce more informative models in terms of uncertainty.

Reply: See our response to Point P 2.4

Reviewer Point P 2.19 — L419-422: is the undetected cycle-skip at 8mHz responsible for all
the discrepancies between analytical predictions and measurements in that 70% fraction of the
dataset? It is not completely clear from the manuscript how you justify the deviations of such a
significant fraction of the dataset.

Reply: No, this is only the case for this specific example. We agree that this was unclear in the original
manuscript.
We have split this paragraph into two paragraphs and rewritten a significant portion of it. These are
now the 3rd and 4th to last paragraphs of section 4 (L409-442). The fact that the measurements appear
to deviate from the predictions for a large fraction of the dataset has been addressed in the response to
Point P 2.5. We discuss there that this is not really the case, but instead due to the arbitrary definition
of the classes we used.
As discussed, we have changed the definition of the classes in the revised manuscript (paragraphs 3 and
4 of section 4, L409-442).

Reviewer Point P 2.20 — Looking at figure 7(a), it looks like there is weak tilt in the relation-
ship between the measured and the analytical phase delays. Would applying a rotation (meaning
that either measured delays are systematically overestimated or predictions are systematically un-
derestimated) lead to the analytical delays describing a wider range of observations (more than the
current 30%)?

Reply: A rotation may improve the agreement between predictions and measurements, but we would be
hesitant to apply this without knowing whether this tilt arises from a systematic error in the predictions
or from a bias in the measurements. In addition, the tilt is not entirely symmetric and seems to affect
positive phase delays more, which may hint at non-linear effects. Importantly, we can spot this apparent
tilt since this is a synthetic test, but in order to mimic a real case scenario, we believe it is better to
keep the dataset as it is. As discussed in the responses to Points P 2.5 and P 2.19, the agreement is not
as bad as it seems (see also the comparison work by Moulik et al. [2021]).

Reviewer Point P 2.21 — L479-482: I wonder if there could be a correlation between the rays
corresponding to class III measurements (poor measurement unrealistically low uncertainty) and
regions where you recover stronger anomalies with respect to the filtered input. This would also
follow up the comment above about the possibility of predictions being systematically underesti-
mated due to the local average of resolved kernels. Would this mean that resolved kernels are too
wide? Or the trade-off parameter not appropriate?.

Reply: Investigating whether cells with a strong difference between filtered input and output are
mostly constrained by particular, e.g. class III measurements, is not trivial. With SOLA, it is possible to
investigate this using the generalised inverse (one row of the generalised inverse contains the contribution
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of each data to a specific cell). However, it remains not trivial to visualise and analyse the information
that this provides.

Nevertheless, as noted in our responses to Points P 2.5 and Point P 2.22, the locations of the most
discrepant ray-paths correlate well with the regions where the model solution deviates the most from the
filtered input model. We thank Reviewer 2 for suggesting to plot the ray paths and model differences
as they have helped to observe this correlation.

We do not understand the second part of this comment. There is no relationship between the reso-
lution and the predictions, which are computed using the forward theory in the input model. In addition,
the averaging kernels are never too wide or too small, nor the trade-off parameter not appropriate. Any
combination of these is valid, so long as the model solution is interpreted together with its resolution
and uncertainty, as discussed further in the response to Point P 2.6.

Reviewer Point P 2.22 — Fig. 8: I would add a map showing the deviation (filtered input –
model solution). It can be difficult to directly compare the two solution maps. Less important and
not necessary to add, but I would really like to see what the input model looks like when applying
a filter with the target kernels.

Reply: We agree that a map showing the deviations of the model solution to the filtered input model
would be useful.
We have added this to Figure 8 of the revised manuscript, together with a map where these deviations
are normalised by the model uncertainty. This suggestion has also helped to observe that the most
discrepant regions correlate with the location of the most discrepant measurements, which relates to
Point P 2.5 and P 2.21.

The role of the target resolution is to design the expected actual resolution, but once the actual
resolution is obtained, one should forget about the target. However, we understand that Reviewer 2
may be curious about this information, which we have therefore computed. As Figure 1 shows, the
input model filtered by the target resolution looks very similar to the input model itself. This is because
the target kernels are very small, almost Dirac deltas. We have decided not to include it in the revised
paper as we think it would add confusion.

Reviewer Point P 2.23 — L563-568: as mentioned in the main comments, some words here
like “approximate” and “partial” probably needs some additional context. Moreover, some recent
studies using Monte Carlo inference adopt a single-step scheme for the inversion of surface waves
(Zhang et al., 2018; Zhang et al., 2020), providing more reasonable estimates for uncertainty
compared to the 2-steps inversions.

Reply: The first part of this comment has been addressed in responses to earlier comments, e.g.
Point P 2.7 and point P 2.9 and these phrases have been removed from the revised manuscript.

We appear to have missed these applications of 3D transdimensional tomography. We thank reviewer
2 for pointing us to these studies, and we have added a note on this in the revised manuscript, citing
them at L568.

Reviewer Point P 2.24 — L578-579: I agree that no explicit global constraints are applied to the
model’s parameters. However, it is my opinion that limiting the model’s covariance acts similarly to
an implicit “smoothing” constraint on the parameters, since a smooth model is typically expected
to be more “stable” than a model with very rough (i.e., small-scale) features. I would expect that
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Figure 1: Input model filtered by the target resolution. The colorscale gives dlnVs in %.

by changing the trade-off parameter, and promoting lower covariance models, they would also look
smoother than the one in this study (because of the increasing size of the resolving kernels).

Reply: There are several factors that affect the smoothness of the model. Regarding the covariance,
this would be true if we were limiting the off-diagonal terms of the model covariance matrix. However,
this is not the case, we only limit the covariance of model parameters with themselves, and therefore no
implicit smoothing is implied here. However, it is true that the overlap of averaging kernels for nearby
model parameters guarantees some spatial coherency in the model. In addition, some spatial coherency
in the model arises due to the data sensitivity itself. To take this comment into account, we have added
a sentence at L581-582 on the role of the overlap of the averaging kernels in providing some spatial
coherency.

Note that we are not aiming to obtain a smooth model with SOLA. Instead, we tend to search for
models where the resolution is as small as possible, and therefore the objective is almost opposite to
that of looking for a smooth model.

Reviewer Point P 2.25 — L569-570: I suppose the large-scale features are also the ones on
which almost all the surface waves tomography models agree on. . . (?)

Reply: Yes. We have clarified this at L570-571.

Reviewer Point P 2.26 — L599-606: this point is extremely interesting. I suppose that this
would manifest as well in teleseismic imaging with body waves using SOLA algorithm. Anomalies
tend to be smeared up to the surface, meaning the shallow parameters’ kernels are likely to represent
the average of deeper sections. Again, interesting how the trade-off parameter could control these
biases, but probably there is not an intuitive way to tune it for this purpose.

Reply: Indeed, this effect has also been seen in body-wave tomography with SOLA (e.g. Freissler
2024). With SOLA, we have some control over the resolution using the target kernels and thus we
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would hope to remove this effect. However, we remain limited by our choice of data, so in practice we
we can only reduce the effect. In our case, we have tried various trade-off parameters and target kernels
to avoid this depth leakage, but the results presented in the paper are the best we could achieve with the
data set. This is primarily due to the fact that we only use fundamental mode measurements for now,
and so only have good sensitivity at shallow depth. There may be ways of improvement, for example by
changing the trade-off parameter with depth or by including data weighs in the inversion (for example
by using values other than one in the data covariance matrix or including a weighing matrix, to give
more weight to low frequency data). These are all ways of improvement to investigate in future.
To take this comment into account, we mention some of the ideas above in the text at L611-614.

We thank the editor and reviewers again for their comments which have improved
and clarified many aspects of our work. We hope our responses and the changes made
to the revised manuscript address their concerns.
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Abstract Surface-wave tomography is crucial formapping upper-mantle structure in poorly in-12

strumented regions such as the oceans. However, data sparsity and errors lead to tomographic13

models with complex resolution and uncertainty, which can impedemeaningful physical interpre-14

tations. Accounting for the full 3D resolution and robustly estimating model uncertainty remains15

challenging in surface-wave tomography. Here, we propose an approach to provide direct control16

over themodel resolutionanduncertainty and toproduce these in a fully three-dimensional frame-17

work by combining the Backus-Gilbert-based SOLA method with finite-frequency theory. Using a18

synthetic setup, we demonstrate the reliability of our approach and illustrate the artefacts arising19

in surface-wave tomography due to limited resolution. We also indicate how our synthetic setup20

enables us to discuss the theoretical model uncertainty (arising due to assumptions in the forward21

theory), which is o�en overlooked due to the di�iculty in assessing it. We show that the theoretical22

uncertainty componentsmay bemuch larger than themeasurement uncertainty, thus dominating23

the overall uncertainty. Our study paves the way for more robust and quantitative interpretations24

in surface-wave tomography.25

Non-technical summary In the oceans, several surface features such as isolated volcanic26

islands or variations in the depth of the seafloor result from dynamic processes in the underly-27

ing mantle. To understand these processes, we need to image the three-dimensional structures28

present in the subsurface. While long-period surface waves can be used for this, the data are typ-29

ically noisy and provide poor coverage of the oceans. This limits the quality of our images and30

therefore the interpretations that can be drawn from them. In addition, limitations of our images31

are di�icult to quantify with current methods, which makes interpretations even more di�icult.32
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In this study, we propose an approach to produce high-quality maps of 3D structures in the up-33

per mantle, which also gives information on the quality of the images. We present the method in34

a synthetic framework, which serves to demonstrate our ability to retrieve an input Earth model35

and enables us to estimate theoretical model uncertainties. Our approachwill enablemore robust36

interpretations of surface-wave tomography models in the future.37

1 Introduction38

Many important geological processes (e.g. melting at mid-ocean ridges, spreading, subduction and hotspot volcan-39

ism) result from dynamic processes in the uppermantle. To improve our understanding of these processes, we need40

to robustly image the structure of the upper mantle. In poorly instrumented regions, such as the oceans, this imag-41

ing relies heavily on surface-wave tomography. However, surface-wave data have poor spatial coverage, both laterally42

due to the uneven distribution of earthquakes (sources) and seismic stations (receivers), and vertically due to how43

surface-wave sensitivity varies with depth. Surface-wave data also contain errors due to imperfect measurement and44

physical theory. Poor data coverage and data errors render the inverse problem ill-posed and lead to complex model45

resolution and model uncertainty (e.g. Parker, 1977; Menke, 1989; Tarantola, 2005). These explain the strong dis-46

crepancies between published tomography models (e.g. Hosseini et al., 2018; Marignier et al., 2020; De Viron et al.,47

2021). Over time, seismic images have become more detailed and are being used to inform research in other �elds.48

To guarantee the usefulness of surface-wave tomographic images however, we need to account for their full 3D reso-49

lution and uncertainty (e.g. Ritsema et al., 2004; Foulger et al., 2013; Rawlinson et al., 2014). Equipped with these, we50

will be able to avoid interpreting non-signi�cant anomalies (e.g. Latallerie et al., 2022), set up meaningful compar-51

isons with theoretical predictions (e.g. Freissler et al., 2020), or include tomography models in further studies such52

as earthquake hazard assessments (e.g. Boaga et al., 2011; Socco et al., 2012; Boaga et al., 2012).53

Many approaches have been proposed to solve ill-posed inverse problems in seismology (e.g. Wiggins, 1972;54

Parker, 1977; Tarantola andValette, 1982;Nolet, 1985; Scales and Snieder, 1997; Trampert, 1998;Nolet, 2008). Most take55

adata-mis�t point of viewand search for amodelwhosepredictions are ‘close enough’ to observations. However, such56

approaches have di�culties in accounting directly for model resolution and uncertainty, either for computational57

reasons or because, in these approaches, resolution and uncertainty depend in complex ways on the parameterisa-58

tion and regularisations used (Nolet et al., 1999; Barmin et al., 2001; Ritsema et al., 2004; Shapiro et al., 2005; Ritsema59

et al., 2007; Fichtner and Trampert, 2011; An, 2012; Fichtner and Zunino, 2019; Simmons et al., 2019; Bonadio et al.,60

2021). Synthetic tests, sometimes in the form of checkerboard tests, can be useful to assess resolution, but these have61

been shown to be potentially misleading (e.g. Lévêque et al., 1993; Rawlinson and Spakman, 2016).62

Other approaches for solving ill-posed inverse problems move away from the data-mis�t point of view and in-63

stead concentrate on directly optimisingmodel resolution and uncertainty. These approaches are typically based on64

Backus–Gilbert theory (Backus and Gilbert, 1967, 1968, 1970). One such approach, the SOLA (Subtractive Optimally65

LocalizedAverages) formulation, was derived for helioseismology by Pijpers and Thompson (1992, 1994) before being66

introduced and adapted to linear body-wave tomographic inversions by Zaroli (2016) and Zaroli (2019). Besides body67
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waves, the method has been successfully applied to normal-mode splitting data to constrain ratios between seismic68

velocities (Restelli et al., 2024) and to surface-wave dispersion data to build group-velocitymaps (Ouattara et al., 2019;69

Amiri et al., 2023) or 2D maps of the vertically polarised shear-wave velocity VSV (Latallerie et al., 2022). Although70

SOLA can be applied only to linear problems, it requires no prior on the model solution, provides direct control on71

model resolution and uncertainty, and produces solutions free of averaging bias (Zaroli et al., 2017).72

Traditionally, surface-wave tomography studies are based on ray-theory. This in�nite-frequency approximation73

requires a two-step procedure that can be performed in either order. One order is �rst to solve the inverse problem74

laterally (to produce 2D phase or group-velocity maps) and subsequently to solve for velocity structure with depth75

(to produce 1D velocity pro�les) (e.g. Ekström et al., 1997; Montagner, 2002; Yoshizawa and Kennett, 2004; Ekström,76

2011; Ouattara et al., 2019; Seredkina, 2019; Isse et al., 2019; Magrini et al., 2022; Green�eld et al., 2022). The other77

approach is to solve �rst for velocity structure with depth for independent source-receiver pairs (to produce 1D path-78

averaged velocity pro�les) and subsequently for lateral variations (to produce 2D velocity maps) (e.g. Debayle and79

Lévêque, 1997; Lévêque et al., 1998; Debayle, 1999; Debayle andKennett, 2000; Simons et al., 2002; Lebedev andNolet,80

2003; Priestley, 2003; Debayle and Sambridge, 2004; Maggi et al., 2006b,a; Priestley andMckenzie, 2006). This second81

approach was adopted by Latallerie et al. (2022) who applied the SOLA method to the second step (lateral inversion)82

to produce 2D lateral resolution and uncertainty information, in addition to their tomography model. Because the83

�rst step is a non-linear depth inversion, it could not be performed using SOLA – a purely linear method. Therefore,84

this study was not able to provide high-quality information about vertical resolution, a signi�cant drawback given85

the complex depth sensitivity of surface-waves.86

In this study, we extend the approach of Latallerie et al. (2022) to 3D using the framework of �nite-frequency87

theory (Snieder, 1986; Snieder and Nolet, 1987; Yomogida, 1992; Marquering et al., 1998; Dahlen and Tromp, 1999;88

Yoshizawa and Kennett, 2004; Zhou et al., 2004, 2005; Yoshizawa and Kennett, 2005; Zhou, 2009a,b; Ruan and Zhou,89

2010; Tian et al., 2011; Zhou et al., 2006; Liu and Zhou, 2016b,a). In this framework, surface-wave dispersion data90

are linearly related to perturbations in the 3D upper-mantle velocity structure. This makes it possible to perform a91

one-step inversion and thus to obtain 3D resolution information using SOLA. Finite-frequency inversions come with92

higher memory costs because the sensitivity kernels are volumetric (with both a lateral and depth extent) and the93

whole 3Dmodel must be stored all at once (large number of model parameters). However, with smart data selection94

and ever increasing computational power, this memory cost is becoming less of an issue.95

Model uncertainty arises from data uncertainty (or measurement uncertainty) as well as theoretical uncertainty.96

Data uncertainty is o�en estimated by comparing the dispersion of measurements for nearby rays (e.g. Maggi et al.,97

2006b). However, this approach dramatically underestimates the data uncertainty and accounts poorly for system-98

atic biases (e.g. Latallerie et al., 2022). This is less of an issue if we are only interested in the relative uncertainty99

between individual data (e.g. when we weigh data contributions in a data-driven inversion). Underestimated data100

uncertainty and bias become problematic, however, if we want to interpret the ‘true’ magnitude of the model uncer-101

tainty. It therefore becomes important to estimate data uncertainties carefully. Additionally, we need to account for102

imperfections in the forward theory, which give rise to ‘theoretical uncertainty’. This theoretical uncertainty arises103

from a range of approximations commonly made: single-scattering, which relates to non-linearity; the forward-104
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scattering approximation; the paraxial approximation; neglected sensitivity to other parameters; discretisation onto105

the tomographic grid; linear crustal correction strategy; errors in the crustal model; and errors in the earthquake106

source parameters. These last two contributions are not accounted for in this study. The theoretical component is107

o�en missing in model uncertainty estimates, which may partly explain why these estimates appear to be small.108

Importantly, both measurement uncertainty and theoretical uncertainty contribute to model uncertainty. Here, we109

distinguish the two contributions to themodel uncertainty by using the terms ‘measurementmodel uncertainty’ and110

‘theoretical model uncertainty’. We take advantage of the synthetic nature of this study to discuss the contribution111

of both contributions.112

In this study, we show that it is possible to obtain detailed 3D resolution and robust uncertainty information using113

surface waves with SOLAwithin a �nite-frequency framework, thus extending the approach of Latallerie et al. (2022)114

to 3D. By working in a synthetic setup, we demonstrate the feasibility of our approach, and discuss the contribution115

of theoretical errors. To achieve these aims, we develop a complete work�ow from dispersion measurements on116

the waveforms to analyses of the resulting 3D model, its resolution and uncertainty. In Section 2, we introduce the117

SOLA method and the forward modelling approach. In Section 3, we describe the tomography setup, including the118

data geometry, target resolution and generalised inverse. Subsequently, in Section 4, we discuss the data and their119

uncertainty in detail. In Section 5, we present our tomographic results, both qualitatively and quantitatively. Fi-120

nally, in Section 6, we discuss the 3D resolution and uncertainty estimates of our model and indicate possible future121

directions.122

2 Theory123

We present here the main building blocks of our approach. Firstly, we brie�y introduce the general forward prob-124

lem. We then discuss the inverse problem, introducing the discrete linear SOLA inverse method (Zaroli, 2016) that125

provides control on the resolution and the propagation of uncertainty, and produces the tomographicmodel with full126

resolution and uncertainty information. Finally, we present the �nite-frequency theory that allows the surface-wave127

inverse problem to be expressed in a linear and fully three-dimensional framework.128

2.1 General forward theory129

Let d ∈ RN be a data vector and letm ∈ RM be a model vector containing model parameters given a pre-de�ned130

parameterisation. LetG ∈ M(N ×M) be the sensitivity matrix (in the set of matrices of size N ×M ), describing a131

linear relationship between model parameters and data. We can then write the forward problem as:132

d = Gm. (1)133

Rows ofG are the sensitivity kernels andG thus contains all the information regarding the sensitivity of the entire134

dataset to all model parameters; this is what we refer to as the data geometry.135

To account for data errors, we treatd as a normally distributedmulti-variate randomvariablewith data covariance136

matrixCd ∈M(N×N). We assumeuncorrelated noise, thus the data covariancematrix is diagonal andwe canwrite137

Cd = diag(σ2
di

), i ∈ [|1, N |], where σdi is the standard deviation of the error on the ith datum. Throughout this study,138
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we refer to the standard deviation as the data uncertainty. Note that under the Gaussian hypothesis both theoretical139

errors (due to imperfect forward theory) andmeasurement errors (due to imperfect measurements) can be included140

in σ2
di
(see e.g. Tarantola, 2005). As it is challenging to estimate error correlations, we assume uncorrelated errors,141

which we further assume to be Gaussian for mathematical simplicity. The assumption of Gaussian uncorrelated142

errors remains an important limitation that should motivate future work.143

2.2 SOLA inversemethod144

Poor data geometry in seismic tomography makes the inverse problem ill-constrained as the sensitivity matrixG is145

not invertible. This justi�es the use of various existing methods for obtaining model solutions (see e.g. Parker, 1977;146

Trampert, 1998; Scales and Snieder, 1997; Nolet, 1985; Tarantola andValette, 1982;Wiggins, 1972; Nolet, 2008). Most of147

these methods use a data-mis�t approach, where a model solution is found by minimising the discrepancy between148

predicted data and the actual data. With SOLA, we do not use a data-mis�t to drive towards a model solution, but149

instead focus on designing a ‘generalised inverse’ of the sensitivity matrixG. We describe the SOLA method brie�y150

below, with more details in Appendix A.151

LetG† be the ‘generalised inverse’ such that the model solution is expressed as linear combinations of the data:152

m̃ = G†d. (2)153

Using Equation 1, we obtain a relation between the model solution and the ‘true’ model:154

m̃ = G†Gm. (3)155

Each parameter in themodel solution is a linear combination of the ‘true’ model parameters linked by the resolution156

matrixR = G†G. In other words, the value of amodel parameter in themodel solution represents a spatial weighted157

average of the whole ‘true’ model (plus some errors propagated from data noise). The resolution for a model param-158

eter is determined by this averaging and is referred to as ‘resolving’ or ‘averaging kernel’. In general, we prefer the159

averaging for amodel parameter to be focused around that parameter location. The full resolutionmatrix thus acts as160

a ‘tomographic �lter’ (e.g. Ritsema et al., 2007; Schuberth et al., 2009; Zaroli et al., 2017). Note that in the hypothetical161

case where the data geometry constrains all model parameters perfectly, the sensitivity matrix G is invertible, the162

generalised inverseG† is the exact inverse, the resolutionmatrix is the identity matrix, and, in the case of error-free163

data, the model solution is exactly the ‘true’ model.164

Since m̃ = G†d is a linearmapping of amultivariate normal distribution, we obtain themodel covariancematrix165

from the data covariance matrix using:166

Cm̃ = (G†)CdG
†T , (4)167

where T denotes thematrix transpose. The diagonal elements of themodel covariancematrix are the standard devia-168

tions of themodel parameters, i.e. σm̃(k) =
√
Cm̃kk . Analogue to the data uncertainty, we refer to themodel standard169

deviations as the model uncertainty. Note that model uncertainties are thus given for local average estimates, not170

estimates at absolute points in space. In summary, the generalised inverseG† determines themodel solution, model171
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resolution, and model uncertainty.172

While data-mis�t approaches have many advantages (e.g. treatment of non-linearity, computational e�ciency),173

they do not directly control the resolution and uncertainty of the solution; estimating this information can be chal-174

lenging depending on the inverse method used. With the SOLA method, which is based on Backus-Gilbert theory175

(Backus and Gilbert, 1967, 1968, 1970; Pijpers and Thompson, 1992, 1994; Zaroli, 2016), we explicitly design G† to176

achieve certain objectives regarding the resolution and model uncertainty. In particular, we design a target resolu-177

tion T and seek a generalised inverse that leads to a resolution as close as possible to the target, while minimising178

model uncertainty. These are two contradictory objectives that are balanced in an optimisation problem:179

G†(k) = arg min
G†(k)

∑
j

[A
(k)
j − T

(k)
j ]2Vj + η(k)2

σ2
m̃(k) , s.t.

∑
j

R
(k)
j = 1, (5)180

where k is the index of the model parameter for which we are solving (the target), j is a dummy index that iterates181

overmodel parameters,Vj is the volumeof cell j,A(k)
j = R

(k)
j /Vj is the averaging (or resolving) kernel (normalised by182

the cell volume), and η(k) is a trade-o� parameter that balances the �t to the target resolution with the minimisation183

of model uncertainty. The constraint
∑
j R

(k)
j = 1 guarantees that local averages are unbiased. This is important184

because an uneven data distribution can arti�cially increase or decrease the value of the estimated parameters, as185

demonstrated by Zaroli et al. (2017). The optimisation problem leads to a set of equations (see Appendix A1 from186

Zaroli, 2016) that we solve for each model parameter using the LSQR algorithm of Paige and Saunders (1982), as187

suggested by Nolet (1985).188

The SOLA inversion is point-wise, i.e. theminimisation problem is solved for each parameter independently from189

the others. This makes SOLA inversions straightforward to solve in parallel. Note that we do not need to solve for190

all model parameters nor do we need to solve for the whole region to which the data are sensitive (a necessity in191

data-�tting inversions): we have the possibility to solve only formodel parameters of particular interest (the targets).192

Furthermore, note that the data d do not appear in the optimisation equation 5. We provide information on the193

computational costs of this study in Appendix C.194

2.3 Finite-frequency forward theory195

In order to make the implementation of SOLA for surface-wave tomography fully three-dimensional, we need a196

linear relation between surface-wave data and 3D physical properties of the Earth mantle. Here, we consider as197

data vertical-component Rayleigh-wave phase delays δφl(ω)measured at frequenciesω for particular source-receiver198

pairs l. If we assume these delays are primarily sensitive to perturbations in the vertically polarized S-wave velocity199

δVSV in the 3D mantle
⊕
, we have the following relationship between data δφl(ω) and model δ lnVSV (x):200

δφl(ω) =

∫∫∫
⊕Kl(ω;x)δ lnVSV (x)d3x, (6)201

where x indicates the location, and Kl(ω;x) is the sensitivity kernel. We neglect the sensitivity to other physical202

parameters (e.g. VSH , VPV , density), but this contributes to the theoretical errors.203

Analytical expressions of surface-wave sensitivity kernels have been derived based on the scattering principle in204
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Figure 1 Examples of sensitivity kernels at a) 6 mHz and b) 21 mHz for two source-receiver pairs. The maps are plotted at
depths of 87 km and 237 km depth respectively, which are the depths where the kernels reach their respective maximum
amplitudes. Below each map, we also show a vertical cross-section through each kernel, as indicated on the maps, and the
dotted lines indicate depths of 100, 200 and 300 km. Thenorthern kernel is for aMw 6.1 earthquake in Borneo (2015) recorded
by station DSN5. The southern kernel is for aMw 6.1 earthquake in the Easter Island region (2011) recorded by station BDFB.
Note the di�erence in amplitude between the two frequencies shown in a) and b).

the framework of normal mode theory. Here, we use formulations from Zhou et al. (2004), later extended to multi-205

mode surface waves and anisotropy by Zhou (2009b). These assume far-�eld propagation, single forward scattering,206

and use a paraxial approximation. Thanks to the single-scattering assumption, also known as Born approximation,207

the resulting relationship between data and model is linear, which makes it tractable with SOLA. Single-scattering is208

equivalent to neglecting terms of order higher than 1 in the Taylor expansion of the Green tensor perturbations with209

respect to structural parameters (e.g. Dahlen, 2000). This single-scattering approximation also contributes to the the-210

oretical errors. In this study, we restrict ourselves to fundamental modes, but extension of the theory to overtones is211

straightforward. The sensitivity kernels for the fundamental modes can be expressed as:212

K(ω;x) = Im

S′ ΩR′′e−i[k
′∆′+k′′∆′′−k∆+(s′+s′′−s)π2 +π

4 ]

S R
√

8π(k
′k′′

k )( sin|∆
′||sin|∆′′|
|sin∆|

 . (7)213

Symbols with prime ′ refer to the source-scatterer path, ones with double prime ′′ to the scatterer-station path, and214

those without prime to the great-circle source-station path; k is the wave-number and s the Maslov index (here s = 0215

or s = 1, i.e. single orbit); ∆ is the path length, S the source radiation in the direction of the path, and R the216

projection of the polarisation onto the receiver orientation. The exponent term indicates the phase delay due to the217

detour by the scatterer, while the other terms express the relative amplitude of the scattered wave relative to the218

initial unperturbed wave�eld. This relative strength depends on the source and receiver terms (the scattered wave219

leaves the source and arrives at the receiver with some angle compared to the unperturbedwave), on the geometrical220

spreading (the scattered wave makes a detour compared to the unperturbed wave), and on the scattering coe�cient221
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Ω. The scattering coe�cient depends linearly on physical model properties, for which detailed expressions can be222

found in Zhou (2009a). In practice, we use a slightly di�erent form of Equation 7 to include the e�ect of waveform223

tapering in the measurement algorithm (see Zhou et al., 2004, for more details).224

We use routines from Zhou (2009b) to compute the sensitivity kernels for the fundamental mode, assuming self-225

coupling. We only compute these in the top 400 km of the mantle as their amplitude decreases sharply with depth.226

We consider the �rst two Fresnel zones laterally as their side-lobes become negligible further away. Examples of227

sensitivity kernels are given in Figure 1, where they are projected onto the tomographic grid. The kernels have par-228

ticularly strong amplitude at the source and station. This is caused by a combination of natural high sensitivity229

at end-points of a path and the far-�eld approximation (e.g. Liu and Zhou, 2016b). Low-frequency kernels peak at230

deeper depths, have a broader lateral and vertical extent, and have weaker amplitudes than high-frequency kernels.231

Although the projection onto the tomographic grid degrades the shape and amplitude of the sensitivity kernels, their232

main properties are retained on a tomographic grid that is su�ciently �ne.233

3 Tomography setup234

In this section, we present the construction of the forward problem (the sensitivity matrix) and the inverse solution235

(the generalised inverse) that determines the resolution, the propagation of data uncertainty intomodel uncertainty,236

and the propagation of data values into model estimates. We will describe the data and data uncertainty in the next237

section. These will feed into the inverse solution to produce the tomography model and the measurement model238

uncertainty.239

3.1 Parameterisation240

Weuse a localmodel parameterisation and split the 3D spatial domain into voxels of size 2◦×2◦ laterally (latitude and241

longitude) and 25 km depth vertically. We parameterise the whole sphere laterally, but only the top 400 km depth,242

since the sensitivity of fundamental mode surface waves to VSV becomes negligible at greater depths. This leads to243

M = 259 200 voxels. It is worth recalling that with SOLA we do not need to solve for allM model parameters nor for244

the whole region to which the data are sensitive. For example, we could solve only for cells where the data sensitivity245

is su�ciently high or only for a particular region of interest. Note that the parameterisation does not impact the SOLA246

inversion in the same way as in data-�tting approaches. Primarily, the parameterisation should be chosen �ner than247

the target kernels if these are to be honoured. However, the parameterisation is expected to have an impact on the248

theoretical uncertainty, as the discretisation of the sensitivity kernels degrades the accuracy of the forward theory.249

3.2 Data geometry250

We select 312 earthquakes withMw between∼6.0 and 7.7 and depth between∼12 and 87 km, all located in the Paci�c251

region, occurring between July 2004 andDecember 2020. We consider 1228 stations, also located in the Paci�c region252

(see Fig. 2). Sources and stations are both selected in a way to avoid strong spatial redundancy. For all paths, we253

consider 16 frequencies ranging from 6 to 21 mHz (48-167s), in steps of 1 mHz.254

Compared to ray-theory, �nite-frequency theory is fully three-dimensional. This makes the sensitivity matrix255

larger because we need to consider the whole 3D spatial extent of the model domain all at once, and less sparse256
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Figure 2 Data geometry of our tomography, showing a) the distribution of sources and receivers, b) the selected ray paths
at 6 mHz and c) at 21 mHz, and d) the decimal logarithm of the data sensitivity, log10

∑
i |Gij |. The data sensitivity is plotted

at 112 kmdepth, with aN-S oriented vertical cross-section below it, indicated by the grey line on themap view, and the dotted
lines indicate depths of 100, 200 and 300 km.
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because �nite-frequency sensitivity kernels have a volumetric extent. Since we store the whole sensitivity matrix in257

RAM to favour fast computation, this is a challenging issue that limits the number of data we can take into account in258

the inversion. For a computational node with 254 GB of RAM, and our current strategy for storing matrices in RAM,259

we estimate that we can incorporate at most N = 300 000 measurements (more information on the computational260

costs of this study is given inAppendixC).Here, we restrict ourselves toN ≈ 50 000measurements,making it possible261

to expand our work to overtones in the future. To achieveN ≈ 50 000 data, we carefully select our data with the aim262

to homogenise the lateral distribution of rays (see Section 4). We end up with 47,700 data in total, with approximately263

3,000 data per frequency (�gure 2).264

For each selected measurement, we compute the corresponding 3D �nite-frequency sensitivity kernel to build265

the sensitivity matrixG, with examples shown in Figure 1. As a measure of the constraint o�ered by the data on the266

structure of the 3D upper mantle, we compute the decimal logarithm of the data sensitivity, log10

∑
i |Gij |, where i267

and j designate a particular datum and model parameter respectively (see �gure 2, lower right).268

3.3 Target resolution, uncertainty propagation, and their trade-o�269

The shape of the target kernels used in the SOLA inversion is arbitrary. Ideally, it is chosen such as to produce results270

oriented towards addressing a speci�c key question. In this study, we wish for the resolution to represent simple,271

easy-to-interpret 3D local averages. For a given model parameter, we therefore choose the target kernel to be a 3D272

ellipsoid. The lateral resolution we can achieve with surface-wave data is controlled by the distribution of sources273

and receivers (and, to some extent, frequency). Our experience shows that it is rarely better than a few hundreds of274

kilometres for the frequency range used here. The vertical resolution is mostly controlled by the frequency content275

of the signal and it is typically on the order of tens to hundreds of kilometres. Therefore, a reasonable target kernel276

at a given point in the 3D grid would resemble a thick pancake centred at the query point. More formally, we design277

the target kernel of a model parameter as an ellipsoid whose major and semi-major axes are equal and aligned with278

the north-south and east-west directions at the location of the model parameter, and whose minor axis is vertical.279

The resulting target kernels are thick versions of the 2D kernels of Latallerie et al. (2022) and Amiri et al. (2023) and280

they represent a horizontally isotropic target resolution.281

With SOLA, it is possible to adapt the size of the target kernels for each model parameter (i.e. for each location).282

For example, we could choose to achieve the best resolution possible at each location in themodel given the data cov-283

erage, or we may prefer a homogeneous resolution or constant uncertainty across the spatial domain (see Freissler284

et al., 2024). This freedom illustrates the typical non-uniqueness of tomographic inversions. We could compute an285

L-curve for the resolution size versus model uncertainty to choose an optimal trade-o� parameter. However, this286

L-curve would have a very di�erent meaning than that computed for data-�tting approaches that typically consider287

data-�t versus model smoothness. With SOLA, we do not need to compute an L-curve as any choice of the trade-o�288

parameter that �ts the purpose of the study can be considered ‘good’, so long as the tomographic model is analysed289

together with its resolution and uncertainty (see also supporting information of Zaroli et al. (2017)). In this study, for290

simplicity, we make all target kernels the same, with 200 km long horizontal major and semi-major axes and 25 km291

long vertical minor axis. Figures 3 and 4 illustrate the extent of our target kernels for 10 di�erent locations (blue292

ellipses).293
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Figure 3 Resolution at 112 kmdepth illustrated for a selection of 10model parameters. The centremap shows the locations
of the 10 target and resolving kernels. This is shown as a sum, which may exaggerate the apparent strength of the tails. The
surrounding panels are close-ups on individual kernels, both in map-view and as cross-section. All maps represent depth
slices at 112 km depth and below eachmap is a∼ 3100 km long, N-S oriented (le� to right) cross-section as indicated in green
in themaps, with the dotted lines indicating depths of 100, 200 and 300 km. Blue ellipses show the lateral extent of the target
kernels. All averaging kernels are normalised by their maximum, and the color scale indicated in the lower right applies to all
panels.
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Figure 4 Same as figure 3, but for target locations at 212 km depth.
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Figure 5 Illustration of the propagation of data uncertainty intomodel uncertainty. Themap shows the ‘propagation factor’
at 112 kmdepth, defined as themodel uncertainty given unit data uncertainty. The cross-section below themap indicates the
depth dependence of the propagation factor along a vertical 2500-km long N-S oriented profile as indicated by the green line
on the map, with the dotted lines indicating depths of 100, 200 and 300 km.

The data uncertainty could in�uence the generalised inverse we obtain with SOLA through the second term in294

the optimisation problem in Equation 5. However, as we aim to study the robustness of the data uncertainty itself in295

this study, we decide not to take it into account in designingG†. Thus, we initially set Cd = I and therefore Cm̃ =296

(G†)TG. This choice is only for designingG†: once the generalised inverse has been computed, we propagate the297

actual measurement uncertainty into model uncertainty throughCm̃ = (G†)TCdG. Depending on the application,298

di�erent dataweighting (including data uncertainty), could be considered to produce an optimal generalised inverse.299

The optimisation problem involves the minimisation of the di�erence between target and actual resolution on300

the one hand, and the magnitude of model uncertainty on the other hand. These two terms are balanced by the301

trade-o� parameter η, which we set equal to 50 for all parameters. Again, it is possible to choose di�erent values of302

η for di�erent model parameters, but in practice it is computationally easier to keep η constant (see Appendix A1 of303

Zaroli, 2016). If, for example, one wants to give more weight to the resolution of a particular model parameter, this304

can also be obtained by designing a smaller size target kernel. If we vary the trade-o� parameter, we obtain a typical305

L-shaped trade-o� curve for resolution versusmodel uncertainty for each target (Latallerie et al., 2022; Restelli et al.,306

2024).307

3.4 Generalised inverse: Resolution and uncertainty propagation308

The seismic tomography inversion is fully characterised by the generalised inverseG†: it determines the resolution309

(fromR = G†G) as well as the propagation of data uncertainty into model uncertainty (from Cm̃ = (G†)TCdG
†).310

Lastly, it determines the propagation of data into model solution (from m̃ = G†d).311

It is di�cult to represent the full 3D resolution as it is most easily understood in terms of an extended 3D resolv-312

ing kernel associated with each model parameter. A detailed analysis thus requires 3D rendering so�ware or the313
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production of simple proxies, for example those proposed by Freissler et al. (2024). Here, we instead illustrate the314

resolution by selecting example resolving kernels. At 112 km depth (Figure 3), the resolving kernels match the target315

location well laterally. Their lateral size is roughly 250-450 km (if we take the radii of a circle containing 68% of the316

kernel). This can be compared to the length of the major and semi-major axes of the target kernels of 200 km. Some317

averaging kernels are signi�cantly anisotropic, indicating lateral smearing due to the heterogeneous ray path distri-318

bution. Vertically, the resolving kernels appear also to be focused with a half-thickness of roughly 50 km. This can319

be compared to the length of the minor axis of the target kernels of 25 km. However, they appear slightly shi�ed up-320

ward from the target. Deeper down, at 212 km depth (Figure 4), the resolving kernels still match the target locations321

laterally, but they appear broader (300-700 km). They now also poorly match the target kernel depth-wise. Instead of322

peaking at 212 km depth, the resolving kernels peak at 112 km depth and tail o� deeper down. This implies that what323

we observe in the tomographic model at 212 km depth is actually an average of the ‘true model’ at shallower depth.324

We show the ‘error propagation factor’ in Figure 5. This can be interpreted as the model uncertainty for unit325

data uncertainty (Cd = I), obtained from (G†)TG†. We observe a positive correlation between data coverage and326

error propagation factor: the error propagation tends to be high where data coverage is high (e.g. North America,327

South-East Asia). We also clearly see patches of high error propagation in the Paci�c Ocean at locations of isolated328

stations. This is due to the high data sensitivity at stations where many oscillatory sensitivity kernels add together.329

Furthermore, we note linear features with high error propagation that follow great-circle paths radiating away from330

some isolated stations. These probably outline sensitivity kernels that repeatedly sample similar regions. With depth,331

we �nd that the propagation factor increases down to 87 km depth and then decreases again deeper down. While332

this decrease may seem surprising, it is balanced by poor resolution at greater depth. In general, SOLA tends to333

produce models with better resolution where data sensitivity is high, at the cost of a larger error propagation factor.334

By choosing di�erent sizes for the target kernels, this can be balanced (Freissler et al., 2024).335

4 Input data andmeasurement uncertainty336

Wemeasure phase delays between ‘observed’ and ‘reference’ seismograms for 16 di�erent frequencies ranging from337

6 to 21 mHz (48-167s), in steps of 1 mHz. In this synthetic study, we use as ‘observed seismograms’ waveforms com-338

puted using SPECFEM3D_GLOBE (Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 2002) for the 3D inputmodel339

S362ANI (Kustowski et al., 2008) combined with CRUST2.0 on top (Bassin et al., 2000). Herea�er, we refer to these as340

SEM seismograms or SEMmeasurements. Theywere obtained from the GlobalShakeMovie project data base (Tromp341

et al., 2010) and downloaded from Earthscope, formerly IRIS (IRIS DMC, 2012; Hutko et al., 2017). Reference seismo-342

grams were computed using normal-mode summation with the Mineos so�ware (Masters et al., 2011) for the 1D343

radial model stw105 (Kustowski et al., 2008), consistent with S362ANI. For both sets of seismograms, we use source344

solutions obtained from the Global-CMT project (Ekström et al., 2012) and station metadata from Earthscope. To345

measure the phase delay between the two sets of seismograms, we use a multi-taper measurement algorithm as sug-346

gested by Zhou et al. (2004) and detailed in appendix B. The multi-taper technique has the advantage of providing347

an estimate for the measurement data uncertainty as the standard deviation of the measurements across all tapers.348

This uncertainty estimate is particularly sensitive to cycle-skipping and contamination by higher modes and other349
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phases.350

Considering only source-receiver combinations for which the measurement time window (150 s before to 650 s351

a�er the predicted group arrival time) does not include the event origin time, we obtain 2,414,515 measurements of352

Rayleigh wave phase delays. We select a subset of thesemeasurements based on the following criteria: similarity be-353

tween the seismograms (cross-correlation > 0.8), source radiation in the direction of the station (> 80% of maximum354

radiation), measurement uncertainty (< 1.9 radians), outlier removal (1% of the dataset). This leads to 564,940 poten-355

tial measurements. Due to memory limitations (as explained in section 3.2), we select a subset of N = 47, 700 data356

to reduce the size ofG. This is achieved by randomly selecting one ray, then removing all rays whose endpoints are357

within 800 km radius of the endpoints of the selected ray, and repeating this process until we reach the desired num-358

ber of measurements, at the frequency of interest. This gives the vector of measured data that we denote dmeasured.359

Other approaches, such as ‘bootstrapping’ or ‘summary ray’ techniques could be experimented with to further inves-360

tigate the uncertainty in the dataset or to compare to the uncertainty that we obtain with the multitaper technique.361

As a check, we also compute the corresponding analytical data danalytical by applying our forward theory G to the362

3D input model S362ANI (minput), i.e. danalytical = Gminput.363

The inversion for crustal structure is highly non-linear and o�en avoided in surface-wave tomography. SOLA364

cannot handle this non-linearity and we therefore apply a crustal correction to our measurements (e.g. Marone and365

Romanowicz, 2007; Bozdağ and Trampert, 2008; Panning et al., 2010; Liu and Zhou, 2013; Chen and Romanowicz,366

2024). For consistency with the synthetic ‘observed’ waveforms, we also use CRUST2.0 to compute the crustal cor-367

rection (Bassin et al., 2000). We �rst construct 1D radial models for a combination of stw105 and CRUST2.0 at every368

location in a 2◦× 2◦ grid. For each grid point, we then solve a normal-mode eigenvalue problem using Mineos (Mas-369

ters et al., 2011) to obtain the local phase velocity, thus building phase velocity maps for the referencemodel with the370

added crustal structure. For each source-receiver path and all frequencies in our dataset, we subsequently compute371

the phase accumulated in this model φref+crust as well as in the reference model φref , assuming ray-theory (i.e.372

great-circle approximation). The di�erence in phase due to the crustal structure δφcrust = δφref − δφref+crust is373

then used to correct the measured data: dcorrected = dmeasured − δφcrust.374

Examples of our dispersion measurement procedure and results are given in Figure 6 and used to illustrate three375

typical cases. In Case I (le� column), measurements agree well with the analytical predictions and have low un-376

certainty. In Case II (middle column), measurements do not agree well with the analytical predictions, but this is377

compensated by high data uncertainty. In Case III (right column), which is more problematic, the measurement378

has low uncertainty, but it does not match the analytical prediction. In this example, it appears that the cycle-skip379

correction (see Appendix B) has failed to detect a cycle-skip at 8 mHz. Since the measurements are consistent for380

all tapers, the uncertainty estimation fails to pick-up the cycle-skip and the uncertainty remains low. Therefore, the381

�nal measurement includes a cycle-skip di�erence with the analytical data above 8 mHz that is not re�ected in the382

uncertainty. This is relatively common in surface-wave tomography (e.g. Moulik et al., 2021). Even if we could spot383

measurements with cycle-skips in a synthetic tomography setup, we do not remove them from the dataset to mimic384

a real case application. Note that discrepancies between analytical predictions and measurements are due both to385

errors in the measurement (poorly measured data), as well as to errors in the forward theory (poor analytical data).386
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At this stage, we ignore uncertainty arising from theoretical errors.387

To get a feeling of the volume of data falling in each of these three cases, we de�ne three classes based on the388

di�erence between analytical prediction and measurement: (i) below 3 radians and within 3 standard deviations389

for Class I; (ii) above 3 radians and within 3 standard deviations for Class II; and (iii) above 3 radians and outside 3390

standard deviations for Class III. For completeness, we also de�ne Class IV as below 3 radians and outside 3 standard391

deviations. Classes I, II, III and IV contain respectively 27%, 1%, 43%, and 29% of the dataset. In other words, 27% of392

the dataset show a good agreement between the predictions and measurements and this di�erence is also within 3393

times themeasurement uncertainty. 1% of the data does not show a good agreement (i.e. above 3 radians), but is still394

within 3 times themeasurement uncertainty. 43%showspoor agreement and is also outside 3 times themeasurement395

uncertainty, and 29% is in good agreement, but outside 3 times the measurement uncertainty (indicating a small396

uncertainty). In summary, 56%of the dataset shows good agreement (class I and IV), and 28%has a di�erence smaller397

than the measurement uncertainty (class I and II). Note that the boundaries of these classes, namely the threshold398

of 3 radians and 3 standard deviations, are somewhat arbitrary and primarily given to provide a sense of the data399

volume falling within each case illustrated in �gure 6.400

Figure 7 presents statistics summarising our measurements and associated uncertainty. Our measured phase401

delays are typically larger than the analytical predictions (danalytical = Gminput) for both positive and negative402

delays, possibly due to non-linear e�ects. Wemay therefore expect increased positive and negative anomalies in our403

resulting tomographic model. We also observe a parallel branch of negative measured phase-delays with respect to404

the analytical predictions, likely due to non-detected cycle-skips. Ourmeasurement uncertainty peaks around 0.3-0.5405

radians, with the peak uncertainty shi�ing to higher values (to the right) for higher frequencies (darker colours). The406

e�ect of this shi� on the resulting model uncertainty is not easy to predict as di�erent frequencies impact the model407

solution in di�erent ways (e.g. low frequency data have overall lower sensitivity). We also observe two additional408

peaks for higher uncertainty values, probably due to cycle-skipping and contaminationwith highermodes. However,409

measurementswith these uncertainty values are not included aswe apply a cut-o� of 1.9 radians in our data selection.410

We also observe a spatial pattern in the deviation between analytical and measured data in panels c) and d). Higher411

di�erences tend to be found for rays along ridges or along the ocean-continent boundaries. High deviations are also412

found in the central Paci�c at lower frequencies. These may be due to limitations in the forward theory as non-413

linearities are to be expected for these regions.414

We now have a dispersion data set with an estimate of the measurement uncertainty. While this measurement415

uncertainty provided by the measurement algorithm accounts for cycle-skips and contamination by other phases or416

higher modes, to some extent, it does not capture the theoretical errors. We estimate these in the following section.417

5 Results418

In the perfect case of error-free analytical data danalytical, an inversion should produce a model solution that is419

exactly the same as the �ltered input. We con�rm that by comparing the analytical model solution m̃analytical =420

G†danalytical to the �ltered inputRminput. When we instead use the measurements on SEM waveforms dcorrected,421

di�erences between the �ltered input model Rminput (Figure 8b) and the obtained model solution m̃output (Fig-422

16

https://seismica.org/


This is a non-peer reviewedmanuscript submitted to SEISMICA Resolution-uncertainty in 3D surface-wave tomography

Figure 6 Example dispersion measurements, showcasing three typical cases. For each case (column), we include the sen-
sitivity kernel at 16 mHz, plotted at 112 km depth (top row); the seismic traces (second row) for 8000 s a�er the event origin
time (reference in black, SEM in red), filtered around each measurement frequency, and the green vertical lines indicate the
start and end times of the applied tapers, around the predicted group arrival time; the measured dispersion for each taper
(third row); and the final dispersion measurement (bottom row) averaged over all tapers (black) with the estimated uncer-
tainty (grey), compared with the analytical prediction (orange). In the last row, the crustal correction is also applied to the
measurements.
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Figure 7 Summary of data and measurement uncertainty. a): Cross-plot of the measured phase delay (a�er crustal cor-
rection) versus the analytical phase delay prediction, coloured by frequency. Positive phase-delays typically indicate slow
velocity anomalies. b) Distribution of measurement data uncertainty (coloured by frequency) before (grey) and a�er apply-
ing several selection criteria. Our selection criteria include a threshold for the data uncertainty (lower than 1.9 radians), as
visible in the plot. The distribution of the measurement uncertainty before applying the selection criteria is scaled by 0.003
to enhance its visibility. c) and d) ray-path distribution coloured by the deviation between analytical and measured phase
delays at 6 mHz and 21 mHz respectively.
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ure 8d) arise due to a combination of bothmeasurement and theoretical errors. Only the former have been taken into423

account in the model uncertainty map shown in Figure 8c. Note how the edges of the model solution appear rough.424

This is because we invert only for model parameters where the data sensitivity is higher than a certain threshold425

(depending on depth); this is possible due to the point-wise nature of the SOLA inversion.426

5.1 Qualitative proof of concept: velocity models427

The features in the input model (Figure 8a) are also mostly present in the �ltered model (Figure 8b). This indicates428

that the model resolution is good, at least at 112 km depth. For example, we retrieve mid-ocean ridges (low velocities429

at the East-Paci�c rise, Paci�c-Antarctic ridge, the edges of theNazca plate), the lithosphere cooling e�ect (increasing430

velocity with distance from the ridge), the ring of �re (low velocity in the back-arc regions behind subduction zones431

such as the Aleutian trench, Okhotsk trench, edges of the Philippine sea plate and the Tonga-Kermadec trench),432

and cratons (fast velocities within the Australian and North American continents). Note that S362ANI is a relatively433

smooth model, and we would probably miss smaller-scale features in a rougher model.434

The amplitudes of the velocity anomalies in the �lteredmodel are lower than in the inputmodel. This is expected435

since the �lteredmodel represents (unbiased) local averages (Zaroli et al., 2017). The �lteredmodel is also rougher on436

short length scales compared to the inputmodel. This can be explained by the local nature of SOLA inversions where437

eachmodel parameter is inverted independently from the others. In this case, we notice this particularly because the438

input model itself is very smooth. Some artefacts appear such as the fast velocity anomaly of SW Australia extending439

through the slow velocity of the Australian-Antarctic ridge. Some striations also appear in the fast velocity region in440

the NW Paci�c, trending in the SW-NE direction. These artefacts are probably the result of anisotropic ray coverage,441

with many sources in East-Asia mostly recorded by stations in North-America. In addition to these artefacts, some442

local features disappear in the �lteredmodel, such as the low velocity �nger extending southward from the Aleutian443

trench, or the branch extending north-westward from Hawaii. Overall, the �ltered input resembles the ‘true’ input444

model well, as also re�ected in the cross-sections underneath.445

The resulting model solution based on SEM seismograms (Figure 8d) appears very similar to the �ltered input446

(Figure 8b), with di�erences between them shown in Figure 8e and f. Compared to the input and �ltered input447

models described above, the model solution appears somewhat rougher due to the propagation of data errors into448

the model solution (Figure 8d). The striations observed in the NW Paci�c in the �ltered model are also stronger in449

the model solution than in the �ltered input. The strongest spatially coherent discrepancies appear close to the East450

Paci�c Rise, the North American Craton, and along the ocean-continent boundaries. These locations correlate well451

with the locations of ray paths of the most discrepant measurements (Figure 7). Finally, the cross-section indicates452

a good agreement between the �ltered model and our model solution.453

5.2 Quantitative proof of concept: uncertainty454

Our model measurement uncertainty map (Figure 8c) is very similar to the ‘uncertainty propagation factor’ map in455

Figure 5. Uncertainty is typically higher where there are clusters of stations and at isolated stations with linear fea-456

tures following great circle paths. Uncertainty peaks at ∼ 87 km depth and decreases strongly at greater depth. This457

uncertainty only stems from the data uncertainty, and is lacking the contribution from the theoretical uncertainty.458
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Theoretical errors arise from amultitude of approximations as discussed in the Introduction. Howmuch these con-459

tribute to the data uncertainty is generally di�cult to determine, but using our setup we try to obtain some insights460

into the theoretical uncertainty and to inform future studies.461

We propose the following strategy to estimate the magnitude of the theoretical model uncertainty. Letminput
462

and m̃output be the input model and model solution respectively. Any discrepancy between the input model and463

model solution arises from the limited resolution and propagation of data uncertainty into model uncertainty. To464

rule out the e�ect of limited resolution, we apply the resolution to the inputmodel to obtain the ‘�ltered’ inputmodel465

Rminput. Therefore, in this synthetic setup, it is only the propagation of measurement and theoretical errors into466

model errors that explains the discrepancy between the ‘�ltered’ input model and the obtained model solution. This467

is con�rmed by the fact that the model solution based on error-free analytical data reproduces the �ltered input468

exactly. Let us de�ne the model mis�t normalised by the model uncertainty as:469

ξm̃ =

√√√√ 1∑
k∈P Vk

∑
k∈P

Vk
[(m̃output)k − (Rminput)k]2

(σm̃)2
k

, (8)470

where k refers to themodel parameter index, Vk is the volume of voxel k,P is the set ofmodel parameters considered471

for the analysis, and σm̃ refers to the model uncertainty estimate.472

If the data uncertainty is well-estimated, then ξ2
m̃ = 1. As an experiment, we add random noise with a known473

distribution to the analytical data (i.e. to those obtained using danalytical = Gminput). In this case, the simulated474

data uncertainty is perfectly known and we obtain exactly ξ2
m̃ = 1. In the case of our synthetic tomography with475

phase delays measured on SEM waveforms, we obtain ξ2
m̃ ≈ 33 � 1 when we only consider the propagation of data476

measurement uncertainty into model measurement uncertainty. This model uncertainty estimate is dramatically477

under-estimated as we may have underestimated the data measurement uncertainty and/or lack the theoretical un-478

certainty. We thus need to either upscale or add another component to themodel uncertainty to account for this. We479

can write:480

σtotal
m̃(k)

2
= α2σmeasurement

m̃(k)

2
+ β2 (9)481

Here, α is the factor needed to upscale themodel measurement uncertainty to account for the fact themeasurement482

uncertainty itself might be underestimated. β is the theoretical uncertainty term that appears as an added compo-483

nent. We can now vary α and β independently and investigate for which combinations we obtain ξ2
m̃ = 1. Note that484

in this analysis the scaling factor α and the added uncertainty component β are both assumed to be constant over all485

model parameters involved (consisting here of all model parameters for VSV at 112 km depth).486

Figure 9 shows the evolution of ξ2
m̃ for various combinations of α and β. We use this plot to illustrate three dis-487

tinct cases. (i) The model measurement uncertainty serves as total model uncertainty, i.e. no upscaling nor added488

Figure 8 (preceding page) Summary of synthetic inversion results, comparing a) input model S362ANI, b) input model
S362ANI filtered using our resolution matrix, c) the model measurement uncertainty (propagated from data measurement
uncertainty), and d) the model solution retrieved using the measured data values (based on the SEM seismograms), f) the
di�erence between the model solution in d) and filtered input model in b), and e) same as f) but normalised by the model
uncertainty. All maps represent depth slices at 112 km depth, as in Figure 3. Below each map is a N-S vertical cross-section
with the location indicated by the grey or green line on themaps, and the dotted lines indicate depths of 100, 200 and 300 km.
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Figure 9 Model uncertainty analysis. The central plot shows the value of ξ2
m̃ (the misfit between the model solution and

the filtered input model, normalised by the model uncertainty) for various combinations of the scaling factor α and added
theoretical component β. In general, one should aim to find values ofα and β that lead to ξ2

m̃ = 1 (the black line in the white
area). For small valuesof bothαandβ (blue region, or lower-le�part of theplot), ξ2

m̃ > 1,meaning that themodel uncertainty
is under-estimated, while the red regions indicate the model uncertainty is overestimated. The three cross-plots show the
velocity variations in the model solution versus those in the filtered input model for three cases: (i) upscaled measurement
uncertainty and no added component (upper-le�), (ii) no upscaling nor added component (lower-le�), and (iii) an added
component, but no upscaling (lower-right). Note that only the error bars representing the totalmodel uncertainty for various
combinations of α and β change between these plots.

component, i.e. α = 1 and β = 0. In this case, ξ2
m̃ ≈ 33 falls in the under-estimated uncertainty region. (ii) We only489

upscale the model measurement uncertainty to obtain ξ2
m̃ = 1, with β = 0, which requires α ≈ 5.74. (iii) We add an490

uncertainty component without upscaling the model measurement uncertainty to obtain ξ2
m̃ = 1, with α = 1, which491

requires β ≈ 0.49. This shows that themodelmeasurement uncertainty explains only a small part of the discrepancy492

between the �ltered input and the model solution. For comparison, the mean measurement model uncertainty is493

0.09 (without upscaling). This means that the theoretical model uncertainty that needs to be added to the measure-494

ment uncertainty for a correct total model uncertainty is 0.49/0.09 ≈ 5.5 times the model measurement uncertainty495

(without any upscaling). Therefore, in this case, the total model uncertainty is dominated by what we refer to as the-496

oretical uncertainty. In other words, the uncertainty provided by the measurement algorithm explains only a small497

fraction of the total magnitude of the uncertainty.498
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6 Discussion499

The SOLA-�nite-frequency framework for surface-wave tomography we present in this study makes it possible to500

obtain 3D resolution and uncertainty estimates in surface-wave tomography. Here, we discuss our �ndings regarding501

resolution and uncertainty in more detail and discuss possible future directions.502

6.1 Full 3D resolution503

While our setup does not handle non-linearity, it o�ers many advantages related to the seismic model resolution: we504

obtain the full resolution matrix in a computationally e�cient way; the resolution is fully 3D; it is unbiased by con-505

struction (local averaging weights sum to 1) as demonstrated by Zaroli et al. (2017); and we have to some extent direct506

control over the resolution we obtain by choosing the target kernels. This is in contrast with most other studies that507

typically have assessed the resolution through inverting synthetic input models (e.g. French et al., 2013), checker-508

board tests (e.g. Zhou et al., 2006; Auer et al., 2014; Rawlinson and Spakman, 2016), point spread functions (Ritsema509

et al., 2004; Bonadio et al., 2021), using theHessian in the context of full-waveform inversion (e.g. Fichtner and Tram-510

pert, 2011), statistical methods using Monte Carlo approaches or transdimensional tomography (e.g. An, 2012; Bodin511

et al., 2012b; Sambridge et al., 2013), or other algebraic manipulations (e.g. Fichtner and Zunino, 2019; Shapiro et al.,512

2005; French and Romanowicz, 2014). Since surface-wave tomography is o�en based on a two-step approach, esti-513

mates for the resolution have typically been only 2D (lateral) or 1D (vertical), but there are some recent examples of514

3D applications, for example using transdimensional tomography (Zhang et al., 2018, 2020)515

In this synthetic study, we �nd that the resolution is laterally good enough to qualitatively retrieve the main fea-516

tures of the input model (compare Figure 8a and b). These large-scale or strong anomalies are featuresmost surface-517

wave tomography models agree on. This may be surprising given the small number of data in our inversion (47 700).518

We believe there are three main reasons for this: (i) we carefully select our input data; (ii) �nite-frequency theory519

provides improved constraints compared to ray theory since one 3D sensitivity kernel constrainsmoremodel param-520

eters than a thin ray, while also being more accurate (e.g. Zhou et al., 2005); and (iii) the SOLA inversion performs521

well in optimally using the data sensitivities. Point (ii) shares some similarities with adjoint methods used in full522

waveform inversion, given the volumetric nature of the adjoint sensitivity kernels (e.g. Monteiller et al., 2015).523

The SOLA method consists of individual inversions for each model parameter without imposing any global con-524

straint on all model parameters together. Therefore, the fact that we recover large-scale structures in the �ltered525

model and model solution that are consistent with the input model is encouraging (Zaroli, 2016). The global con-526

sistency of the model is provided indirectly by the overlap between the averaging kernels. However, compared to527

the input model, some short-scale variability arises in the �ltered input, where adjacent cells show relatively strong528

di�erences. This is due to the point-wise nature of the SOLA inversion, combined with the absence of a smooth-529

ness criterion, and the smooth nature of the input model itself. Using a coarser target resolution would produce a530

smoother model, but would also �lter out heterogeneities that are informative. Even though we present our results531

by plotting the mean of our model parameters in adjacent voxels (to visualise them as a tomographic model), it is532

important to remember that these are local average estimates.533

In the above, we typically assess the performance of the resolution by comparing the �ltered model to the input534
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model. In doing this, we must keep in mind that our ability to retrieve the input model depends on the roughness of535

the inputmodel itself. In particular, if the inputmodel had contained shorter scale structure, wemight not have been536

able to resolve it. While the resolution itself remains reliable, the comparison of input versus output models depends537

on the input itself; this bears some similarity with the inherent limitations of checkerboard tests (e.g. Lévêque et al.,538

1993; Rawlinson and Spakman, 2016). The full resolution itself remains necessary for robust model interpretations.539

Since the data sensitivity and the resolution are fully 3D, we can con�dently interpret the model resolution and540

uncertainty at all depths. This is a great advantage compared to our earlier 2Dwork (Latallerie et al., 2022), where the541

data sensitivity was imposed based on the lateral ray coverage (assuming ray theory). As a consequence, this study542

was likely too optimistic about the resolution at greater depth and therefore it was not possible to clearly state up to543

what depth the resolution and uncertainty estimates could be robustly interpreted. Moreover, since our resolution is544

fully 3D, we can investigate vertical resolution e�ects here. In addition to the well-known lateral smearing that arises545

in surface-wave tomography (discussed by Latallerie et al. (2022)), our averaging kernels indicate also signi�cant546

vertical smearing (or depth leakage) in the cross-sections (Figures 3 and 4). Similar observations have been made547

in the context of full waveform inversion through assessment of the Hessian (e.g. Fichtner and Trampert, 2011). For548

somemodel parameters, the averageswe recover relate primarily to structure above or below the ‘true’ location as the549

averaging kernel is shi�ed upward or downward relative to the target kernel. In particular, the structure obtained at550

greater depth tends to be an average over shallower structure, with the e�ect becoming strongerwith depth. Ignoring551

this full 3D resolution could thus lead to biased interpretations of surface-wave tomography, for example in studies552

of the age-depth trends of the oceanic lithosphere (e.g. Ritzwoller et al., 2004; Priestley and Mckenzie, 2006; Maggi553

et al., 2006b; Isse et al., 2019). This synthetic study thus emphasises the importance of taking vertical resolution into554

accountwhen interpreting surface-wave tomographymodels and provides a quantitativeway to estimate the depth to555

which a surface-wave tomographymodel should be interpreted. Within the SOLA approach, the depth leakage could556

potentially be reduced by varying the trade-o� parameter with depth, and by adding a directionality to the trade-o�557

parameter. We could also use a full covariance matrix or include a weighing matrix in the optimisation problem of558

Equation 5, to give more weight to low frequency data (which would improve the resolution at greater depth).559

Resolution and uncertainty are closely related: regions with high resolution tend to have high uncertainty, and560

vice versa. In this study, we �nd that the propagation of uncertainty decreases with depth (Fig. 5). This might be561

counter-intuitive as we expect the sensitivity of surface waves to decrease with depth. However, this observation has562

also been noted in other studies (e.g. Zhang et al., 2018; Earp et al., 2020; Latallerie et al., 2022). Our 3D resolution563

provides a robust explanation for the the decrease of uncertainty with depth. As depth increases, the resolution564

typically degrades, in the sense that it does not represent the average focused around the target location. It rather565

tends to represent an average over regions with high data sensitivity (averages are estimated over larger volumes and566

are shi�ed spatially with respect to their associated target location), leading to lower uncertainties. This illustrates567

that a combined analysis of uncertainty and 3D resolution is necessary to fully understand the limitations of surface-568

wave tomographic models.569
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6.2 Robust uncertainty estimates?570

In this study, we estimate model uncertainty by propagating data uncertainty into model uncertainty using SOLA,571

whichworks for linear(ised) inverse problems. Other studies have used Bayesian approaches (e.g. Bodin et al., 2012b;572

Sambridge et al., 2013; Zhang et al., 2018), recently helped by machine learning approaches (e.g. Earp et al., 2020),573

where the posterior probability density function for the model can be interpreted as a measure of uncertainty. The574

Hessian has also been used in full waveform inversions (e.g. Fichtner and Trampert, 2011). However, in non-linear575

problems, the interpretation becomes more di�cult. In general, we are le� with the problem of estimating robust576

data uncertainties, which in the Bayesian philosophy entails �nding the right prior probability distribution (though577

in this case non-informative priors could be used or compared with the posteriors).578

We have estimated the measurement uncertainty with repeated sampling, changing the time window using the579

multi-taper technique. This is not dissimilar to previous studies, which have used summary rays, bootstrapping or580

perturbationmethods to estimate the datamean andmeasurement uncertainty (e.g. Maggi et al., 2006b; Amiri et al.,581

2023; Asplet et al., 2020). Summary rays are not useful in our case as the sensitivity kernels depend on sourcemecha-582

nisms. However, future studies could compare the uncertainty we obtain with the multitaper technique to estimates583

using bootstrapping. Bootstrapping could also provide a range of sub-datasets with di�ering levels of uncertainty584

that could be used to investigate the e�ect on the model solution using SOLA. This would however have a signi�cant585

computational cost.586

In general, model uncertainty appears to be underestimated. This is clear from meta-analyses of published to-587

mographymodels that show that the discrepancies are stronger than the typical error bars (e.g. Hosseini et al., 2018;588

Marignier et al., 2020; De Viron et al., 2021). This has led authors to use simple ad hoc criteria for upscaling the mea-589

surement uncertainty. For example, Latallerie et al. (2022) use a least-squares χ-test to upscale the uncertainty by a590

factor up to 3.4, while Lin et al. (2009) multiply their random error uncertainty estimates by 1.5 to obtain amore real-591

isticmodel uncertainty estimate. While themeasurement uncertaintymight indeed be underestimated (which led us592

to de�ne the factor α in section 5.2), the total uncertainty also needs to account for additional theoretical uncertainty593

(the factor β in section 5.2). Theoretical errors are technically deterministic, but for mathematical convenience we594

have treated them as random variables.595

Theoretical uncertainty has typically been estimated using Monte-Carlo approaches in synthetic tests, during596

which input parameters are varied and the range of recovered data values is recorded as uncertainty. For example,597

for surface-wave dispersion measurements, Bozdağ and Trampert (2008) investigated the theoretical errors induced598

by imperfect crustal corrections, while Amiri et al. (2023) estimated the theoretical error induced by source mislo-599

cation. Similarly, Akbarashra� et al. (2018) investigated the theoretical error produced by di�erent coupling approx-600

imations on normal mode measurements, �nding that reported data uncertainties need to be at least doubled to601

account for the errors due to theoretical omissions. In this work, we instead estimated the e�ect of the theoretical602

uncertainties on themodel using a synthetic tomography setup that includedmany sources of theoretical uncertainty603

simultaneously. The e�ect of resolution was removed by �ltering the input model so that discrepancies between our604

model estimate and the �ltered inputmodel represent the total uncertainty. A�er propagating the datameasurement605

uncertainty into model measurement uncertainty, we noticed that these need to be upscaled by ∼ 5.5 to obtain a ξ2
606

25

https://seismica.org/


This is a non-peer reviewedmanuscript submitted to SEISMICA Resolution-uncertainty in 3D surface-wave tomography

of 1. This means that the theoretical model uncertainty is ∼ 5.5 times larger than the model measurement uncer-607

tainty, assuming that the data measurement uncertainty is estimated correctly. The theoretical model uncertainty608

is thus larger than previously proposed factors of 1.5–3.4 (Lin et al., 2009; Latallerie et al., 2022), providing further609

evidence that the model uncertainty is indeed severely underestimated if we only propagate the data measurement610

uncertainty. Whether there is a need to upscale themeasurement uncertainty naturally also depends on the speci�cs611

of the study and on the reliability of the measurement uncertainty estimate itself.612

The main aim of this study is to provide a framework for surface-wave tomography with robust model statistics,613

including both the 3D resolution and total uncertainty. However, we still su�er from several drawbacks. For instance,614

although ourmeasurement uncertainty should account for contamination by other phases or highermodes and cycle615

skipping, visual inspection indicates that this is not always the case (Figure 6). In the case of poormeasurements (e.g.616

due to a missed cycle skip) with low uncertainty, we underestimate the measurement uncertainty and consequently617

overestimate the theoretical uncertainty. This is the rationale behind the factorα to upscale themeasurement uncer-618

tainty in Section 5.2 and illustrates the di�culty of correctly estimating themeasurement uncertainty. An interesting619

alternative approach was presented by several studies (Bodin and Sambridge, 2009; Bodin et al., 2012a; Zhang et al.,620

2020; Del Piccolo et al., 2024), which use a hierarchical transdimensional Bayesian approach where the data uncer-621

tainty is an output of the inverse process itself, rather than an input.622

Another drawback of our approach is that our estimates of theoretical uncertainty depend on the input model623

used, i.e. S362ANI (Kustowski et al., 2008). The validity of the forward theory depends on several assumptions (e.g.624

forward scattering, paraxial approximation) whose applicability depends on the properties of the medium in which625

waves propagate (e.g. Liu and Zhou, 2013; Parisi et al., 2015). It is therefore important to perform our analysis in an626

Earth-like model and further work could investigate the dependency on the input model. Additionally, the scaling627

factor α (upscaling of the measurement uncertainty) and the added component β (representing the theoretical un-628

certainty) need to be determined for a su�ciently large number ofmodel parameters for the results to be statistically629

signi�cant (here we considered all model parameters at 112 km depth). In particular, we would recommend to de-630

termine these parameters for each depth in the model independently, as velocity structure and the magnitudes of631

measurement and theoretical uncertainties likely change with depth.632

Furthermore, the theoretical model uncertainty is estimated in the model space, and therefore may depend in633

a non-trivial way on the model resolution. This would be re�ected by a dependency of ξ2 on the model resolution.634

This means that while the theoretical model uncertainty is accurately estimated for this particular solution, it may635

not apply to another inverse solutionwith a di�erent resolution. Oneway to obtain the theoreticalmodel uncertainty636

for models with di�erent resolution without having to repeat their estimation in the same way, could be to compute637

the contribution of theoretical uncertainty on the data themselves using the sensitivitymatrix, and then to propagate638

this contribution for models with di�erent resolution using their respective generalised inverse matrices.639

We further assume the data uncertainties to be uncorrelated, whereas in reality we expect them to be correlated640

to some extent – e.g an error in the source location or mechanism will impact several measurements. In theory,641

it is possible to account for correlations between data uncertainties, but estimating these correlations remains a642

challenge in surface-wave tomography. The addition of the theoretical uncertainty contribution to measurement643
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uncertainty relies on the assumption that they arenormally distributed. Furthermore, the assumptionof a zero-mean644

Gaussian distribution for the data errors seems reasonable, but the use of more general probability distributions645

could also be investigated (e.g. Tarantola, 2005). Note that the o�-diagonal terms of the model covariance matrix are646

also non-zero (even with a diagonal data covariancematrix). In SOLAwe do not consider them explicitly because the647

information they carry is already embedded in the resolution.648

Lastly, we estimate the theoretical uncertainty from the discrepancy between the �ltered input model and the649

model solution based on measurements on SEM seismograms. Since the crustal model we assume for the crustal650

corrections is exactly the same as in the input model, and the source parameters used for generating the reference651

seismograms are exactly the same as for the SEM seismograms, there is no theoretical error associated with errors652

in the crustal model or source solution in our synthetic framework. Nevertheless, these two components likely in-653

troduce non-negligible errors in reality (e.g. Marone and Romanowicz, 2007; Bozdağ and Trampert, 2008; Panning654

et al., 2010; Ferreira et al., 2010; Liu and Zhou, 2013; Latallerie, 2022; Amiri et al., 2023). Additionally, we base our655

kernels on the referencemodel stw105, which is already optimal for the input model S362ANI that we aim to retrieve.656

This inherently limits the magnitude of theoretical errors arising due to non-linearity in this study. Additionally,657

non-linearities are expected to be stronger in the real Earth than in the relatively smooth input model S362ANI. In658

future, additional work could be done to estimate the model uncertainty related to these components, which could659

be incorporated in the proposed theoretical uncertainty estimate. In addition, we use spectral element modelling660

(SEM) to provide the ground truth, but any deviation from SEM in reality would lead to additional theoretical errors661

in a data-based study.662

The restriction of SOLA inversion to linear problems remains an important overall drawback of themethod. Here663

we treat non-linearity as an additional component in the uncertainty. Accounting for non-linearities with iterative in-664

version schemes can improve themodels signi�cantly (e.g. Thrastarson et al., 2024; Rodgers et al., 2024) andwould al-665

low for a better representation of the crust (e.g.Marone andRomanowicz, 2007; Bozdağ and Trampert, 2008; Panning666

et al., 2010; Liu and Zhou, 2013; Chen and Romanowicz, 2024). However, non-linearities would also make the com-667

putation and interpretation of the resolution and uncertainty more complicated. The extension of Backus-Gilbert668

theory to non-linear inverse problems as proposed by Snieder (1991) could help to better account for non-linearities669

with SOLA and should be the subject of future work.670

Despite the drawbacks outlined above, we believe that our study provides a valuable starting point to obtain 3D671

resolution and to estimate theoretical model uncertainty in surface-wave tomography, upon which future work can672

build. This information is vital for robust model interpretations and to reconcile existing discrepancies between673

published tomography models (e.g. Hosseini et al., 2018; Marignier et al., 2020; De Viron et al., 2021).674

6.3 Future directions675

The depth sensitivity and thus resolution in this study is limited by the restriction to fundamental-mode surface-676

wave data. This can be mitigated by adding measurements for surface-wave overtones. In theory, including these677

in the presented framework is trivial, but it will be important to carefully estimate the data uncertainty for these678

newmeasurements. The resolution and uncertainty produced in our setup can be used to inform other tomographic679

studies. Our 3D resolution maps indicate how well certain model parameters are constrained depending on their680
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position and particularly with depth. Based on this, we may choose sets of source-receiver paths and frequencies681

that best suit a certain target. For example, to better homogenise the resolution with depth, wemay want to increase682

the number and/or the relative weight of low frequency data.683

The obvious next step is to apply the approach presented here to real data, using the lessons learned in this684

synthetic study. As noted here, the depth leakage at depths greater than ∼100 km becomes extremely strong for685

a dataset that is restricted to the fundamental mode. This suggests that including overtones will be necessary to686

obtain a model that is well-resolved deeper down in the mantle. In general, the information on 3D resolution and687

uncertainty obtained using SOLA would be particularly useful for testing geodynamic predictions (Freissler et al.,688

2022). In addition, this information would ensure that we only interpret the tomographic models to their limits, and689

not beyond, being aware of potential resolution artefacts, especially with depth.690

There are many other directions for further development. For example, it is possible to extend the SOLA-�nite-691

frequency framework for surface-wave tomography to other data and physical parameters, e.g. amplitude measure-692

ments to study anelasticity in the upper-mantle (e.g. Zhou, 2009b). These could be investigated independently, or693

through a joint approach, thus reducing theoretical uncertainty due to neglecting the e�ect of other physical param-694

eters.695

Conclusion696

In this contribution, we have combined the Backus-Gilbert-based SOLA inversemethod with �nite-frequency theory697

in a synthetic study of the Paci�c upper mantle. Our 3D modelling and inversion framework enables us to control698

and produce uncertainty and resolution information together with the surface-wave tomography model. We have699

used a synthetic framework to demonstrate the reliability of our approach and to investigate the e�ect of 3D reso-700

lution, laterally and vertically, in surface-wave tomography. We �nd that the limited resolution induces well-known701

artefacts, including lateral smearing e�ects where data coverage is poor or highly anisotropic. More importantly,702

we show that limited vertical resolution can induce strong artefacts with model parameters potentially representing703

averages of ‘true’ Earth properties at much shallower depth. Knowledge of this full 3D resolution is crucial for robust704

interpretations of surface-wave tomography models. Our synthetic setup allows us to also explore the reliability of705

model uncertainty estimates. We �nd that the theoretical uncertainty, required to match the �ltered input model,706

might bemuch larger than themeasurement uncertainty in the data. This demonstrates the need to account for both707

measurement and theoretical uncertainty in surface-wave tomography. We believe that our study is a starting point708

towards better use and interpretation of surface-wave tomography models.709
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Appendix A: The SOLAmethod inmore detail1002

In this appendix, we provide more details on the SOLA method inspired by Zaroli (2016); Zaroli et al. (2017); Zaroli1003

(2019). Here we use a slightly di�erent notation following Latallerie et al. (2022). Let us consider N data that are1004

gathered in a data vector d ∈ RN . In addition, the continuous ‘true’ model is discretised with model parameters1005

gathered in a model vectorm ∈ RM . Assuming linearity, the data are expressed as linear combination of the model1006

parameters d = Gm, where the forward mappingG ∈ RN×M contains the physical laws relating the N data to the1007

M model parameters. This forward mapping includes theoretical errors asG does not exactly predict what we aim1008

to measure. Additionally, themeasurement introduces data errors (themeasurement does not exactly measure what1009

we aim tomeasure). We �rst discuss SOLAwithout theoretical andmeasurement errors and come back to these later1010

on.1011

The inverse problem is ill-posed, i.e. G is not invertible and we cannot �nd a unique value for each model pa-1012

rameter. With SOLA, we break this non-uniqueness by instead �nding a single value for a local average (Zaroli, 2016).1013

Here, we de�ne this local average as a combination of model parameters that is informative, i.e. a weighted sum1014
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of model parameters that is local to a model parameter location. The weights of such a sum is the resolution of the1015

speci�c model parameter.1016

Let m̃(k) ∈ R be the estimate of a local average around model parameter k and let us write this estimate as a1017

linear combination of the data m̃(k) = G†(k)d, whereG†(k) ∈ RN is the vector containing the weights for the linear1018

combination of the data. We use the forward equation to obtain m̃(k) = G†(k)Gm, which implies that the vector1019

G†(k)G contains the weights speci�cally for the local average of model parameter k. This de�nes the resolution for1020

this model parameter: R(k) = (R
(k)
j )j=1,..,M = (

∑N
i=1G

†(k)
i Gij)j=1,..,M . To account for varying voxel volumes, we1021

de�ne the averaging kernelA(k) = (R
(k)
j /Vj)j=1,..,M . To �ndG†(k) we design a target local average, or target kernel,1022

T (k) ∈ RM and minimise the squared distance between the averaging and target kernel:1023

G†(k) = arg min
G†(k)

∑
j=1,..,M

Vj

 ∑
i=1,..,N

G†
(k)

i Gij/Vj

− T (k)
j

2

(10)1024

The aim of theminimisation problem in Equation 10 is to �t the target kernel given the limits imposed by the data1025

sensitivity, i.e. the geometry of the problem. In addition, we can add a uni-modularity constraint on the resolution1026

for the local average to be unbiased:
∑
ij G

†(k)
i Gij = 1 (Zaroli et al., 2017). Values greater or smaller than unity imply1027

that the local average is arti�cially over- or under-estimating the average of the ’true‘ model parameter. Note that if1028

we compute the linear combinationG†(k) for allM model parameters, and organise them into amatrixG†, then we1029

can write m̃ = G†d and m̃ = G†Gm, where m̃ ∈ RM is the collection of local average estimates. In fact,G† is the1030

generalised inverse for the inverse problem, and m̃ is the model solution. This model solution can be visualised, as1031

we have done in this study, but it is important to recall that this model solution is nothing more than a collection of1032

local averages, not estimates of individual model parameters.1033

The above is incomplete as all observed data contain errors. To account for this, we can represent each datum1034

as a Gaussian probability distribution whose mean is the measured datum (di) and whose standard deviation is the1035

estimated measurement uncertainty (σdi). Under this assumption, a model parameter estimate is also a Gaussian1036

probability distribution as it is a linear combination of Gaussian probability distributions and we can easily compute1037

its mean and standard deviation. The mean of the local average distribution is still given by m̃(k) =
∑N
i=1G

†(k)
i di,1038

while the standard deviation is given by σm̃(k) =

√∑N
i=1G

†(k)
i

2
σd2
i . Note that the model uncertainty is for a local av-1039

erage estimate, not an estimate for a givenmodel parameter. The weights that specify the linear combination of data1040

(G†(k)) also in�uence the propagation of data uncertainty into model uncertainty. To account for this in designing1041

G†(k), i.e. to �nd a combination of model parameters that also minimises the propagation of data uncertainty into1042

model uncertainty, we amend the minimisation problem of Equation 10:1043

G†(k) = arg min
G†(k)

∑
j=1,..,M

Vj

 ∑
i=1,..,N

G†
(k)

i Gij/Vj

− T (k)
j

2

+ ηk
2

 ∑
i=1,..,N

G†
(k)

i

2

σd
2
i

 , s.t.
∑
ij

G†
(k)

i Gij = 1.

(11)1044

with ηk the trade-o� parameter for the model parameter. Equation 11 leads to a set of equations for each model1045

parameter k with its particular target resolution T (k). These can be solved, as proposed by Zaroli (2016), using an1046
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LSQR algorithm (e.g. Paige and Saunders, 1982). More details on this implementation can be found in appendix A11047

of Zaroli (2016). A summary of the SOLA inversion illustrating the inputs and outputs is presented in �gure 10.1048

Appendix B: Phase delaymeasurements usingmulti-taper technique1049

Let s(ω) = A(ω)eφ(ω) be the mathematical expression of the reference seismogram computed for the 1D reference1050

model for a given source-receiver pair at some frequency ω, with amplitude A and phase φ. Let o(ω) = Ao(ω)eφ
o(ω)

1051

be de�ned equivalently for the observed seismogram, or the SEM seismogram in the case of this synthetic study. The1052

accumulated phase results from source and receiver e�ects, caustics and the propagation itself (e.g. Ekström, 2011;1053

Ma et al., 2014; Moulik et al., 2021). We typically assume the �rst three terms are the same for both the reference and1054

observed seismograms. In that case, the phase delay canbe directly related to the propagation and thus perturbations1055

in the Earth model. These phase delays are what we are interested in measuring here.1056

Waveforms are �rst pre-processed (e.g. resampled at 1 Hz, instrumental response removed if necessary). As sug-1057

gested by Zhou et al. (2005) and Zhou (2009a), we then use a multi-taper technique to measure the phase-delays and1058

to obtain an estimate of the measurement uncertainty (e.g. Thomson, 1982; Park et al., 1987a,b; Laske et al., 1994;1059

Laske andMasters, 1996; Hjörleifsdóttir, 2007). The technique uses the �rst few Slepians (a�er Slepian, 1978) de�ned1060

over a 801 s window. Slepians are an in�nite series of functionswith optimal frequency spectrum (therefore reducing1061

frequency leakage) that weigh di�erent parts of the waveform (thus reducing bias in the time-domain). With a 801 s-1062

long time-window and 1 Hz sampling rate, we should use only the �rst 5 Slepians (see Percival and Walden, 1993,1063

pp. 331). To position the Slepians, we compute the predicted group arrival time at the frequency of interest, starting1064

the Slepian time window 150 s before the expected arrival. We then apply a 4 mHz-wide bandpass �lter around the1065

frequency of interest before we compute the Fast Fourier Transform. Finally, we subtract the phase component of1066

the tapered and �ltered observed (or SEM here) waveform from the reference waveform in the frequency domain.1067

Usually, we obtain a smooth dispersion curve, except for when the phase delay reaches ±π, where the dispersion1068

curve makes jumps of ±2π. Low frequencies are less likely to su�er from cycle-skips. Therefore, we make our mea-1069

surements at increasingly higher frequency, starting at 6 mHz. When we detect these so-called cycle-skips (we use a1070

threshold of ±4 radians for the detection), we add or remove 2π to obtain a smooth dispersion curve and apply this1071

correction accordingly to all higher frequencies.1072

For each source-receiver pair, we end up with 5 dispersion curves for the 5 Slepians, corrected for cycle-skipping.1073

We use the average of these 5 curves as our �nal measurements and the standard deviation as the data measure-1074

ment uncertainty. In some cases, we note an inaccurate detection of cycles-skipping (either as false-positive or false-1075

negative). These false detections typically do not occur on all �ve tapers, leading to a sharp increase inmeasurement1076

uncertainty. In addition, some fundamental mode measurements are contaminated by the interference of other1077

phases or higher modes. This usually does not a�ect all �ve tapers, thus also leading to an increase in the measure-1078

ment uncertainty.1079
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Figure 10 Illustration of the SOLA workflow. The minimisation problem at the heart of SOLA aims to find a generalised in-
versematrixG†(k) such that the resolution is close to the target resolution and that themodel uncertaintyσ(k)

m̃ is reasonable.
This minimisation problem takes four inputs: G, ηk, σd and T (k). The sensitivity matrixG contains the forward theory and
depends on the data geometry. Themeasurement uncertaintiesσd are estimated using themultitaper technique. Formodel
parameter k, a target resolution is designed T (k) and a trade-o� parameter ηk balancing the fit to the target resolution and
model uncertainty is chosen. The obtained generalised inverse allows us to compute the model uncertainty σ(k)

m̃ using the
data uncertainty, to compute the averaging kernelR(k) by combining the generalised inverse with the sensitivity matrixG,
and to compute themodel parameter estimate m̃(k) from thedata values d. Note that the data values only play a role a�er the
minimisation problem and that no a priori on the model estimate itself has been introduced. In this study, we set the mea-
surement uncertainty to 1 as input into the SOLA minimisation problem. However, we incorporate the actual measurement
uncertainty to compute the measurement model uncertainty.
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Figure 11 Overview of the measurement workflow. We compute a reference seismogram for the reference radial Earth
model, whichwe use tomeasure the phase-delay of a SEM-computed seismogram (acting in this synthetic setup as observed
seismogram). We apply a set of tapers (the five first Slepians), thus leading to 5 tapered traces. We filter each in a set of fre-
quency bands, before we take the FFT. In the frequency domain, we then compute the phase di�erence for all frequencies for
all tapers, producing a set of 5 dispersion curves. We apply a cycle-skip correction and then take the mean of all 5 tapers as
the final measurement, with the measurement uncertainty given by the standard deviation of the five tapers.

Appendix C: Computational considerations1080

In this study, we use N = 47 700 fundamental mode phase delays as data and we parameterise the spatial domain1081

intoM = 259 200 voxels (cells of size 2◦×2◦ laterally and 25 km depth for the �rst 400 km depth of the wholemantle).1082

Therefore, the sensitivitymatrixG of sizeN×M is reasonably large. To optimise the sparsity of the sensitivitymatrix,1083

we only consider the sensitivity kernels in the two �rst Fresnel zones laterally, since their amplitude is negligible1084

further away. The sensitivity is alsonegligible at depths greater than 400 kmdepth. Our resultingmatrix thus contains1085

645 282 622 non-zero elements, i.e. the density is approximately 5.2%. The SOLA optimisation problem (Equation 5)1086

leads to a set of normal equations taking the form of another (M + 1)× (N − 1) matrixQ that is less sparse thanG1087

(see Zaroli, 2016, Appendix A1). Reordering the lines of G with the sparsest row �rst helps to improve the sparsity1088

of Q. In this study, Q contains 657 124 288 non-zero elements, i.e. sparsity is approximately 5.3%. On disk, we use1089

a ‘coordinate list’ (COO) storage strategy, and Q takes up ∼17 GB. On RAM, we use a reversed linked-chain storage1090

strategy to improve compute time. In this case, theQmatrix takes up∼35 GB. This largememory requirement is the1091

primary limiting factor for increasing the number of data and model parameters.1092

The computation time of the LSQR inversion for a single model parameter depends on the target resolution and1093

trade-o� parameter. With the choicesmade in this study, it takes∼100 s permodel parameter. As we invert for 69 2001094

model parameters, a full model estimate thus requires∼ 692 000 s CPU time (or 192 CPUh). In practice, we invert for1095

model parameters in parallel on several nodes with 128 CPU each using a multi-threading approach with OpenMP.1096

The scaling is not fully linear due to input/output operations, but this strategy reduces the wall time to∼ 20 h.1097
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