Supplementary material

for

Investigating the D" reflector beneath the Indian Ocean with source arrays

Christine Thomas^{1,2*}, Björn Heyn³, Lena Sophie Tölle¹, Rûna van Tent¹

¹ Institute of Geophysics, University of Münster, Germany

²Geological Survey of Denmark and Greenland, Copenhagen, Denmark

³ Centre for Planetary Habitability (PHAB), Department of Geosciences, University of Oslo, Norway

*Corresponding author: <u>cthom_01@uni-muenster.de</u>

Author ORCIDs

C. Thomas: 0000-0002-7845-5385 B.H. Heyn: 0000-0003-1685-6674L.S. Tölle: 0009-0009-4060-0979 R. van Tent: 0009-0005-7274-8370

This supplementary material contains information on source normalisation methods, tables with station locations as well as earthquake locations taken from National Earthquake Information Centre (NEIC), used for either the Indian Ocean (IO or MSEY) or stations in Antarctica (MAW, DRV, CASY). Additionally, the two events used for receiver arrays (see Figure S8) are given in Table S3.

Supplementary figures show seismic traces (Z-components) for source arrays for stations FOMA, DRV, AIS and PAF (Figure S1), traces and different source normalisation methods for PAF (Figure S2). Figure S3 shows a vespagram stack with P as reference phase compared with PcP as reference phase. An explanation of picking using the migration images is shown in Figure S4. Amplitude-depth profiles and migration images for stations CRZF and PAF are given in Figure S5 and for MAW, CASY and MSEY in Figure S6. A test for a 3D model without reflector is shown in Figure S9, this test shows that finite frequency effects cannot generate the signals interpreted in the study. For further verification of our results, we show two events recorded at receiver arrays in Madagascar and Tanzania that show D" reflections in P and S-waves (Figure S8), we also included results from two events recorded in Australia, whose reflection points are also in the north of our study region and further east as shown in Figures 9 and S9. Figure S9 shows the results on the vote map for P-wave tomographic models (similar to Figure 9) for lower than average seismic velocities.

Details for source normalisation methods:

SD is the most commonly employed method, where each recorded trace is deconvolved by its corresponding P-wavelet (same applies for S-waves), and this method has been used in previous source- and double-array studies (e.g., Krüger et al., 1996; Thomas et al., 2002; Lay and Garnero, 2011). In an ideal case, this results in a trace with Gaussian-shaped spikes that correspond to recorded P-wave signals (e.g., P, PdP, PcP), thus making the signals from different earthquakes coherent. While this method is not very sensitive to the P-wavelet time window length, it is strongly affected by the presence of noise or other signals that may overlap with the P-wavelet. As a consequence, it is less reliable for noisy data, such as the

recordings from stations located on small oceanic islands (Beucler et al., 2015), but potentially also for land stations (Anthony et al., 2022).

Since coherent phases are expected to have the same phase (or a phase shift by $\pm \frac{6}{3}$ for signals with reversed polarity), while noise can be assumed to have a random phase (Shearer, 2009), it might be helpful to include phase information in the deconvolution process to discriminate between signal and noise. Therefore, we also tried applying a Hilbert transform to the recorded P-wavelet (but not to the trace itself) before carrying out the deconvolution as described above. The HIL method applies a phase shift of $\frac{6}{3}$ 2 to the Fourier coefficients of the wavelet, but it does not affect the amplitude spectrum for the relative polarities of the recorded signals (e.g., Dahlen and Tromp, 1998; Shearer, 2009). While this method should produce better results for noisy data that have clearly visible P-waveforms, it is sensitive to the length of a deconvolution time window, especially if that time window does not contain the entire P-wavelet. As a consequence, this method works best for data with very clear P-wavelets or slightly longer deconvolution windows.

In addition to the two deconvolution methods described above, we also tried cross-correlating the recorded P-wavelet with its respective seismogram (Schimmel and Paulsen, 1997). The CORR method measures the similarity between the input wavelet and the respective part of the trace; therefore, it only depends on waveform coherency within a single seismogram. Although mathematically similar to the SD approach, CORR leads to broader, symmetric waveforms. It also avoids deconvolution sidelobes (Oldenburg, 1981). The CORR method is less sensitive to noise in the P-wavelet than the SD technique, but the resulting wide waveforms can mask or merge signals that arrive shortly after one other.

The final method we tried, but which was unsuccessful for our purposes, is the iterative ID approach (Ligorria and Ammon, 1999), is typically applied in receiver function analyses. This method is a combination of correlation and deconvolution, which iteratively creates a trace of spikes that correspond to specific signals. However, due to the sharp spike waveform (even after applying a Gaussian filter to broaden the signals), any small deviations in relative travel-times between phases (e.g., due to errors in source depths) causes the respective signal to disappear in the stack. As a result, this method is, at the moment, not well suited for vespagram stacks, and therefore is only of limited use for source-array stacking of teleseismic waves. We just mentioned it here for completeness.

References:

- Anthony, R. E., A. T. Ringler, and D. C. Wilson (2022). Seismic Background Noise Levels across the Continental United States from USArray Transportable Array: The Influence of Geology and Geography, *Bulletin of the Seismological Society of America* 112, 646–668, doi.org/10.1785/0120210176
- Beucler, É., Mocquet, A., Schimmel, M., Chevrot, S., Quillard, O., Vergne, J., and Sylvander M. (2015), Observation of deep water microseisms in the North Atlantic Ocean using tide modulations, *Geophysical Research Letters*, 42, 316–322, doi.org/10.1002/2014GL062347
- Dahlen, F.A., and Tromp, J., (1998). *Theoretical Global Seismology*, Princeton University Press, pp. 552-524.
- Ebinger. C., (2013). *Magadi-Natron Magmatic Rifting Studies* [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/XJ_2013
- Krüger, F., Scherbaum, F., Weber, M., and Schlittenhardt, J. (1996). Analysis of asymmetric multipathing with a generalization of the double-beam method. *Bulletin of the Seismological Society of America*, 86(3), 737-749, doi.org/10.1785/BSSA0860030737.
- Lay T., and Garnero E.J., (2011). Deep mantle seismic modeling and imaging. *Annual Review of Earth and Planetary Sciences*, 39(39), 91–123. doi.org/10.1146/annurev-earth-040610-133354.

- Leng, K., Nissen-Meyer, T., Van Driel, M., Hosseini, K., Al.Attar, D., (2019). AxiSEM3D: broadband seismic wavefields in 3-D global earth models with undulating discontinuities. *Geophys. J. Int.*, 217, 2125-2146, doi.org/10.1093/gji/ggz092.
- Ligorria, J.P., and Ammon, C.J., 1999. Iterative Deconvolution and Receiver Function Estimation, *Bulletin of the Seismological Society of America*, 89, 1395-1400, doi.org/10.1785/BSSA0890051395.
- Lu, C., Grand, S.P., Lai, H., Garnero, E.J., (2019). TX2019slab: A new P and S tomography model incorporating subducting slabs. *J. Geophys. Res.*, *124*, 11549-11567, doi.org/10.1029/2019JB017448.
- Oldenburg, D.W., (1981). A comprehensive solution to the linear deconvolution problem. *Geophysical Journal International*, 65, 331-357, doi.org/10.1111/j.1365-246X.1981.tb02716.x.
- Schimmel, M., and Paulssen, H., (1997). Noise reduction and detection of weak, coherent signals through phase-weighted stacks, *Geophysical Journal International*, 130, 497-505, doi.org/10.1111/j.1365-246X.1997.tb05664.x.
- Shearer, P.M., (2009). *Introduction to Seismology* (2nd Edition), Cambridge University Press, pp. 102-109 and 245-249.
- Thomas C., Kendall J-M., and Weber, M., (2002) The lowermost mantle beneath northern Asia I. Multi-azimuth studies of a D" heterogeneity. *Geophysical Journal International* 151, 279–295, doi.org/10.1046/j.1365-246X.2002.01759.x
- Wysession, M., Wiens, D., Nyblade, A. (2011). Investigation of sources of intraplate volcanism using Passcal broadband instruments in Madagascar, The Comores and Mozambique, [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/XV_2011

Tables

Table S1: Stations for source arrays used for this study. Latitude and longitude for stations 1-6 are from the GEOSCOPE website (geoscope.ipgp.fr). Stations 7-9 are stations from other networks. Network and doi are also provided.

	station	lat	lon	network	doi:
1	DRV	-66.664908	140.002069	G	doi.org/10.18715/GEOSCOPE.G
2	AIS	-37.79635	77.569186		
3	CRZF	-46.43096	51.855308		
4	FOMA	-24.97565	46.978877		
5	PAF	-49.351	70.210708		
6	RER	-21.1712	55.73986		
7	MSEY	-4.6737	55.4792	II	doi.org/10.7914/SN/II
8	CASY	-66.2792	110.5354	IU	doi.org/10.7914/SN/IU
9	MAW	-67.604	62.871	AU	dx.doi.org/10.26186/144675

Table S2: Events used in this study for stations in the Indian Ocean – IO (AIS, CRZF, FOMA, RER, PAF) and MSEY, and stations in Antarctica (DRV, MAW, CASY). Event names indicate the date of the event, OT is the origin time.

Name	ОТ	Latitud	Longitude	Depth [km]	Stations
		e			
1991APR19	21:48:35	-6.900	129.562	127	DRV
1991AUG24	11:13:19	-6.065	130.368	148	DRV
1991OCT15	16:18:01	-6.494	130.043	136	DRV
1991NOV07	09:21:23	-7.320	128.550	140	DRV
1992MAY04	08:45:01	-6.762	130.229	86	DRV
1992OCT18	13:08:54	-6.279	130.214	118	DRV
1992DEC18	03:00:44	-6.541	130.417	101	DRV
1993AUG29	09:57:54	-7.005	129.560	146	DRV
1994JUN16	10:12:46	-7.391	128.125	108	DRV
1994JUL02	09:14:43	-5.763	131.103	87	DRV
1994JUL13	11:45:23	-7.532	127.77	159	Ю
1996FEB28	09:44:10	1.7560	126.048	115	MSEY
1996OCT17	16:15:25	5.704	125.945	117	CASY, DRV
1995DEC25	04:43:24	-6.903	129.151	141	DRV, IO
1997DEC22	02:05:50	-5.495	147.867	179	Ю
1998SEP21	06:52:41	0.262	122.467	147	CASY
1999APR05	11:08:04	-5.591	149.568	-150	Ю
1999DEC13	09:30:39	2.0770	127.1150	85	MSEY
2000MAR03	22:09:13	-7.321	128.491	141	DRV, IO
2000JUN14	17:00:48	4.542	127.722	90	DRV
2000SEP26	16:49:33	1.123	127.44	142	CASY
2001SEP18	02:19:30	-7.506	127.739	131	DRV, CASY
2001DEC07	19:11:31	-5.645	130.742	111	DRV
2001DEC09	18:15:02	-0.002	122.87	156	CASY
2002JAN01	11:29:22	6.303	125.650	138	IO, MSEY, DRV
2002MAR19	22:14:14	-6.486	129.901	148	DRV
2003MAR10	02:09:37	1.692	127.296	93	IO, MSEY
2004APR17	15:58:24	-7.352	128.373	128	DRV
2004JUN30	23:37:25	0.797	124.726	90	Ю
2004OCT13	20:35:41	-6.066	130.528	89	DRV, CASY, MAW
2007JAN17	04:28:26	-3.322	139.834	100	Ю
2007JUL01	14:34:12	-5.929	130.564	134	DRV
2007DEC15	08:03:15	-7.526	127.474	175	CASY, MAW
2008MAR06	01:21:59	2.572	128.232	125	MSEY
2008MAY23	22:50:37	-7.061	129.483	125	DRV
2008JUN06	13:42:48	-7.495	127.885	122	DRV, IO, CASY, MAW

2008AUG04	20:45:13	-5.916	130.19	173	CASY, MAW
2008SEP11	00:00:02	1.885	127.363	96	IO, CASY
2008OCT20	04:54:19	0.109	120.681	96	CASY
2008OCT21	13:00:48	-7.47	127.732	135	DRV, CASY
2008OCT23	09:21:15	5.957	125.778	130	CASY
2008DEC11	21:40:51	0.063	123.433	129	CASY
2009JAN22	20:16:34	-7.307	128.56	146	CASY, MAW
2009OCT24	14:40:43	-6.133	130.385	130	DRV, IO, MAW
2009SEP18	18:34:22	1.755	127.189	93	CASY
2009DEC26	08:57:27	-5.530	131.205	85	DRV, MAW
2010FEB15	21:51:47	-7.217	128.723	126	Ю
2010MAR26	10:39:02	-6.326	130.284	124	DRV
2010AUG15	15:09:29	-5.692	148.342	174	Ю
2010DEC15	11:29:30	-7.268	128.786	135	DRV, IO, MAW
2011JUL12	21:06:13	-6.055	130.492	131	DRV
2011DEC13	07:52:11	0.041	123.030	161	Ю
2011DEC14	05:04:58	-7.551	146.809	135	Ю
2012MAR21	22:15:06	-6.242	145.955	118	IO
2012APR17	07:13:49	-5.462	147.117	198	IO
2012AUG26	15:05:37	2.190	126.837	91	Ю
2012DEC10	16:53:08	-6.533	129.825	155	Ю
2013AUG12	00:53:43	-7.135	129.809	95	IO, MAW
2013SEP01	11:52:29	-7.440	128.221	112	IO, CASY, MAW
2014DEC06	22:05:10	-6.11	130.483	116	IO, CASY
2015JUN15	21:04:24	4.1537	125.8447	136	CASY
2015NOV21	09:06:13	-7.148	129.937	82	DRV, CASY
2015DEC24	23:10:58	-7.218	128.977	119	DRV, MAW
2016OCT09	14:46:26	1.7703	127.449	128	CASY
2016DEC04	05:24:05	4.5051	127.8342	139	DRV
2016DEC21	00:17:14	-7.508	127.921	152	IO, CASY
2017JUL15	12:12:21	0.4098	121.9844	113	CASY
2017NOV07	21:26:38	-4.243	143.485	110	Ю
2017DEC15	16:47:58	-7.492	108.174	90	Ю
2018MAR25	08:58:10	-6.634	129.817	169	DRV, IO, MAW
2018DEC01	13:27:21	-7.384	128.707	136	DRV, IO, CASY
2019MAY06	21:19:37	-6.975	146.449	146	ΙΟ
2019MAY31	10:12:32	6.2795	126.479	99	CASY, MSEY, DRV
2019JUN14	20:10:52	-5.843	130.725	105	DRV, MAW
2020MAY06	13:53:55	-6.776	129.785	96	DRV, IO, CASY, MAW
2020JUN04	08:49:40	2.911	128.248	112	MSEY
2020SEP06	15:23:43	6.2693	125.8285	120	CASY, DRV

2020SEP08	00:45:20	-4.8713	129.7548	172	MAW
2020NOV01	03:43:20	-7.071	129.2407	182	MAW
2021JAN06	20:59:34	0.0658	122.9487	148	CASY
2021DEC04	23:47:55	4.0932	128.1359	149	DRV
2021DEC29	18:25:51	-7.548	127.577	165	IO, CASY
2022FEB01	19:25:10	-7.483	128.313	119	DRV, CASY
2022AUG09	12:59:40	-6.723	129.954	149	DRV
2023JAN18	00:34:45	-0.0116	123.1998	154	CASY
2023FEB23	20:02:47	3.2796	128.1356	92	MSEY
2023MAY24	15:49:34	-6.9484	129.5293	158	CASY, MAW
2023SEP11	12:51:33	1.1246	127.4888	151	CASY
2023SEP26	01:39:43	4.7109	127.5053	94	CASY, DRV
2023OCT04	11:21:47	5.3171	126.0438	113	MSEY, DRV
2023NOV22	02:48:5	1.7827	127.1887	102	CASY
2024SEP23	19:51:02	-0.0469	122.8918	143	CASY

Table S3: Events used for receiver array verification (e.g., Figure S6, Figure 9 and S8). The arrays are in Madagascar (Wysession et al., 2011), Tanzania (Ebinger 2013) and the Beetaloo Seismic Monitoring Project (BTL) in Australia.

Name	OT	Latitude	Longitud	Depth	Array
			e	[km]	
2012Aug26	15:05:3	2.19	126.84	91	Madagascar, XV
	7				doi.org: 10.7914/SN/XV_2011
2014Jan25	05:14:1	-7,98	109.26	66	Tanzania, XJ
	8				doi.org: 10.7914/SN/XJ_2013
2021Oct02	20:43:3	-9.178	67.261	10	Australia (BTL), 20
	9				doi.org/10.7914/SN/20_2019
2022Mar27	00:50:4	-13.807	66.176	13	
	5				

Figure S1: Source array traces (Z-components) for stations FOMA, DRV, AIS and PAF. Theoretical P and PcP arrivals are indicated for the centre station. Note that for AIS, despite good signal quality, only four traces are available in the cluster around 70 degrees epicentral distance and six traces between 55 and 60 degrees. The epicentral distance of FOMA is between 77.5 and 82 degrees, with P and PcP starting to merge at these large distances.

Figure S2: Traces for station PAF: a) raw traces (unfiltered, no source normalisation). Note that we already tried to pick events with similar source wavelets. All deconvolution methods in the following panels are applied to traces filtered with a second order butterworth bandpass filter of 2-12 s. b) traces without source normalisation, i.e., only filtered, c) spiking deconvolution (SD) d) Hilbert Transform (HIL) and e) cross-correlation (CORR).

Figure S3: Source vespagram test for station CRZF with initial alignment of traces on the P-wave (a) and the PcP wave (b) before stacking. The aligned wave is used for reference and in the source-vespagram set to the theoretical backazimuth and slowness. Since the differential travel times of the P, PdP and PcP wave differ for each event, the stack enhances only the wave for which the traces were aligned. Other waves will not stack coherently because the wave arrival times differ from the calculated arrival times. This may lead to a variation in slowness or even a diminishing of the wave amplitude or waveform.

Figure S4: Principle of our migration images and amplitude depth profiles. At each depth: For each grid point the traces are shifted and stacked with the calculated delay times for each source and receiver combination, and the stacked amplitude is assigned to the respective grid point on a latitude-longitude grid (See also Figure 5 and explanation in the main text). Energy will spread out along an isochrone (i.e., the elliptical red ring). If there is a two-sided wavelet, a second ellipse with high amplitudes (here in blue) will follow around the red ellipse. As the depth increases, the region of large amplitudes will arrive at shorter times, i.e., the size of ellipse(s) of large amplitudes will decrease. The point where the large red amplitude focusses (Depth 4) is the point, where we pick the reflection. Ideally, the focussing point lies in the theoretical reflection point. At later times (i.e., deeper depth), the blue ellipse will focus. The amplitude-depth profile shows the stacked amplitude for the theoretical reflection point of the source-receiver combination for the central earthquake (or for the central station in case of a receiver array).

Figure S5: Amplitude-depth profiles and migration images for the relevant depth of PdP and PcP for stations CRZF (a) and PAF (b), indicated by the dashed lines in the amplitude depth profiles. Note that for station PAF the images are less clear. Filters used for the stations are given in brackets following station names. The stacked amplitudes of PdP and PcP for CRZF in the amplitude-depth profile are small and focussing off-centre in the scatter plot for 2630km and 2900km depth. The results are therefore marked as less reliable than results for RER and stations in Antarctica.

Figure S6: a) Amplitude-depth profile for CASY with events in the northern cluster (Fig 2) – labelled as CASY2. **b)** Additional examples of amplitude depth profiles from the source migration of stations MAW, MSEY and CASY (southern cluster, labelled as CASY1).

Figure S7: Amplitude-depth profile from the migration using synthetic data for PAF (similar to Figure 6 in the main text) but generated with AxiSEM3D (Leng et al., 2019) and TX2019slab (Lu et al., 2019) as 3D input model. The synthetics were generated for a minimum period of 5s, i.e., longer than those shown in Figure 6. The dashed line is amplitude 0. This test shows that finite frequency effects cannot generate the reflections we find in the real data. The amplitude depth profile does not cross the zero line before PcP.

Figure S8: Receiver-array traces (a, b) using stations in Ethiopia (left) and Madagascar (right) and the corresponding vespagrams (c-f) for P-waves (middle panel) and S-waves (bottom panel). The data in a) and c) are filtered with a bandpass filter from 0.3 to 3s, b) and d) bandpass 1 to 10s, e) bandpass 2 to 12 s and f) bandpass 3 to 25 s. The arrivals of P, PdP, S, SdS, PcP and ScS are marked by the red ellipses. The reflection point for these events are in the southern part of the area imaged by YL87 shown in Figure 9 in the main text.

Figure S9: As Figure 9, but with the vote map for the Indian Ocean for lower than average P-wave velocities at depth 2600 km.

