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Abstract Precise Global Navigation Satellite System (GNSS) time series have greatly advanced tectonic
studies, particularly in detecting transient deformation signals like slow slip events (SSEs). However, GNSS
position data can be noisy, impacting the accuracy of analyses. Traditional denoising methods often strug-
gle with spatially heterogeneous and evolving networks. This study introduces a novel Graph Neural Network
(GNN) approach to denoise GNSS time series, effectively managing network heterogeneity and varying sta-
tion availability. GNNs are robust against temporal gaps, making them suitable for GNSS data. Applied to
daily time series for the Cascadia Region processed by the University of Nevada Reno and Central Washington
University, ourmethod reduced common-mode noise bymore than 70%and 30%on horizontal components,
in the two datasets respectively, significantly enhancing surface displacement measurements and slow slip
events (SSE) source property estimation. We compared the GNN approach with three simple stack filtering
methods, which performed comparably in many situations but are more sensitive to parameter choices. For
allmethods, substantial noise reduction removes artifacts that could impact geophysical interpretations. Our
findings suggest that GNN-based denoising offers a robust, adaptive solution for heterogeneous GNSS net-
works, enhancing accuracy in tectonic and volcanic process studies, but stack filtering approachesmight still
outperform the machine learning technique depending on the application.

Non-technical summary GNSSare satellite-basedsystemsused forprecisepositioningandnaviga-
tion on Earth. They include systems like GPS (United states), GLONASS (Russia), Galileo (Europe), and others.
In earth science, GNSS antennas are used to monitor Earth’s crustal deformations such as tectonic move-
ments and earthquakes or, in this study, slow slip events (SSEs). SSEs are a type of tectonic movement where
the Earth’s tectonic platesmove slowly over days tomonths, rather thanquickly as in earthquakes. The subtle
movements during SSEs (maximumof around 1cm) are challenging to detect because they require extremely
precise measurements, and even small errors in GNSS data can lead to significant inaccuracies and biases in
analyzing these events. A GNN is effective for cleaning GNSS data because it can identify and eliminate noise
that affects multiple stations in a network by understanding the relationships between them. Using GNN on
daily GNSS data, we reduced correlated noise by 70% in the University of Nevada Reno dataset and by 30%
in the Central Washington University dataset. The added precision allows us to more accurately detect and
analyze SSEs, leading to a better understanding of these phenomena.

1 Introduction

TheGlobal Navigation Satellite System (GNSS) is a group
of several constellations of satellites that provides sig-
nals enabling precise positioning and navigation on
Earth. GNSS is used in a variety of Earth science ap-
plications (e.g., reviews in Bock and Melgar, 2016; Lar-
son, 2019) and it offers high-precision (cm to mm level)
time series data that allows researchers to monitor sub-
tle movements in the Earth's crust (Geng et al., 2018;
Bertiger et al., 2020). It is often used to identify defor-
mation transients (e.g. Szeliga et al., 2008; Nishimura
et al., 2013; Wallace, 2020), estimate tectonic plate mo-
tions (Prawirodirdjo andBock, 2004; DeMets et al., 2010;
Kreemer et al., 2014), detect and characterize large
earthquakes (e.g. Lin et al., 2021; Goldberg and Haynie,

2022) and estimate seismic hazards (Moreno et al., 2011;
Rollins et al., 2018; Rollins andAvouac, 2019;Meade and
Hager, 2005).
Of particular interest to seismology and tectonics are

slow slip events (SSEs) which are episodes of slip on
a fault at much slower rupture and slip speeds and
longer durations than typical earthquakes of the same
size (Bürgmann, 2018). They have only very weak seis-
mic radiation (or none at all) and, hence, GNSS is the
primary tool used to study their resultant crustal defor-
mation signals. SSEs have been detected in many sub-
duction zones around the world (e.g., Jolivet and Frank,
2020), and in this work, wewill focus on SSEs in the Cas-
cadia Subduction Zone (CSZ). Here, SSEs occur between
20 and 40 km depth, downdip of the seismogenic zone
(e.g., Bartlow, 2020), and do not occur uniformly along
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the entire length of the margin. There is significant
along-strike variability in their spatial extents, recur-
rence intervals, and source properties that are linked to
variations in the structure of the overriding plate (Delph
et al., 2021). In GNSS data, SSEs manifest as transient
reversals in the direction of secular motion expected
from plate tectonic motion on multiple nearby stations
(Miller et al., 2002; Bartlow et al., 2011; Wang et al.,
2001; Rogers and Dragert, 2003). Identification of SSEs
in GNSS time series can be challenging because even
large SSEs produce only very small (i.e. few mm to cm)
magnitude surface displacements. Such displacements
are difficult to identify in daily data and evenmore so in
high-rate datawhichhavehigher noise amplitude (Geng
et al., 2018; Melgar et al., 2020).
Despite over 20 years of research, our understanding

of the underlying mechanism or mechanisms respon-
sible for SSEs is still evolving. GNSS noise level is of-
ten of the same order of magnitude as the signal of in-
terest (2-8 mm). If we could lower GNSS displacement
noise levels such that we could resolve subtle signals in
both daily and sub-daily sampling GNSS data, it would
undoubtedly improve our understanding of the phe-
nomenon. For example, identification of the exact on-
set of the phenomena is currently challenging because
of this elevated noise. Likewise, being able to mea-
sure smaller magnitude SSEs would facilitate better un-
derstanding of the magnitude-frequency distribution,
scaling properties, spatial distribution, and triggering
mechanisms of SSEs which are sensitive to small mag-
nitude stress changes such as those from Earth tides
(e.g., Royer et al., 2015). High-rate GNSS can also be
used to assess the detailed evolution of slip in space
and time (Itoh et al., 2022). Analysis of high-resolution
seismicity catalogs elucidate coherent seismicitymigra-
tion patterns that are distinct from the main slip front.
These secondary fronts are inferred to be smaller scale
slip events that propagate at different speeds and di-
rections and collectively contribute to the total slip in
SSEs (Ghosh et al., 2010; Houston et al., 2011; Rubin and
Armbruster, 2013; Peng et al., 2015; Royer et al., 2015;
Bletery et al., 2017). Identifying these fronts in high-rate
GNSS data would permit slip inversions and estimates
of properties such as stress drops that are important
for assessing the dynamics of SSEs. These could com-
plement estimates of the same properties derived from
other geophysical observations (e.g., Hawthorne et al.,
2016). Finally, higher resolution GNSS displacements
(i.e. there is lower overall noise) could be used to iden-
tify precursory transient deformation which is thought
to have precededmultiple largemagnitude earthquakes
(e.g., Kato et al., 2012; Ito et al., 2013; Ruiz et al., 2014;
Socquet et al., 2017).
Lowering GNSS noise levels has been challenging

because position calculations are susceptible to vari-
ous sources of noise that can impact their accuracy.
These include atmospheric contributions to noise from
the ionosphere, troposphere, and local and regional
weather conditions (Wu et al., 2013; Hadas et al., 2013;
Lu et al., 2016). Additionally, satellite-related factors
like orbit variations and clock offsets contribute to the
overall noise in significant ways (e.g., Kazmierski et al.,

2020). Station specific issues, including static and clock
offsets, further compound the challenges. The noise
can be high frequency and particular to a single station
(white or colored noise) or correlated across multiple
stations (common mode noise or error) depending on
the source. The challenge of positioning algorithms is
to account formost of these noise sources while solving
an optimization problem to obtain a particular station's
time-varying coordinates (Herring et al., 2016; Geng
et al., 2019; Bertiger et al., 2020). This results in a time
series of positions of varying sample rates which typi-
cally range fromdaily to sub-daily. However, the combi-
nation of approximations from individual sources intro-
duces complexity, making it challenging to effectively
utilize estimates of ionospheric activity, tropospheric
water vapor, or other data as inputs for denoising algo-
rithms due to the loss of correlation between the direct
sources of noise and the resulting position time series.
Commonmode noise (or commonmode error)mani-

fests as displacementwithmagnitude and direction that
is correlated in space across distances greater than the
natural signals (e.g. SSEs) we study on similar time
scales (Figure 1). Various methods have been proposed
to reduce common mode noise. The simplest, known
as stack filtering (Wdowinski et al., 1997; Nikolaidis,
2002) was one of earliest adopted approaches and it is
applied to small regions within a fixed network, with
the goal of highlighting the differences between the sta-
tions. Several additional, more complex approaches
have also been proposed. For example, He et al. (2015)
uses a Principal Component Analysis (PCA) to identify
the correlations across stations to remove them. In our
case, this would lead to removing the signal as SSE is
highly correlated across stations. The same issue is
valid for the Karhunen–Loeve expansion method pro-
posed by Dong et al. (2006). Often these methods are
used effectively to highlight differences between sta-
tions in the same network but not to look at absolute
displacement for an event. Wavelet transform (WT) ap-
proaches can also be used for GNSS signal denoising
(Tao et al., 2021; Satirapod and Rizos, 2005; Azarbad and
Mosavi, 2013). By decomposing the signal, it is thenpos-
sible to eliminate the noise. However, distinguishing
the noise from the decomposed signal is difficult, and
therefore wavelets are mostly used to remove single-
station high-frequency noise andnot for commonmode
noise. Combining the advantages of PCA and WT for
denoising GNSS data, Li et al. (2017) introduced a WT-
based multiscale multiway PCA. Many other methods
based on signal decomposition andPCA to denoise daily
GNSS and high-rate GNSS exist as well (Li et al., 2021,
2023). In recent years, machine learning has been ap-
plied to remove noise in different domains using U-Net
types of networks (Ronneberger et al., 2015). U-Nets
have been applied in seismology with Deep Denoiser
(Zhu et al., 2019), and more recently on high-rate GNSS
data (Thomas et al., 2023). While U-Nets have proved
successful in removing single station noise, they do not
leverage network information.
Graph Neural Networks (GNNs, Kipf and Welling,

2017) are a type of artificial neural network capa-
ble of leveraging spatial information based on graph-
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Figure 1 Daily displacements recorded on Cascadia GNSS stations on 2016-02-16. Stations are colored by themagnitude of
the vertical displacement component. Commonmode noisemanifests as similar, spatially correlated offsets. This particular
day is strongly affected by common mode noise; the average displacement is very high (-4.852 mm and -5.229 mm in the
east and vertical directions respectively). We also highlighted the area where SSEs occurs with the tremor Kernel Density
Estimation map for the full study period (2010-2023).

structured data. They rely on the same principles as
the Convolutional Neural Network (CNN) (Lecun et al.,
1998) and other deep learning methods (LeCun et al.,
2015). GNNs utilize neighboring spatial information;
however, while CNNs operate on a regularly sampled
rectangular grid, GNNs can work on irregularly sam-
pled data that has been structured as a graph (Kipf and
Welling, 2017). GNNs can be used to make classifica-
tions or regressions at node, edge, or graph levels. The
key component of theGNN is themessage-passing layer,
which enables nodes in a graph to update their repre-
sentations by exchanging information with their neigh-
bors (based on the edge connections). This enables the
modeling of complex relationships and interdependen-
cies betweennodes. In our case, the nodes are theGNSS

stations, and the edges are the inverse of the distance
between them. This graph representation allows us to
capture the heterogeneity of the spatial distribution of
the network. The problemwe are solving is a node-level
regression. Shi et al. (2021) proposed a graph-masked
label prediction approach to mix both graph node clas-
sification problems and graph label propagation to get
maximumperformances inpredicting the labels at each
node using the connected nodes (Shi et al., 2021). GNNs
present a lot of advantages to processing GNSS data:
The network geospatial structure is very important as
nearby stations are more correlated.

GNNs are flexible in terms of the number of nodes,
enabling seamless incorporation of new stations into
the network allowing for efficient learning and adap-
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tation without requiring any changes. Similarly, when
stations are decommissioned or undergo significant
changes, the flexibility in node management enables
the GNN to handle these alterations. GNNs also keep
the same advantages as more classic neural networks
in dealing with missing data and robustness. This flex-
ibility in the graph construction also allows us to con-
trol how the nodes are linked together to constrain the
predictions to only the noise by excluding nearby in-
formation, which is impossible to do with a PCA-based
denoising method, for example. GNNs have already
proven successful in various seismology applications
(Zhang et al., 2022; van den Ende and Ampuero, 2020;
Bloemheuvel et al., 2022; McBrearty and Beroza, 2023).
In this work, we apply a GNN approach to denoise

GNSS displacement records in Cascadia. We focus on
common mode noise by leveraging its spatial correla-
tion across greater distances than the signals of interest
to remove it from the original signal. To implement this
concept in aGNNframework,weutilize connectionsbe-
tween nodes in the GNN (i.e., the GNSS stations) over
large distances, where the spatial correlation of Earth
signals of interest is small or nonexistent. Figure 2 is a
schematic diagram describing our denoising approach.
Figure 2a shows the target station that records both an
ongoing SSE and common mode noise. The connected
stations used for prediction (input stations) are not ex-
pected to record displacements from the SSE but still
record commonmode noise. Therefore, careful consid-
eration of the connections is crucial to ensure the GNN
predicts noise and no signal of interest (more details in
Section 2.3). TheGNNmodel tries to predict the original
signal at the target station using information from the
input stations. This prediction is considered to be noise
and is then removed from the original signal, leaving
only the underlying signal of interest. In the schematic
in Figure 2, the original signal contains both an offset
from an ongoing SSE and strong common mode noise
(Figure 2b). This offset (negative slope) is not present
in the input stations signal (Figure 2c). We use the GNN
to make a noise prediction at the target station; the re-
sult is shown in Figure 2d. This prediction is subtracted
from the original signal, to produce the denoised data
(Figure 2e). In this schematic, we highlighted with a
red circle commonmode noise through the processing.
Common mode noise is present in the original signal
(2b) at the target station, but also in the input stations
(2c). This gets captured by the GNN and predicted as
noise (2d) and then gets subtracted from the original
signal (2e). This approach enhances the precision of
GNSS data analysis by mitigating noise sources and iso-
lating the relevant geodetic signals of interest (such as
SSEs or other transients) for further scientific interpre-
tation and investigation.

2 Methods

2.1 Data

We utilize data from two different processing centers:
the University of Nevada Reno Geodetic Lab (UNR, Ble-
witt et al., 2018) and Central Washington University

(CWU, Herring et al., 2016). We download daily time se-
ries from all stations between longitudes -128.2°W and
-115°Wand latitudes 39°N and 51°Wwhich extends from
North Vancouver Island to the Mendocino Triple Junc-
tion and from the coast to ~500 km inland as can be seen
in Figure 1. We initially restricted the area to between
-128.2 and -120°Win longitude but including eastern sta-
tions better captures the regional noise characteristics.
The stations to the east of the Cascades are also more
stable (further from the plate boundary). We do not
remove the stations on the volcanoes even if they are
known to behave very differently than the rest. This al-
lows us to validate the behavior of theGNNwith stations
that should not correlate with the rest of the network,
resulting in a model that is more robust to station mal-
functions or other unexpected behaviors. We consider
the period between 2010 and 2023 to allow for compari-
son with the PNSN tremor catalog (Wech, 2021). The in-
put data for the GNN is the time series recorded on the
three components (North, East and vertical). We have
considered adding other information such as site coor-
dinates to help the network learn the specific character-
istics of each site as suggested in van den Ende and Am-
puero (2020). However, using more site-specific infor-
mation as input also limits the network’s ability to gen-
eralize. We want the GNN to be able to incorporate new
stations without a gap in performance and having site
specific information could make this more difficult.

2.2 Preprocessing

Before inputting data into the GNN, a data preprocess-
ing pipeline is implemented. The first step involves de-
trending the time series data using a polynomial of first
order (linear trend). This detrending process is con-
ducted within maintenance segments, such as antenna
changes, with a distinct polynomial fit for each station
and the periodbetween twomaintenance intervals. The
maintenance dates are recovered from the UNR web-
site. Using the maintenance segments allows the re-
moval of jumps in the time series. Following detrend-
ing, we remove outliers by applying a 99th percentile
threshold on the detrended time series. This process ef-
fectively identifies and eliminates outliers, such as sig-
nificant displacements exceeding 50 cm within a single
day. Finally, the data is scaled between 1 and -1 using a
min-max scaler, ensuring a standardized range for the
input features.

2.3 Graph Construction

After the preprocessing and data cleaning, we construct
the graphs through a series of steps. Initially, the data
is partitioned into overlapping 30-day windows, with
a substantial 90% overlap to ensure a continuous and
comprehensive representation of temporal patterns. In
this step, stations lacking more than 80% of the data
within these windows are systematically removed from
the graph. This removes stations that are not available
at the specified time window. Determining edge length
in the context of predicting correlated noise between
nodes but preventing prediction of the signal of inter-
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Figure 2 Schematic example of denoising at one station (called a target station). (a) Map of the area and an example target
station (in red) and the input stations (in blue). The target station is within a region expected to experience surface displace-
ments owing to the SSE (represented with red dots in the background for tremors). While the input stations are outside of it.
All the stations are affected by the same commonmode noise. (b) Displacements recorded at the target station. The station
is masked for the GNN so not used as input. (c) Displacements recorded on the input stations at the same time. (d) Noise
prediction with the GNN at the target station. (e) Denoised signal at the target station. (i.e., GAT=Graph Attention Network,
SSE=Slow Slip Event).

est proved challenging. Wewant the shortest edges pos-
sible to capture local noise, but we also need to pre-
vent the prediction of displacements caused by SSEs.
Through empirical testing of edge lengths, a distance of
400 km has been identified as shortest edge length after
whichwe do not see any improvements in the SSE offset
consistency metric (Section 2.7, and Figure 8), control-
ling howmuch signal of interest is removed. This is spe-
cific to our area of interest and the chosen timewindow.
For periods longer than 30 days, or different geographic
areas, SSEs might be detectable 400 km away and there-
fore the edge length needs to be greater. We apply a
k-nearest neighbors clustering algorithm with this con-
straint (selecting the 8 nearest nodes with a distance
greater than 400 km) to build the edges of the graphs. In
other area/timewindows, shorter edge lengths could be
chosen to better removemore localized noise, both spa-
tially and temporally. This graph construction method-
ology allows the resulting network to capture relevant
spatial and temporal relationshipsbetweennoise across
the GNSS stations. Between January 1, 2010, and De-
cember 31, 2023, we generate 1695 graphs. The aver-
age number of stations per graph for the UNR dataset is
546.4, and 420.4 for the CWU.

2.4 Graph Neural Network Architecture
The GNN architecture for predicting noise is composed
of 3 modules: feature extraction, spatial message pass-
ing, and noise reconstruction, shown schematically in

Figure 3. The initial stage is a Multi-Layer Perceptron
(MLP) size 90-512-256 and rectified linear unit activa-
tion function (ReLU) for feature extraction, utilizing the
signal data from the three components within a 30-day
window as input. The sameMLP with the same weights
is applied to all the nodes. Then, the Graph Attention
Network (GAT, Brody et al., 2021) layer is implemented
with two attention heads for effective message passing
among nodes. Notably, self-loops are excluded to pre-
vent a station from seeing its own signal, forcing it to
rely on the other nodes for prediction. Following the
GAT layer, decoding is performed using an additional
MLP of size 512-512-90, activation ReLu, and output lin-
ear designed to reconstruct the noise inherent in the
GNSS data.

2.5 Training

During GNN training, we adhere to the following steps
to ensure effective model learning and generalization.
The dataset is split into training and test sets, with the
years 2022 and 2023 reserved for testing purposes. Fur-
thermore, to assess the model's performance during
training, an 80% train/20% validation random split is
employed for validation. Each training iteration in-
volves processing batches of 64 graphs, where individ-
ual graphs within a batch are combined and treated as
a single unit yet remain unconnected.
During the training process, dynamic randommasks

are created for each batch, selecting 30% of all nodes
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Figure 3 Architecture of the graph neural network. The inputs at all stations are the normalized signal on the three com-
ponents. The neural network is divided into three parts: an MLP for signal encoding, then a GAT with 2 attention heads and
no self-loop, and it finishes with another MLP for the signal decoding, reconstructing the noise prediction at all the stations.
Here the representation does not account for the edge length constraint in the message passing panel.

(GNSS stations). The selected (masked) node inputs are
then set to 0 (neutral value after normalization) for the
3 components East, North, and Vertical. This masking
strategy is used to ensure the GAT is not learning and
relying on the station itself to predict the noise but is
using the neighboring stations. The absence of a self-
loop prevents the direct use of the signal itself, but the
attention mechanism could rely on the original signal
to aggregate the inputs from neighboring nodes. It also
introduces variability in the training data, encouraging
themodel to adapt to diverse scenarios as some stations
set to 0 are also used as input. The forward step is then
computed based on the masked graphs. The loss func-
tion employed is Mean Squared Error between the orig-
inal signal at themasked station and the prediction, cal-
culated exclusively on masked nodes. This approach
guarantees that themodel focuses on predicting and ad-
justing for the relevant nodes.

Subsequently, the training process iterates through
batches, and the model learns iteratively from the
masked nodes. Training continues until there is no fur-
ther improvement in the validation loss, with a pre-
defined patience of 50 epochs. This patience mecha-
nism prevents premature termination, minimizes the
risk of overfitting, and allows the model sufficient time
to converge. Once the training concludes, the weights
associated with the lowest validation loss are restored,
ensuring the model retains the optimal configuration
achieved during the training process.

2.6 Time Series Reconstruction

Once the training is complete, we take the following
steps to produce the final time series. First, predic-
tions are conducted on overlapping 30-day windows.
We overlap by 90%, shifting by three days. This leads
to ten different graphs over one time step, enabling the
model to capture nuanced temporal dependencies. In
this prediction step, we assume the model learned not
to use the station itself to make the prediction. There-
fore, we decided to not use masking and do the predic-
tion for one time window in only one step, saving about
500 forward steps per time window if we were to mask
and predict each station individually withmasking. The
SSE offset metric shows that the network is not relying
on the station itself for prediction, or we would have
SSE offset predicted in the results. Next, the overlap-
ping windows provide 10 predictions of noise for each
node at every time step. We subtract this noise predic-
tion from the original signal, giving us 10 denoised sig-
nals for each time step. The denoised signals are then
combined with a simple averaging to produce the re-
sult. We tested different aggregation methods such as
the average of only the central points of the window,
the average after removing extremes, andonly using the
central point, but there were no obvious differences in
the results. This averaging over the overlapping win-
dows enhances stability and precision bymitigating the
edge effect of working with time windows. The pre-
dicted outcomes are then rescaled, and to offer a com-
plete analysis, the trend is reintroduced to the results,
ensuring the incorporation of both short-term predic-
tive patterns and the underlying temporal trend.
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2.7 Performancemetrics
The first metric we consider when evaluating denoising
performance is the average position of the entire net-
work. To define this formally we begin by noting that
the position of an individual station k at epoch i is de-
fined as the change in north, east, and vertical (n,e,u)
coordinates with respect to an initial epoch:

∆xk
i = (n, e, u)k

i − (n, e, u)k
0 (1)

This position is determined on the detrended time se-
ries as defined in Section 2.2. Then the position of the
entire network at epoch i is the average over N stations
such that

ρ(n, e, u)i = 1
N

∑N
k=1 ∆xk

i (2)

The detrended time series is strategically centered
around zero along the time axis for each station, en-
suring a standardized baseline. Ideally, at any given
time-step the average position across the entire network
should be zero, as the stations are not anticipated to
move uniformly. As such, the average network position
at a specific time step provides insight into correlated
displacements. With the extensive spatial coverage of
the network, stretching eastward by 400 km, even the
most substantial SSEs are not expected to exert an in-
fluence on the average network position beyond a frac-
tion of a millimeter. This metric is ideal for measuring
quantitively the denoising to a certain level since it is
all based on the assumption that there is no noise, all
stations should be close to 0 mm on all channels with
some randomwhitenoise, conserving thenetwork aver-
age close to 0 mm. But there are some examples where
the network is affected by two spatial patches of noise
that cancel each other: the network average position is
close to 0 mm, but there are still two patches of com-
mon mode noise. We provide an example of this case
in Section 3.4 and Figure 9. Therefore, we are using this
metric for extreme caseswhere the entire network is af-
fected, but measuring denoising in specific parts of the
network is not possible with this method.
The second metric is the consistency of SSE offsets

before and after denoising. To compute these, we first
identify SSEs by considering time periods that contain
high tremor counts. By plotting those tremors, we can
infer the spatial extent of the SSE, andwe then select sta-
tionswithin this footprint and period. Then, tomeasure
the SSE offset on the detrended time series, the average
position is calculated for the ten days preceding and fol-
lowing each event, at each station as this time window
captures the station position before and after the SSE.
We compared these offset metrics with and without de-
noising each SSE with the idea that the two should be
similar with and without denoising. We relied heavily
on this metric to fine-tune the edge length in the in-
put graphs: short edge lengths allow for a better pre-
diction of local noise, but the SSE offset was also re-
moved, showing only a small residual offset in the de-
noised data. Edges that are too long do not allow the
GNN to capture local noise patterns. We decided to stop
increasing the edge lengthwhenwemaximized the con-
sistency of the SSE offset before and after denoising.

2.8 Stack filteringmethods
In order to compare our denoising method to a non-
machine learning approach, we decided to implement
three versions of stack filtering for removing common
mode noise. First, we implemented the stack filtering
proposed in Wdowinski et al. (1997). This method was
applied to a small set of stations surrounding the 1992
Landers earthquake, with the goal of highlighting the
differences between stations during and after the earth-
quake. In this approach, common mode noise is calcu-
lated by averaging the time series for all sites, at each
time step, resulting in one noise estimate for the full
network at each time step, that is then subtracted from
the original time series at each station.
The second approach is an extension of this first one,

where the common mode noise is calculated by aver-
aging the time series across all stations respecting a
certain criterion to prevent including signal of inter-
est in this noise estimation. In our case, we decided
to exclude all stations within a 50 km radius of tremors
from the stack. Since tremor is spatially correlated with
SSEs (Bartlow et al., 2011) using this proxy allows us
to exclude SSE related displacements in the noise esti-
mate. Similar technique has been used recently to re-
move common mode noise from GNSS time series to
study large earthquake precursors (Bradley and Hub-
bard, 2023; Bletery andNocquet, 2025). In those studies,
the authors exclude stations within a certain distance of
the epicenter of the earthquake of interest.
Finally, we apply a different version of the stack filter-

ing where we calculate a noise estimate for each station
by stacking only stations further than a distance thresh-
old compared to the target station. To align with the
GNN method, we calculate the average displacement
recorded at stations greater than 400 km from the tar-
get station. This gives a common mode noise estimate
specific to each station.

3 Results
3.1 Denoising CommonMode Noise
To demonstrate the performance of the GNN denoising
we applied theGNNduring a timewhen strong common
mode noise was recorded across the Pacific Northwest.
The results are shown in Figure 4. In the raw data (Fig-
ure 4a), common mode noise manifests as widespread
spatial correlation in station displacements across a
large area while in the denoised data (Figures 4b-e),
these strong trends are removed and there is more vari-
ability in GNSS displacements across the network. The
table (Figure 4f) shows the average position of the net-
work for each panel. We can see the network offset is
greatly reduced for all denoising methods.
Figure 5 shows the time series of the average de-

trended position of the network for raw and denoised
data on the eastern component for the UNR and CWU
datasets, for all the denoising methods (methodology
described in Section 2.7, the results for the other com-
ponents are available in the supplementary materials).
In Figure 5, the raw detrended data has maximum am-
plitudes of more than 4 mm on the horizontal compo-
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Figure4 Comparisonof rawanddenoisedeastdisplacementsbetween thedifferentdenoising techniquesonApril 14, 2010.
Each station location is indicated with a triangle color-coded by the eastward displacement. The raw data is in panel a, and
panels b-e show the denoised data with the different techniques. Table in f shows the average network position for each
panel.

nents recorded by UNR while the CWU amplitudes are
only ~1mm. After denoising, the overall amplitudes are
significantly reduced in all time series.

To compare Figures 4 and 5, in Figure 4a, the over-
all network position in the raw detrended data is shifted
significantly due to common mode noise, the average
network position on the eastern component is -1.99
mm. In the time series shown in Figure 5, the raw
detrended data regularly exceed this threshold for the
UNR dataset (Figure 5a, c, e, g). Denoising recenters the
network for the same day resulting in an average posi-
tion of only -0.78 mm offset for the GNN denoising as
shown in Figure 4b. For reference, on average, the UNR
dataset has an offset of 1.083mmon the eastern compo-
nent.

We calculated the relative denoising efficacy com-
pared to the original data by calculating the difference
in noise level before and after denoising, divided by
original noise level. We did so for each component
(East, North, and vertical). For the UNR dataset, the
GNN reduces noise amplitudes by more than 74% on
all components. The stacking methods outperform the
GNN with Wdowinski filtering at 100% noise reduction
(the method itself is intended to remove what is con-
sidered noise in this metric), and the other stacking at
more than 95% noise reduction. Both Wdowinski and
the tremor stacking method calculate one average po-
sition of the network before subtracting it so the per-
formance of these two algorithms is expected. As ex-
plained in Section 2.7, the results based on this met-

ric are to be taken with consideration that there is no
way to differentiate good commonmode noise removal
from local common mode noise having cancelling ef-
fects. The absolute difference in average position of the
network between all methods is only 0.283 mm on the
horizontal component, and the maximum average off-
set is reduced from 4.85 mm to 1.45 mm on the hori-
zontal components for the GNN and down to 0.25 mm
for the tremor and 400 km stacking. We also applied
thesemethods to theCWUdataset, that has significantly
smaller amplitudes in the raw detrended data. The de-
noising, for all methods, brings the CWU average net-
work position to the same absolute levels as the denois-
ing UNR dataset (Fig 5b, d, f, h). A summary of the over-
all denoising performance is shown in supplementary
material, Tables 1, 2, 3 and 4, which lists the average
andmaximumoffsets on all components prior to and af-
ter GNN denoising, and the three stack filtering. Since
the rawdetrended data delivered byUNRandCWUhave
significantly different amplitudes on thehorizontals, we
also report the offset reduction as a percentage of the
raw detrended data amplitude. An interesting observa-
tion from comparing the two datasets is regardless of
the denoising method, the denoised time series of both
datasets have very close maximum offsets.

3.2 In-depth analysis of the 2016 SSE
To explore whether denoising can improve geodetic ob-
servations of SSEs, we focus on a large magnitude SSE
that took place between December 2015 and January
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Figure 5 Time series of the average detrended position of the network on the east component only (other components are
available in supplementary material) for the UNR dataset on the left, and the CWU on the right. The raw detrended data is
shown in blue and the denoised data is shown in orange. Each row is a different denoising technique (described in Section
2.7). For panels c and d, denoising using Wdowinski’s method removes the average position so the result is zero.
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Figure 6 Raw and denoised GNSS displacements from the 2015-2016 winter slow slip event that extended from Vancouver
Island toPugetSound. Panels aandbshowsixdaysof displacementon theeastern component recordedbetween2015-12-23
and 2015-12-28. During this time period both the raw (a) and denoised (b) data are similar (i.e. the denoising has little effect)
and we observe eastward slip on Vancouver Island owing to the SSE. Panels c and d show six days of displacement during a
different, slightly later time period, 2016-01-03 and 2016-01-08, as the slipmigrated to the east of theOlympic peninsula. The
slip is difficult to see on the raw data (c) due to commonmode error shifting the full network in the same direction.

2016. This SSE slipped across an extensive region, be-
ginning in Vancouver Island, and migrated south to the
Puget Sound area. Michel et al. (2019) estimates a mo-
ment magnitude of 6.79 for this event. The displace-
ment maps for the eastern component reveal signif-
icant surface displacements on Vancouver Island be-
tween December 23, 2015, and December 28, 2016 (Fig-
ure 6a and b), evident in both rawanddenoised data and
collocated with the tremors. During this time period,
the denoised data remains unaltered, affirming the re-
liability of the denoising process (i.e. denoising does

not remove the signal of interest). In the latter part of
this SSE, between January 3 and January 8, 2016, slipmi-
grated to the eastern part of the Olympic Peninsula but
the network also experienced a period of strong com-
mon mode noise that manifests as eastward displace-
ments across the entire network (Figure 6c). During
this period in the raw data, the displacement is nearly
imperceptible due to noise. The full network's appar-
ent shift in the same direction as the expected surface
displacement masks the underlying motions of stations
due to the SSE. After denoising, this commonmode sig-
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Figure 7 : Displacements recorded at stations SEAT, CHCM, and GRCK during the 2016 SSE. Panel a) shows the location
of two stations that recorded the SSE (SEAT and CHCM), and one station on the east side of the Cascade Range that did not
record the SSE (GRCK). Tremor locations are shownas circles color codedby time. Panel b shows the raw time series recorded
on the east component for the three stations. We annotate the timing of commonmode error recorded on the three stations.
Panel c shows the same timeseries after denoising with the GNN and the tremor stack; the common mode noise has been
removed.

nal is removedgreatly reducing the averagenetwork off-
set and facilitating interpretation of surface displace-
ment signals.

To demonstrate denoising capabilities, we selected
three stations for further analysis of this event. The
first two stations, CHCM and SEAT, are within the foot-
print of the surface projection of the SSE (i.e. they
are surrounded by tremors) and on the eastern edge
of the event, respectively. Station GRCK is located 380
km to the east, close to Spokane, WA on the east side
of the Cascades. The time series of raw data on Jan-
uary 7, 2016, reveals a common “bump” in all three sta-

tions, including the distant GRCK station, likely caused
by common mode noise. If interpreted directly, this ar-
tifact indicates that the displacement occurred in three
steps: initial westward slip between the 3rd and the 5th
of January, followed by a time period of eastward dis-
placement before resuming westward displacement on
the 9th. Denoising eliminates the influence of com-
mon mode noise, resulting in a smoother signal for the
SSE which occurred over a few days. The overall off-
set remains unchanged but the pattern and therefore
the daily velocity during the SSE changes, emphasizing
the importance of denoising techniques for an accurate
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Figure 8 Comparison of SSE offsetsmeasured on raw and denoised data. Panel a shows an example of SSE offsetmeasure-
ment on the east component at one station. Panel b illustrates the comparison between the different denoisingmethods and
raw horizontal offsets, binned by raw offset. The black diamonds represent the outliers.

representation of SSE dynamics. In Figure 7c, we also
show the difference between the GNN denoising and
the tremor stacking method. We can see there is no big
difference between the two and both remove effectively
the common mode noise artifact.

3.3 SSE offset consistency
To explore the effect of denoising on SSE surface dis-
placements, we selected a total of 15 events between
2010 and 2023, including events throughout Cascadia
(i.e. SSEs from Oregon and northern California). For
each of these events, we select stations that visibly
recorded displacements and estimate their total off-
sets on the horizontal components (explained in Sec-
tion 2.7). To make these measurements, we average
the station position over ten days before the start of the
SSE and ten days after the termination of the SSE us-
ing tremor to determine event start and end times (as
shown in Figure 8a). We then use these values to calcu-
late total horizontal offset. We applied this procedure to
measure a total of 280 offsets in both raw and denoised
time series to evaluate the influence of denoising on SSE
offset estimates.
In Figure 8b, we compare offsets estimated from raw

timeseries to those estimated fromdenoised timeseries.
We binned the offset measurements by raw offset to
compare between denoising techniques. From this, we
observe that denoising predominantly maintains the
offset of the SSE. However, there is a discernible trend
where smaller offsets become slightly amplified after
denoising (e.g. in the [0,3] bin in Figure 8b, the origi-
nal signal has smaller offset than the denoised offset),
whereas larger offsets are slightly reduced in amplitude
after denoising. Hence, the denoising process intro-
duces subtle adjustments to the offsets. We can also
note differences in estimated offsets between denoising
techniques, with the GNN performing the best to con-

serve the SSE offset for bigger events compared to other
methods. Because it removes the average and does not
exclude stations that record SSE offsets, theWdowinski
method removes the most signal because the noise es-
timate includes contributions from the SSE. Owing to
the large extent of the network this correction is <2 mm
for the biggest offsets. Interestingly, there is little dif-
ference between the tremor stacking and the Wdowin-
ski stacking. This can be explained by the set choice of
50 km radius of tremors for excluding stations from the
stack, where for bigger event the effects of SSEs might
be visible on GNSS signal further than this threshold.
Therefore, the use of tremors to exclude stations might
need more fine tuning for each event.

3.4 Network size and spatial extent sensitiv-
ity

Here we compare the results of the GNN denoising to
the 400 km stack filtering detailed in Section 2.8. The
400 km stack filtering is more effective at removing the
average offset for our study area: 95% on the horizontal
components compared to 75% for the GNN on the UNR
dataset. Additionally, the SSE offset results are consis-
tent between the two approaches. This suggests only
a marginal benefit between using a more complex ma-
chine learning method when compared to the simpler
stack filtering. However, there are some benefits to the
GNN approach. One important difference is the perfor-
mance for more localized noise patches. As explained
in Section 2.7, if we have two oppositely signed com-
mon mode noise patches with approximately the same
number of stations sampling both, using the Wdowin-
ski stacking, and the tremor stacking will result in the
noise estimate being close to zero and no noise will be
removed. Similarly, with this situation, the 400 kmstack
filtering can actually add noise to the original time se-
ries by averaging stations that sample uniform noise.
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Figure 9 Denoising comparison between the baseline method and the GNN. Panel a is the raw detrended position on the
eastern component; panels b and e are the GNN; and c and f are the Baseline method. The small circle is the location of an
example station P013, and the wider circle is the 400 km radius for the mean position calculations.

Figure 9a shows the raw east displacement recorded at
each station in Cascadia. During this period, south-
westernCascadia has a small overall westward displace-
ment while northern Cascadia has a larger amplitude,
dominantly eastern displacement, both resulting from
common mode noise. For a target station in southeast-
ern Cascadia, stacking the stations at a distance greater
than 400 km away results in a net eastward displace-
ment. Subtracting this noise estimate does not remove
but rather amplifies thenoise in southwesternCascadia.
More specifically, looking at station P013 in this exam-
ple, the raw detrended position on the eastern compo-
nent is -0.11 mm, while it is -0.64 mm for the baseline
denoising and -0.06 mm for the GNN denoising. This
station does not seem to be impacted by commonmode
noise at this time, but since the northern region is, stack
filtering adds an additional 0.53 mm westward offset.
In contrast, the GNN method captures more of the lo-
cal noise characteristics and overall has better denois-
ing performance.

Now, if we change the spatial extend of the network
to only southern Cascadia (Figure 9 d-f), we can see the
results are very different for the 400 km stack filtering
solution, where the GNN’s results are consistent with
the full network. This example shows the importance
of careful consideration of the spatial extent of the net-

work and structure of the noise for the stacking meth-
ods.

4 Discussion

We have demonstrated that GNNs are a promising
tool for denoising GNSS time series. They have sev-
eral attributes that are advantageous for application
to geospatial data. For example, unlike other com-
monly employed single station denoising techniques
(e.g., Thomas et al., 2023), GNNs leverage correlated
spatial information to make predictions. They are also
more resilient to changes in conditions of the observa-
tion networks, for instance, they can accommodate spa-
tially heterogeneous station distributions, and varying
numbers of available stations (for example during out-
ages), as well as temporal gaps. This capability makes
them very appealing for application to GNSS networks
for which conditions change greatly over time. Addi-
tionally, adding new stations to a pretrained GNN does
not require retraining. This flexibility is an advantage
compared to more traditional GNSS denoising technics
such as the PCA approach, which requires a fixed set of
stationswith no data gaps (He et al., 2015; Li et al., 2017).
All methods presented in this study excel at identify-

ing common mode noise recorded across the network.
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As shown in Section 3.1, the average horizontal offset
of the UNR and CWU networks is reduced by 70% and
30% respectively after denoising for the GNN, andmore
than 95% for the stacking-based methods. This reduc-
tion amounts to an average network offset of 0.3 mm
for the horizontal component on both datasets. This im-
provement is substantial and could facilitate the identi-
fication of small magnitude displacements that are typ-
ically hidden in the noise.
In general, the simple stackfilteringmethods canout-

perform the GNN, while being easy to implement and
not requiring training. However, we have also shown
that in some cases, stack filtering methods are not ro-
bust, even with a network size of over five hundred sta-
tions. The differences between methods give them spe-
cific strengths and ideal use cases. The classic stack
filtering (Wdowinski et al., 1997) was originally devel-
oped to highlight differences between stations in the
network. This information can be useful for the de-
tection of new SSEs, but as shown in Section 3.3, this
method cannot be used to determine absolute offset
measurement of SSEs as it incorporates signal in the
noise prediction. The tremor-based stacking approach
allows for some improvement in this area. The draw-
back of this method is that it relies on the relation-
ship between tremors and slip, making it impossible to
search for small SSEs thatmight not be accompanied by
tremors or for SSEs in locations that do not catalog regu-
larly occurring tremors. Using the 400 kmstackfiltering
for each station solves this issue by not using any other
information than the signal itself and the station loca-
tion. Butwhile showing goodperformance, thismethod
needs to be employed carefully; as shown in Section 3.4,
the results can vary greatly depending on the spatial ex-
tent of the network. The GNN, while not showing the
best performance on the network average positionmet-
ric compared to the stacking methods, is the most flexi-
ble in terms of network size and spatial extent and is the
most general of the four. However, the GNN is also the
most complicated method to implement, and the edge
length parameter needs to be carefully tuned.
Specific applications of where significant growth of

our understanding of geophysical phenomena could oc-
cur from meaningful reductions to the noise in GNSS
time series are many. For example, precursory phe-
nomena leading up to large ruptures are of interest.
Mavrommatis et al. (2014) proposed a long phase of
transient deformation potentially associated with deep
long-lived slow slip event prior to the M9 Tohoku-oki
rupture. Precursory phenomena such as transient de-
formation in the hours leading up to rupture have
also been invoked recently with disputed results (e.g.,
Bletery and Nocquet, 2025; Hirose et al., 2024). Part of
the difficulty in conclusively establishing the existence
or absence of these phenomena is that itwouldhave fea-
tures not unlike common mode noise and the stacking
process used to remove these artifacts would also re-
move the signal. A GNN with suitably long edges would
not remove such a slip transient, if it existed, during the
denoising process.
More specifically, the example shown in Section 3.2

shows the impact of common mode noise on GNSS

time series. SSEs have complicated dynamics; high-
resolution observations of these dynamics provide im-
portant constraints on their underlyingmechanism. Yet
resolving these is a challenge due to the low signal-to-
noise ratiowhich can introduce bias into interpretation.
The GNN significantly reduces the noise level, facilitat-
ing not only interpretation of dynamics of large SSEs but
itmay also help identify smallermagnitude SSEs. While
the focus of the current study is on SSEs, commonmode
noise can similarly hinder identification of other tec-
tonic andvolcanic processes that result in surface defor-
mation. GNN denoising could also be used to better es-
timate surface displacements during intermediatemag-
nitude earthquakes as part of early warning systems.
Thanks to its flexibility, GNN denoising could be incor-
porated into any GNSS processing pipelines (like those
employed by UNR and CWU). This can extend to real
timeGNSSwhich could also benefit from thismethod as
orbits and clocks used in those applications have bigger
errors, this is reflected directly in the real time position-
ing of the stations as correlated noise.
Despite the successes of the GNN, there are still many

opportunities to improveGNSSdenoising generally. For
example, a hybrid approach that uses a GNN to remove
spatially correlatednoise and single stationdenoising to
remove white noise. These two steps could potentially
be combined into one machine learning approach. An
additional challenge is that in the absence of ground
truth, we cannot quantify the denoising performance
in an absolute sense. This is particularly problematic
because we may unintentionally remove legitimate sig-
nals. Generating synthetic displacement time series us-
ing SSE rupture simulations with added noise would be
a valuable next step in the verification and enhance-
ment of this method (Costantino et al., 2024). While
training with synthetic data offers a clear training tar-
get for distinguishing events from noise, it requires ac-
curate simulations to be able to transfer the leaning to
real world data. If the training dataset is biased, or not
perfectly representative of the real-world data, which is
likely considering the underlying mechanism of SSEs is
still debated, the machine learning model would learn
this bias and give inaccurate results.

5 Conclusion

Our study demonstrates the efficacy of GNNs in denois-
ing GNSS time series, particularly in handling the spa-
tial heterogeneity and temporal gaps characteristic of
evolving GNSS networks. Applying this approach re-
sulted in substantial reduction in common-mode noise,
enhancing the precision of surface displacement mea-
surements critical for studying transient deformation
signals that are commonly observed in tectonic and vol-
canic settings. These findings underscore the poten-
tial of GNN-based denoising as a robust, adaptive tool
for the study of crustal deformation signals. Our study
also demonstrates the efficacy of the stack filtering ap-
proaches, which each have their strength, and should
be considered for their ease of use and efficiency, de-
pending on the application.
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