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Abstract Sparse instrumental coverage for much of the Earth requires working with regional seismic
phases for effective seismic monitoring. Machine learning phase pickers to date have focused on local earth-
quake recordings. Here we present deep learning models designed and trained to be effective at picking the
arrival times of earthquake phases at distances up to 20 degrees. We trained ourmodels on the CREWdataset,
which includes 1.6million earthquakewaveformswith over 3.2million labeled arrivals on 5minute long three
component seismograms. We presentmodels that accurately pick the first arriving P and Swaves andmodels
that pick and classify Pn, Pg, Sn, and Sg phase arrivals. We apply these models in a variety of settings and
compare their performance to established machine learning models that were trained on local earthquake
recordings. We demonstrate the abilities of our models by finding new earthquakes in the Gorda plate off-
shore northern California. Finally, we use our multiple phase picker to find new examples with secondary
arrivals from ourmassive training dataset. The goal of this method is to improve automatic earthquakemon-
itoring in regions of sparse instrumental coverage and seismicity in remote regions far from instrumentation.

1 Introduction

Many observational seismology tasks have been en-
hanced using machine learning. Deep learning mod-
els have proven effective in phase picking (Zhu and
Beroza, 2019; Mousavi et al., 2020), phase associa-
tion (McBrearty and Beroza, 2023), earthquake location
(Smith et al., 2022), magnitude estimation (Mousavi and
Beroza, 2020), polarity assessment (Ross et al., 2018;
Uchide, 2020), and signal denoising (Zhu et al., 2019;
Novoselov et al., 2022) and there are easy to use plat-
forms to support their adoption like Seisbench and
Qseek (Woollam et al., 2022; Isken et al., 2025). Im-
proved earthquake catalogs are enabling insights into
the dynamics of seismicity in a variety of settings, in-
cluding crustal seismicity (Tan et al., 2021), deep earth-
quakes (Xi et al., 2024); induced seismicity (Park et al.,
2020; Schultz et al., 2023) and volcanic seismicity (Wild-
ing et al., 2023). A common factor of these earthquake
catalogs is that they were built in regions with dense
seismic monitoring and close station spacing.
The data andmodel landscape of deep learning based

phasepickers is dominatedby local recordings, i.e. seis-
mograms from small earthquakes at short distances.
Two of the most popular pickers were trained on such
data. PhaseNet (Zhu and Beroza, 2019) was trained on
data at distances less than 140 km. EQTransformer
(Mousavi et al., 2020) was trained on the Stanford Earth-
quake Dataset (Mousavi et al., 2019) that contains data
up to distances of 350 km, but is dominated by data at
shorter distances, with only 8% of the data covering the

110-350 km range.

Here we introducemodels that are developed for ma-
chine learning powered earthquake catalog creation in
regions with sparse instrumentation or regions where
seismicity occurs far from seismic instruments, such as
subduction trenches that typically liemore than 100 km
away from the closest land instrument. The datasets
that include regional distances and are global in cov-
erage are the MLAAPDE (Cole et al., 2023), NEIC (Yeck
et al., 2020), GEOFON (Woollamet al., 2022), CuratedRe-
gional Earthquake Waveforms (CREW) (Aguilar Suarez
and Beroza, 2024), and the Seis-PnSn (Kong et al., 2024)
datasets. Among these, the CREW dataset is dedicated
to, and emphasizes, regional distance data. It is the only
one for which every waveform contains both P and S
labeled arrivals. In addition, several examples contain
labeled secondary arrivals, e.g. including both Pn and
Pg picks. We trained our models on the CREW dataset
(Aguilar Suarez and Beroza, 2024).

With multiple effective machine learning models for
first arrival picking available, attention has started to
shift to secondary phases. Secondary phases can play
an essential role in constraining earthquake depths
(Münchmeyer et al., 2023; Wang and Klemperer, 2021),
provide insights about crustal and upper mantle struc-
ture (Al-Damegh et al., 2004; Pasyanos et al., 2009),
and are essential for nuclear test-ban-treaty verifica-
tion (Rodgers and Walter, 2002). In this paper we also
present models with the ability to simultaneously pick
and classify crustal (Pg, Sg) andmantle arrivals (Pn, Sn).
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Figure 1 Left. Distribution of stations in the CREW dataset, where the training stations are shown as navy triangles and the
testing stations as orange triangles. Right. Earthquakes in the CREW dataset, events in the training split are color coded by
depth with the scale shown, and events in the test split are shown as orange circles.
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Figure 2 Instrument types and number of examples in
the CREW dataset. (BH) broadband high gain seismome-
ter, (HH) high broadband high gain seismometer, (HN) high
broadband accelerometer, (BL) broad band low gain seis-
mometer, (BN) broadband accelerometer, (SH) short period
high gain seismometer, (EH) extremely short period high
gain seismometer.

2 Data

The CREW dataset consists of 5-minute three-
component waveforms from earthquakes recorded at
distances between 1 and 20 degrees of source-receiver
separation. In total there are 1,599,323 examples in the
CREW dataset, from 523,294 earthquakes recorded at
4,071 locations around the globe (Figure 1). Thesewave-
forms come from a variety of instruments, including
broadband seismometers, short period seismometers
and accelerometers (Figure 2). All of the waveforms
are resampled to 100 Hz. Furthermore, each example
contains labeled arrivals for P and S waves, adding up
to over 3.2 million labeled arrivals. The waveforms
have been normalized by removing the mean and
dividing by the maximum amplitude among the three
components but are otherwise in their raw form, with
no filtering or correction of the instrument response.
We split the CREW dataset into training and testing

sets. The training set includes 1,536,731 examples, each
of which is a three component seismogram with both

P and S labeled arrivals. These examples come from
504,552 earthquakes that span all latitudes, all longi-
tudes, and all depths recorded at stations around the
world. Figure 1 shows the locations of the stations in
the training set, as well as the location of the earth-
quakes. The test set includes 62,592 examples, from
18,742 earthquakes,which is themost recently recorded
part of the dataset, spanning part of 2021 and 2022. Fig-
ure 1 indicates which stations are in the train and test
splits. There are 49 out of the total 4,071 stations in
theCREWdataset that are exclusively represented in the
test split.

3 Picking First Arrivals
We present SKYNET, Seismological Knowledge
Yardstick NETworks. We trained an architecture
similar to PhaseNet to pick the first arriving P and S
waves, but with five additional layers. The original
PhaseNet architecture is made of 19 convolution layers,
whereas our architecture comprises 24 layers of convo-
lution. Both models employ a U Net architecture with
skip connections, the original with four downsampling
and four upsampling stages, whereas ours has five
downsampling and five upsampling stages. The origi-
nal PhaseNet was trained on 30 second waveforms, but
our training data is 300 second waveforms, which is ten
times the duration used in the original PhaseNet. By
adding these layers, we ensure a similar level of feature
representation in the encoding. In PhaseNet, the num-
ber of features at the bottom of the U is 22x12, in ours it
is 32x30, which is on the same order ofmagnitude, even
though the waveforms are a factor of 10 longer. With
these modifications we produced a longer receptive
field, to ensure proper processing of the much longer
seismograms. The size of the convolution kernel and
the stride step were set to seven and four sample points,
as in the original PhaseNet. The number of trainable
parameters in our architecture is 79,442, compared to
38,734 in the original PhaseNet. This model takes as
input three component waveforms and outputs three
time series, for the probability of samples being the
arrivals of P waves, S waves, or something else, likely
noise.
We trained our phase picker on an augmented ver-
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Figure 3 Picker performance in test data and augmented test data. Dataset labeled arrival times and triangle labels are
shown with dotted lines, whereas model predictions and inferred pick times are shown with solid lines. (a-b) Raw examples
from the test set. Residual times between labeled and predicted times of P and Swaves are indicated on the bottom right. (c)
augmentedexampleby concatenating the samewaveforms three timeswith a randompolarity flip. (d) Six different examples
merged together. (e) entangledwaveformsof twoearthquakes forwhich theP arrival of the secondone arrives between theP
and S arrival of the first one. (g) Samemodality as (e), but themodelmisses the first S arrival. (f) Mixture of a local earthquake
signalwithone from13.4degrees source-receiver distance. (h) A regional earthquakewith twocloser earthquakes inbetween
its P and S arrivals. All but two picks in these examples were recovered.

sion of the CREW dataset. Figure 3 illustrates various
recipes used for data augmentation, which are mostly
superpositions of two or more examples with random
polarity flips, amplitude modulation and random shift-
ing. First, If the S-P time, a proxy of the signal dura-
tion, wasmore than a third of the total duration (100 s or
10,0000 samples), the data and labels were kept in their
original form, as in (Figure 3(a,b)). If the duration of
the signal was shorter than 10,000 samples, we imposed
a random choice between 2 or 3 copies of the same ex-
ample. In the case of 2 or 3 copies, we also introduced a
randomchanceofflipping thepolarity of thewaveforms
(Figure 3(c)). In every case, the training labels were ad-
justed accordingly as displayed in the bottom of each
panel (Figure 3(c-h)), where multiple triangular shapes
indicate the multiple arrival times.

To increase the complexity of the training data, we

combined different examples following a variety of for-
mulas. First, for the shortest duration signals we added
several earthquake signals consecutively, with a ran-
dom time shift, a random polarity shift, and a random
amplitude amplification (Figure 3(d)). For some exam-
ples, the waveforms were superimposed such that the
P arrival of the second earthquake arrives between the
P and S arrival of the first earthquake (3(e,g))). We also
combined long duration signals with short duration sig-
nals (Figure 3(f,h)). The long and short duration signal
mixtures include cases where the signals do not over-
lap (Figure 3(f)), andwhere the signals do overlap , such
that the short duration signals are placed in between the
P and the S arrival of the long duration signal (Figure
3(h)).

We used a synthetic Gaussian noise generator to cre-
ate three-component noise samples of 300 s duration.
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Figure 4 Evaluation metrics for picking P and S waves in the test set. PR: precision, RE: recall and F1 is the F1 score.

These noise waveforms contain a random number of
spikes and shifts (Figure S1). In each batch of 32 sam-
ples, three quarters are a mix of raw and augmented
data according to the recipes in Figure 3. The remaining
quarter is synthetic noise. We used the Adam optimizer
with a learning rate of 0.001 and trained for 225 epochs.

4 Model Selection
We trained three different models with different trian-
gular label widths. We tried triangle base lengths of
1000 samples, 400 samples and 200 samples, which cor-
respond to 10 s, 4 s and 2 s respectively. Of these three
models, the one that performed the best in terms of
consistently producing the higher peak classification
probabilities was the model with the wider labels. That
model has a label width of 1000 samples, which trans-
lates to a duration of 10 seconds. Figure S2 shows the
distribution of detection values for the test set for the
models trained on labels with different widths. We se-
lected themodel with thewider labels as it produces the
best predictions with shapes that resemble the labels
more closely, with the highest heights of the triangular
shapes. This makes the model results less sensitive to
a threshold choice. Figure 4 shows the distribution of
residuals for P and S picks in the test set for the cho-
sen model. The mean residual for both cases is below
40 milliseconds, which translates to less than 4 sample
points. However, the S pick distribution is wider with a
higher standard deviation. Both distributions resemble
a double exponential (Laplace) distribution. Also, both
distributions show some skew, with heavier tails on the
positive side (picking later). The precision, recall and
F1 scores are all greater than 0.95. For these metrics,
we considered a true positive (TP) an arrival that is re-
covered within 3 seconds of a labeled arrival (1% of the
duration of the waveforms), and false positives (FP) ar-
rivals picked outside of this window. The accuracy of
the picks seems independent of source to receiver dis-
tance and signal to noise ratio, for both P and Swaves, as
shown in Figure S3. A more relevant test for our model
is to deploy it to find new earthquakes in data outside of
the train/test splits.

5 Application to new and continuous
data

One of the best applications for our models is for re-
gions with sparse seismic networks and/or remote seis-
micity. The models introduced here are not intended
to replace or update establishedmodels that are trained
on local data, but to complement them at greater dis-
tances. Figure 5 shows the predictions from SKYNET
alongside the predictions from PhaseNet for stations in
Northern California near the Mendocino Triple Junc-
tion and the Gorda Ridge. The earthquakes indicated in
Figure 5 are nearly 300 km away from the closest seis-
mometer, which is well beyond the distance cutoff for
thePhaseNet trainingdata. Ifwe counted thenumber of
picks that PhaseNet produces here over the 0.5 thresh-
old, we find 3 P picks and zero S picks within the ex-
pected window. We note that our model takes as in-
put 300 seconds, processing all the waveforms shown
in a single step, whereas PhaseNet takes inputs of 30
s duration, requiring sliding windows to process the
waveforms. SKYNET picked 10 P, and 8 S wave arrival
times compared to 3 P and 0 S from PhaseNet. We also
note that the height of the predictions from our mod-
els seem very consistent through the different stations.
The waveforms displayed in Figure 5 are bandpass fil-
tered between 1 and 10 Hz to facilitate the visualization
of the earthquake. Figure S4 shows the raw waveforms,
which were the ones used as input to the model.
We applied the method to continuous data from

northern California in the vicinity of the Gorda ridge.
We run model predictions for the day of February 29,
2024, when the swarm of earthquakes shown in Figure
5 took place. We used GENIE (McBrearty and Beroza,
2023) for phase association of the picks. Our association
model was trained for earthquakes outside the footprint
of the seismic networks in northern California. During
the day of the swarm, we detected 34 earthquakes, re-
covering all 10 of those reported by the USGS, plus 24
newly detected ones. We estimated local magnitudes
for all earthquakes and merged USGS events with ours
if the difference in origin timewas less than 10 seconds,
keeping the USGS magnitude. Figure 6 shows the time
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Figure 5 SKYNET and PhaseNet predictions and picks from an earthquake near the Gorda Ridge offshore Northern Califor-
nia. Red and blue solid lines are P and S predictions from SKYNET. Red and blue markers indicate the picked times. Dark
orange and pale blue display PhaseNet predictions for P and S. Grey dotted lines indicate the 0.5 threshold for predictions.
Waveforms are the HHZ channels of instruments of the BK and NC networks in Northern California. Waveforms are bandpass
filtered for display, but predictions are performed on unfiltered data (see Figure S4 for raw waveforms). Station locations
(triangles) and event locations (stars) for the swarmon 2024-02-09 are shown in the inset. Yellow stars show the USGS events
and green stars the newly found earthquakes using our workflow, these correspond to the green markers in Figure 6. Red
lines are plate boundaries.
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Figure 6 Our earthquake catalog compared to the USGS catalog. We detected 34 earthquakes during the day of February
29, 2024. The first 12 hours are shown, where all 10 USGS detections are, along with 32 out of the 34 in our catalog. Local
magnitudes were estimated, and for those events in both the USGS and our catalog, we kept the USGS magnitudes. Green
dotted lines on top of navy blue lines indicate that the events are in both our catalog and the USGS. Our new locations are
displayed as green stars in the inset map of Figure 5, and the USGS locations are the yellow stars.
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Figure 7 SKYNET and PhaseNet predictions for an event on the outer rise of the Nazca plate subducting under Northern
Chile. HHZ components are displayed. Red and blue markers indicate picked times for P and S waves, respectively.

and magnitudes of the events in our catalog and the
USGS catalog. The 34 events occur throughout the day,
with 32 out of the 34 in the first half of the day, where
the USGS events are reported. The smallest event in the
USGS catalog is magnitude 3.2 and the smallest in ours
is magnitude 2.3.
Another important setting for our applications is sub-

duction zones, where the trench is often more than 100
km away from the coastline, so that seismicity near
the trench or beyond the trench on the outer rise will
only be recorded at distances over 1 degree by stations
on land. Figure 7 shows predictions from PhaseNet
and SKYNET in the CX network for an earthquake on
the outer rise recorded in northern Chile and southern
Peru. The closest station to the epicenter is approxi-
mately 391 km away. PhaseNet recovers P waves at all
stations and produces S class activations a few seconds
after the P picks, as seen in stations PB03 and PB09.
SKYNET also produces P wave picks for all stations and
S wave picks for all stations, in contrast to none for
PhaseNet, which has higher activations for the P wave
class at the time of arrival of S waves, in stations like
PB06 and PB03. As noted above, SKYNET processes the
300 s in a single window, whereas PhaseNet needs sev-
eral sliding windows to process the whole waveform.
Intuitively, SKYNET sees the whole waveform in a win-
dow, whereas PhaseNet does not have such a broad re-
ceptive field to help make its predictions.
We created the regional picker to strengthen mon-

itoring capabilities in places that have sparse instru-
mentation or that record seismicity from remote re-
gions. We intend it to be a complement to the models
that are available and widely used for densely instru-
mented regions. Figure S5 shows themodel predictions
fromboth SKYNETandPhaseNet onanearthquakenear
Lone Pine in eastern California. For the stations that
are closest to the hypocenter, PhaseNet performs the

best, since it was trained on seismograms within one
degree of source to receiver distance. As distance in-
creases, the performance of SKYNET becomes better
than PhaseNet, since it was trained specifically on data
recorded at distances greater than one degree of source-
receiver separation.
Figure 8 shows the performance of the picker on the

seismograms of a recent very deep earthquake at 607
km depth under western Brazil as recorded by the CX
network in northern Chile, as in Figure 7. In this case
the station closest to the epicenter is over 1100 kmaway.
P arrivals shown in red seem accurate, as do most S
picks, but some of the later S arrivals seem to mark the
onset of high frequency waves, rather than the low fre-
quency and very large amplitude initial S arrival. This
might be a consequence of the limited number of la-
beled waveforms of very deep earthquakes in the train-
ing data.
We trained our model on long waveforms, with data

that contain long S minus P times. We engineered the
model to have a long receptive field, which compared to
PhaseNet comprises twice the number of trainable pa-
rameters. This is while also slightly reducing the com-
putation time compared to PhaseNet (Figure S6).

6 Simultaneous picking of crustal and
mantle phases

We collected the examples in the CREW dataset for
which the four phases Pn, Pg, Sn, and Sg have labeled
arrivals, leading to an initial dataset of 6705 examples,
which makes up only 0.4 % of the whole CREWdataset.
Figure 9(a) shows one of these examples. These type of
waveforms where the four arrivals are distinguishable
from each other are all in the distance range from 2 to
7 degrees source-receiver separation, with a peak at 3
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Figure 8 Very deep earthquake (607 kmdepth) underwestern Brazil recorded by the CX network in northern Chile. Stations
are sorted by source-receiver distance. HHZ components are displayed. Distance from the epicenter to each station is indi-
cated next to the station names. Model predictions are shown with solid red and blue lines, and the tripod markers indicate
the derived arrival times.

degrees. In this subset of the CREWdataset, all selected
examples have Pn and Sn as the first arrivals, and Pg and
Sg as a secondary arrivals. We trained a picker on this
small dataset, again with a U-Net architecture with skip
connections, that takes as input the three-component
waveforms and outputs 5 time series, one for each of
the phases Pn, Pg, Sn, Sg and noise. It has more out-
put channels than the regional picker, but is otherwise
identical, with 79,442 trainable parameters, compared
to 79,328 from the models presented above. We trained
during 12,000 stages of samples of 200 randomly chosen
examples. Thismodel picks each one of the phaseswith
an average residual of 0.2 seconds, Figure 10 shows the
distribution of residuals for the training dataset. Com-
pared to the residuals in Figure 4, the distributions are
wider, with larger standard deviations.
Once we had a model that picks the four phases as

in Figure 9(a) where both labels and model predictions
are shown, we applied it to the CREWdataset to retrieve
useful pick times for arrivals thatwere not previously la-
beled. Figure 9 (b-d) displays the waveforms andmodel
predictions for examples that have three or two labeled
arrivals, for which ourmodel accurately picks themiss-
ing arrival time labels. In Figure 9(b) there were three
labeled arrivals in the CREWdataset, and in Figure 9(c-
d) there were two labels, and our model can retrieve
four. We run model predictions for the 1.6 million ex-

amples in the CREWdataset and collected all the exam-
ples for which the four phases are picked with a score
higher than 0.8 and both the first arriving P and Smodel
predicted pick times differ by less than 2 seconds from
the labeled arrivals. Using these metrics, we identified
22,595 examples that were later visually inspected for
the presence of the four phases and the accuracy of the
model picks. In the end,wekept 3,093newexamples for
which the four phases are visible and accurately picked
by our model. Examples that were visually reviewed
but rejected are shown in Figure S8, where the model
predicts picks with high probability, but either one of
the phases is not present or it is not accurately picked.
The newly found examples with both clear mantle and
crustal phases are about 50% of the number of those in
the training dataset. Even though we trained our multi-
phase picker on very little data, its use led to a signifi-
cant increase in the number of examples with four la-
beled phases. Further iterations of this procedure will
lead to the discovery ofmore high quality examples, but
is outside of the scope of this work.

7 Discussion

We have trained and deployed models that pick earth-
quake arrivals at regional distances, which is most use-
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Figure 9 (a) Example from the CREW dataset that has four labeled phases Pn, Pg, Sn, and Sg, used for training. Labeled
arrivals are signaled by the letters. Lower panel shows the labels with dotted lines and the predictions with solid lines along-
side the inferred phase picks. (b) Example fromCREWwith three labeled arrivals (Pn, Sn, Sg), forwhich our previously trained
model successfully recovered the tree labeled picks and found the fourth pick for Pg. (c) Examplewith two labels (Pn and Sn)
for which our model picked both Pg and Sg. (d) Another example with two labeled arrivals (Pn and Sn) for which our model
picked both Pg and Sg. Note that all thewaveforms displayed here are bandpass filtered from0.5-20Hz for visualization. Raw
waveforms for (a) are shown in Figure S7.
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Figure 10 Residuals for each one of the four phases Pn, Pg, Sn and Sg in the training data. PR for precision, RE for recall and
F1 for the F1-score.

ful when seismicity lies outside of the footprint of the
network, or there is sparse instrumental coverage. Our
deep learning picks are highly precise and accurate in
the test data (Figure 4), regardless of source-receiver
distance or signal to noise ratio (Figure S3) . The
strength of our SKYNET models lies in the data they
were trained on, a global collection of quality con-
trolled earthquake waveforms and labeled arrivals (Fig-
ure 1) complemented with data augmentation (Figure
3). Our models have long receptive fields and pro-
cess long waveforms while maintaining comparable
computational cost (Figure S6). We used these mod-
els to find numerous new earthquakes on the Gorda
Ridge offshore Northern California (Figures 5, 6) and to
pick earthquake arrivals in Northern Chile, from earth-
quakes near the trench (Figure 7), as well as very deep
earthquakes under western Brazil (Figure 8). Our mod-
els unlock new regions to be seen under the lens of ma-
chine learning enhanced earthquake catalogs. There
is value on improving monitoring in places like ocean
transform faults, that show patterns unlike other tec-
tonic settings (McGuire et al., 2005).

In addition to finding new earthquakes, the capabil-
ities of phase picking at regional distances will help
imaging studies. In a well-instrumented region such as
California, data in the 0-100 km range is the key to an
accurate location; however, havingnumerous Swave ar-
rivals at distances of hundreds of kilometers (Figure S5)
will help refine velocity models, particularly of the up-
per mantle. The shortcomings of our model for picking

near source seismograms (Figure S5) will be addressed
in future work where we will integrate both local and
regional data.

Benchmark datasets for seismology rely almost en-
tirely on human labels. The majority of these labels are
first arrival P waves. Datasets that contain secondary
arrivals are an order of magnitude less numerous than
those with first arrivals. The ISC_EHB_DepthPhases
(Münchmeyer et al., 2023) dataset contains 174K exam-
ples, and the subset of the CREW dataset that contains
bothmantle and crustal arrivals is only 6,705 examples.
This is in stark contrast with the 1.6 million examples
in CREW and the 1.1 million examples in STEAD. Our
approach of using the multi-phase model to increase
the number of labeled secondary arrivals highlights the
potential of label supplementation within established
datasets. Improved capabilities for picking and charac-
terizing later phases will aid in studies of Earth’s struc-
ture, for instance in imaging slab structure (Shiina et al.,
2021), creating refined tomographic images (Liu and
Zhao, 2018; Zhao, 2019), improving earthquake loca-
tions and depths (Münchmeyer et al., 2023) for earth-
quakes recorded at long distances, and discriminating
between mantle and crustal earthquakes based on Sn
and Lg amplitude ratios (Wang and Klemperer, 2021;
Song and Klemperer, 2024).

In both the CREW (Aguilar Suarez and Beroza, 2024)
and STEAD (Mousavi et al., 2019) datasets only 10%
of the processed metadata contains waveforms that in-
clude both P and S picks at the same station for the same
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earthquake. Revisiting previously cataloged data to add
S wave arrivals for a massive number of known earth-
quakes would increase the volume, variety, and rate of
growth of labeled data that can be used to train future
machine learning models. This approach was demon-
strated by (Ni et al., 2023) in the assembly of the Cu-
rated Pacific Northwest AI-ready Seismic Dataset. Also,
semisupervised approaches have proven effective in the
Tonga region where small quantities of labeled data
were available (Xi et al., 2024).
The road towards all-purpose, all-scale seismic phase

picking will require balancing and filling gaps in exist-
ing datasets. Some examples include the CWA dataset
(Tang et al., 2024) made of earthquakes with magnitude
larger than five, as a complement to existing datasets
that contain very few moderate and large events; the
GTUNEdataset (Baramaet al., 2022) of undergroundnu-
clear explosion waveforms; the VCSEIS dataset (Zhong
and Tan, 2024) of volcano-tectonic earthquakes; the
OBS PickBlue dataset (Bornstein et al., 2024); and the
OBST2024 dataset (Niksejel and Zhang, 2024) dedicated
to earhquakes recordedby oceanbottomseismometers.
Clever data augmentation in the forms of rescaling and
resampling proved useful in improving model perfor-
mance (Shi et al., 2024). Also, the development of foun-
dation models (Liu et al., 2024) that can be fine-tuned
to domain specific tasks will help advance multiscale
earthquake monitoring.

8 Future directions
We trained and deployed machine learning powered
earthquake phase pickers dedicated to arrivals from 1
to 20 degrees of source-receiver distance. By doing so
we aim to bridge the gap between dense comprehen-
sive earthquake catalogs and sparse seismic networks
and/or remote seismicity that require effective phase
picking at regional distances. The comparatively higher
number of picked S waves compared to well established
ML models at regional distances, should improve the
quality of earthquake locations and enable new insight
into Earth structure at regional scales. Future models
will incorporate capabilities to train and pick across the
distance scales, covering local, regional and teleseismic
arrivals.

8.1 Code
Our codes andmodels are containedwithin theSKYNET
package, SeismologicalKnowledgeYardstickNetworks.
The output of our picker should take only a few lines
of code to produce. We are working on making these
models interoperable with other platforms to facilitate
comparison and other downstream tasks.

Listing 1 Example use of skynet
import skynet
from obspy import read

model = skynet.load_model('regional_picker')
st = read('daylong_NC.mseed')
outname = 'NC_daypicks.csv'
picks = skynet.execute(st,model,0.5,outname)
plot = skynet.plot_picks(st,picks)
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