
Production Editor:
Yen Joe Tan

Handling Editor:
Hongyu Sun

Copy & Layout Editor:
Oliver Lamb

Received:
September 17, 2024

Accepted:
January 11, 2025

Published:
February 14, 2025

doi:10.26443/seismica.v4i1.1452

Near-real-time design of experiments for seismic
monitoring of volcanoes

Dominik Strutz � ∗ 1, Andrew Curtis � 1

1School of GeoSciences, University of Edinburgh, Edinburgh, UK

Author contributions: Conceptualization: Dominik Strutz, Andrew Curtis. Methodology: Dominik Strutz. Software: Dominik Strutz. Validation: Dominik Strutz,
Andrew Curtis. Writing - Original draft: Dominik Strutz. Writing - Review & Editing: Dominik Strutz, Andrew Curtis. Visualization: Dominik Strutz. Supervision:
Andrew Curtis. Funding acquisition: Andrew Curtis.

Abstract Monitoring the seismic activity of volcanoes is crucial for hazard assessment and eruption fore-
casting. The layout of each seismic network determines the information content of recorded data about vol-
canic earthquakes, and experimental design methods optimise sensor locations to maximise that informa-
tion. We provide a code package that implements Bayesian experimental design to optimise seismometer
networks to locate seismicity at any volcano, and a practical guide to make this easily and rapidly imple-
mentable by any volcano seismologist. This work is the first to optimise travel-time, amplitude and array
source locationmethods simultaneously,making it suitable for awide range of volcanomonitoring scenarios.
The code-package is designed to be straightforward to use and can be adapted to a wide range of scenarios,
and automatically links to existing global databases of topography and properties of volcanoes worldwide to
allow rapid deployment. Any user should be able to obtain an initial design within minutes using a combina-
tion of generic and volcano-specific information to guide the design process, and to refine the design for their
specific scenario within hours, if more specific prior information is available.

1 Introduction
Forecasting episodes of volcanic unrest is a significant
challenge due to the highly variable characteristics of
volcanic systems (Chiodini et al., 2016; Selva et al., 2015;
Marzocchi and Bebbington, 2012; Sigmundsson et al.,
2010). Monitoring volcanoes serves twomain purposes:
first, to understand the structure and dynamics of each
volcano, as this is crucial for hazard assessment, erup-
tion forecasting, and early warning, and second, for
risk mitigation at times of volcanic unrest (Pallister and
McNutt, 2015). Monitoring allows accelerating rates of
seismic activity to be detected, which often occurs be-
fore eruptions (Sigmundsson et al., 2010; Saltogianni
et al., 2014; Cannavò et al., 2015), and the location of
volcano-tectonic earthquakes to be tracked in near real-
time, which may facilitate eruption forecasting (Sig-
mundsson et al., 2015; Pallister and McNutt, 2015; Fal-
saperla and Neri, 2015). In addition, long-period earth-
quakes and micro-earthquakes can be key indicators of
imminent eruptions, especially during extended erup-
tive sequences (McNutt, 2005). In all cases, the location
of seismic sources is crucial to allow the underlying pro-
cesses to be better understood.
Seismicity is usually monitored by a sparse network

of seismometers deployed around the volcano. The lay-
out of this network (the experimental design) deter-
mines the information content of recorded data, and
therefore the quality of derived or interpreted informa-
tion. The goal of the experimental design process is to
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optimise the network layout, and sensor types to max-
imise the information that can be gained from the data
(Maurer et al., 2010; Strutz andCurtis, 2023). Despite the
importance of experimental design, and the fact that
optimal design methods have existed for decades (e.g.,
Steinberg et al., 1995), in practice, seismic networks are
rarely optimised taking the known physics and uncer-
tainty of the problem into account. This is likely to be
due to a lack of awareness of the potential for design
methods to enhance survey results, a lack of expertise
in understanding the range of designmethods and their
relative merits (Bloem et al., 2020), or a lack of time in
rapid deployment operations.
The goal of this paper is to provide a practical guide

to the implementation of Bayesian experimental de-
sign for volcano seismic monitoring, and a code pack-
age that makes this easily and rapidly implementable
by any volcano seismologist. This work is the first to
take travel-time, amplitude and array source location
methods into account simultaneously, making it suit-
able for a wide range of volcano monitoring scenarios.
The code package is implemented in Python, is avail-
able as open source software, andmakes use of existing
global databases of topography and properties of vol-
canic systems to provide designs rapidly. The software
is designed to be straightforward to use and can eas-
ily be adapted to a wide range of scenarios. Any user
should be able to obtain a first design within minutes
using a combination of generic and volcano specific in-
formation to guide the design process, and be able to re-
fine the design for their specific scenario within hours
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if they have more specific prior information available.
In this paper we first introduce the fundamentals of

Bayesianexperimental design in the context ofmonitor-
ing volcano induced seismicity in Section 2. We present
an example design process in Section 3 where we show
how to define the prior distribution, the physicalmodel,
how to calculate the expected information gain, and
how to optimise the experimental design. We then dis-
cuss how to interpret the results, and some advanced
topics such as the use of heterogeneous velocitymodels
in Section 4.

2 Methods
This section introduces fundamental theory for
Bayesian experimental design for locating and mon-
itoring volcano-induced seismicity. The focus of this
paper is to provide a practical guide to the implementa-
tion of designmethods in real-world scenarios. To keep
this section concise and suitable for a broad audience,
we do not go into theoretical details, but we refer the
reader to relevant literature for a more fundamental
introduction.

2.1 Bayesian Experimental Design
When designing an experiment, we aim to find a set
of observation points described by a vector ξ (the de-
sign) that maximises the amount of information that
we expect to gain by collecting data at these points. In
the context of volcano seismic monitoring, the goal is
usually to find a set of station/array locations that max-
imises the expected information about the location of
seismic sources. To account for the full uncertainty and
non-linearity of the problem, we use a Bayesian frame-
work for the experimental design process.

2.1.1 Bayesian Inference

Before introducing the experimental design problem,
we briefly introduce Bayesian inference. The goal of
Bayesian inference is to infer the uncertainty in model
parameters m given some data d observed using the
experimental design ξ. This uncertainty is charac-
terised by a so-called posterior probability distribution
p(m | d, ξ). Bayes’ theorem states that the posterior dis-
tribution can be calculated by

(1)p(m | d, ξ) = p(d | m, ξ) p(m)
p(d | ξ)

where p(d | m, ξ) is the likelihood of recording data d
given the particular set of parameter values defined by
m, p(m) is the prior probability of m, and p(d | ξ) is
called the evidence of data d. All terms that involve ob-
served data also depend on design ξ.
The likelihood is the probability of observing the

recorded data given the model parameter values (i.e.,
assuming that those values are true) and the particular
experimental design that was deployed. In our case,
the likelihood is the probability of observing a set of
travel-times, amplitudes, or array measurements given
a source location and the experimental design. The like-
lihood is assumed to be a multivariate Gaussian, where

themean is the data predicted using the forwardmodel,
and the covariance matrix is diagonal with appropriate
entries for expected measurement uncertainties given
the data types and receiver/array locations in ξ.
The prior distribution describes where we believe

seismicity is most likely to occur in the subsurface be-
fore we have observed any data. To make the experi-
mental design process as general as possible, the prior
distribution in this study is defined on a discrete grid
that spans a subset of the subsurface around each vol-
cano. The distribution is assumed to be uniform within
eachgrid cell. This descriptionmakes it straightforward
to define the prior distribution, and to sample from it.
To sample from the prior distribution, we first choose a
grid cell according to its probability, and then sample a
source location within that grid cell according to a uni-
form distribution.
In Section 3.0.2, we show how this prior probability

distribution across the grid can be defined and refined
using readily available information about any volcano
of interest.
In appendix D we summarize the inference problem

as used in this work formally, including the data likeli-
hood components introduced in the following sections.

2.1.2 Bayesian Experimental Design

The Bayesian framework makes it straightforward to
estimate the expected increase in information to be
gained by collecting data at a specific set of observation
points. This expected information gain (EIG) can be ex-
pressed as the average of the information described by
the posterior distribution p(m | d, ξ) compared to the in-
formation in the prior distribution p(m) (Lindley, 1956):

(2)EIG = Ep(d|ξ)

{
I[p(m | d, ξ)] − I[p(m)]

}
where I[p] is the Shannon information (Shannon, 1948)
of distribution p (formore information seeAppendixA),
and Ep(d | ξ) is the expectation over all possible data that
is likely to be observed given the available prior infor-
mation. Intuitively, equation 2 states that the informa-
tion gain is the reduction in uncertainty in source loca-
tions m given observations d at stations/arrays ξ, com-
pared to their uncertainty given only the prior infor-
mation; since no observed data is usually available for
the design process we average over all possible obser-
vations (or a representative subset) that are likely to be
recorded. We obtain the subset of likely observations by
forwardmodelling data for a set of earthquake locations
sampled from the prior distribution, and adding sim-
ulated observational noise described by the data likeli-
hood.
Using the EIG as our design objective function, the

best design can be expressed mathematically as

(3)ξ∗ = arg max
ξ∈Ξ

EIG(ξ)

where Ξ is the set of all possible experimental designs,
and arg max is mathematical shorthand for finding the
design that maximises the EIG with respect to ξ. In this
work, we use a genetic algorithm (Holland, 1975; Sam-
bridge and Gallagher, 1993; Gad, 2023) to optimise the
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Figure 1 Illustration of the expected information gain (EIG) in the Bayesian experimental design process. The left panel
shows a set of models sampled from the prior distribution; the middle panel shows the corresponding observed data and
its likelihood (two standard deviation ellipses), and in the background the contours of the evidence calculated using a large
number of data samples; and the right panel shows a contour of the posterior distribution for each model. Each model and
data sample has a different symbol to allow corresponding pairs of models and data samples to be identified; in the left and
middle panels deeper colours represent higher probabilities.

experimental design; this is a population-based optimi-
sation algorithm that operates analogously to processes
of natural selection amongst a set of potential designs.
It is well suited for experimental design problems since
it can optimise designs with mixed data types and con-
straints. The genetic algorithm is a stochastic (pseudo-
random) algorithm, which means that the results can
vary between runs. We use a fixed seed for the random
number generator to ensure that the results are repro-
ducible.

To evaluate the EIG in the form of equation (2),
we would need to calculate the posterior distribution
p(m | d, ξ) for each possible observation d, which is
computationally very expensive (unless we approxi-
mate the posterior distribution (Foster et al., 2019)). To
make the problem tractable we rearrange the EIG to
explicitly depend on the evidence p(d | ξ) and the like-
lihood p(d | m, ξ) instead of the posterior distribution
p(m | d, ξ) and the prior distribution p(m) (details in ap-
pendix B). The EIG can then be expressed as:

(4)EIG(ξ) = Ep(m)

{
I[p(d | m, ξ)]

}
− I[p(d | ξ)]

where the expectation is now over the prior distribution
p(m).

We can evaluate the EIG in equation 4with the nested
Monte-Carlo (NMC) method (Ryan, 2003). We use the
computationally more efficient variation of Huan and

Marzouk (2013) which is defined as follows:

EIGNMC = 1
N

N∑
i=1

{
log [p (di | mi, ξ)] − log [p (di | ξ)]

}
= 1

N

N∑
i=1

{
log [p (di | mi, ξ)] −

log

 1
N

N∑
j=1

p (di | mj , ξ)

}
(5)

where we sample N models {mi}N
i=1 from the prior dis-

tribution p(m), calculate N data vectors {di}N
i=1, one

vector for each sampled model, and then approximate
theEIGof equation (4) by replacing the expectationwith
the average 1

N

∑N
i=1 over the N samples.

Calculating the EIG using the NMC method, while
(asymptotically) unbiased, is computationally expen-
sive. During the design optimisation process we must
evaluate this quantity many times, which can become
intractable. We therefore invoke the DN method (Coles
and Curtis, 2011) in which we approximate p(d | ξ) by a
multivariate Gaussian distribution. This results in the
following expression for the EIG:

(6)
EIGDN = 1

N

N∑
i=1

log [p (di | mi, ξ)] −

3
2 (1 + log(2π)) + 1

2 log |Cd|

where we again sample N models {mi}N
i=1 from the

prior distribution p(m) and calculate corresponding
data samples {di}N

i=1. Instead of a nested loop, we now
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calculate the information in the evidence bymaking use
of the fact that the information in a multivariate Gaus-
sian distribution is given by

(7)I[p (di | ξ)] = k

2 (1 + log(2π)) + 1
2 log |Cd|

where k is the dimension of the data space andCd is the
covariance matrix of the data samples {di}N

i=1. The DN

method is computationally far more efficient than the
NMC method, but offers an (asymptotic) upper bound
(Foster et al., 2019) for the true EIG and therefore over-
estimates the EIG. Despite this bias, the method has
been shown to perform well in the design of seismic
monitoring networks since only relative values of the
EIG for different designs are important (Bloem et al.,
2020). Thus, unless otherwise stated, in this work we
use the DN method to calculate the EIG during the de-
sign optimisation process, and use the NMC method to
validate and interpret the results.
See Appendix C for a benchmark of the DN method

against theNMCmethod. It is important to note that the
DN method assumes a Gaussian distribution in the data
space, not in the parameter space such as in the Laplace
approximation (Long et al., 2013), and avoids using local
gradients of the likelihood to approximate the posterior
distribution.
To provide amore intuitive understanding of the EIG,

especially of its formulation in data space, we consider
a schematic example, in which we demonstrate how
more or less informative designs affect terms in equa-
tion (4). The first step is to sample a set of model sam-
ples from the prior distribution p(m), shown in the left
panel of Figure 1. Then we calculate the data sam-
ples (including a realisation of measurement noise de-
scribed by the likelihood) that would be observed for
each model: here, the distance between model and re-
ceiver locations, which is equivalent (proportional) to
a travel-time from each source to receivers in a homo-
geneous medium, as shown in the middle panel of Fig-
ure 1. The density of the data sample realisations allows
the evidence (calculated using a large number of data
samples in the background and shown as purple con-
tours in the middle panel of Figure 1) to be visualised.
Each data point has an associated likelihood, displayed
as the two standard deviation ellipse. This shows graph-
ically howdifferent designs affect the evidence, the like-
lihood, and, therefore, the EIG.
The term

(8)Ep(m) I[p(d | m, ξ)] = 1
N

N∑
i=1

log {p (di | mi, ξ)}

computes the expected information content in the data
likelihood by averaging the probability of observing the
data samples given the (true) source location model
samples. This information content will be maximised
for small standard deviations and minimised for large
standard deviations (small and large ellipses, respec-
tively, in the middle panel of Figure 1). Since we max-
imise this quantity, the standard deviation of the data
samples should be as small as possible.

The evidence term

(9)I[p(d | ξ)] = 1
N

N∑
i=1

log

 1
N

N∑
j=1

p (di | mj , ξ)


or its approximation

(10)I[p(d | ξ)] ≈ 3
2 (1 + log(2π)) + 1

2 log |Cd|

calculates the information content in the evidence,
which here is proportional to the inverse of the spread
of the data samples (indicated by contours calculated
using a large number of samples in the background). A
large spread is preferable since it indicates that the data
samples are well spread out and can be more easily dis-
tinguished from each other (or more formally, that the
information in the evidence is low).
The EIG is the difference between the result of evalu-

ating equation 8 and equation 9 or its approximation in
equation 10, which is the difference between the aver-
age likelihood of the data samples and the measure of
the inverse of the spread of the data samples. If data
samples are closer together, this means that for fixed
data valuesmeasured by an experiment, it is hard to dis-
tinguish between the source location model that gen-
erated those data, and other source location samples
- which leads to a low EIG; intuitively this would indi-
cate that the posterior distribution is less spread-out, as
shown in the bottom right panel of Figure 1. On the
other hand, if a different experimental design caused
the data samples to be more spread out such that their
uncertainties do not overlap, the EIG will be high and
each source location can be discriminated from the oth-
ers given a measured data set. This is clearly illustrated
in the top right panel of Figure 1.

2.2 Seismic Source Location Methods
Volcanoes are complex systems driven by a wide vari-
ety of magmatic and hydrothermal processes, and this
leads to a wide range of characters of seismic activity
that can be detected at the surface (Zobin, 2017). Locat-
ing these seismic sources is a crucial step inunderstand-
ing the underlying processes. For the observed signals,
the characteristic periods span 10−1 to 102 s and corre-
sponding wavelengths span 102 to 105 m (Saccorotti and
Lokmer, 2021). This wide range of scales leads to a vari-
ety of methods for locating seismic sources.
This paper focuses exclusively on data derived from

waveforms rather than on waveform data themselves,
since the optimal design process and the forwardmodel
for full waveforms are computationally costly. Addi-
tionally, waveform-based methods are often very sensi-
tive to the subsurface velocity model (e.g. O’Brien et al.,
2011); this model is typically only accurately known for
already well-monitored volcanoes, for which the pre-
sented algorithms may be of more limited use.

2.2.1 Travel Time based Methods

Traveltime-basedmethods are themost common for lo-
cating seismic sources andhavebeenwidely used in vol-
cano monitoring (Lomax et al., 2001; Saccorotti et al.,
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Figure 2 Example of likelihoods (dark green indicates
high likelihood) for travel-time data from a synthetic true
event for up to four stations at the same locations for dif-
ferent data types. For details on the different data types
see Section 2.2. The hybrid column shows how the likeli-
hoods of different data types (represented by symbols) can
be combined. In row 1 the hybrid and array results are iden-
tical since only a single measurement type is available.

2007; Woods et al., 2019). The travel-time is the time
taken for a seismic phase (e.g., P-wave, S-wave) to travel
from the source to the receiver, anddependsboth on the
locations of the source and receiver, and on the veloc-
ity model. If we assume a homogeneous velocity model
with a velocity v which represents the best estimate of
the average velocity within the three-dimensional re-
gion of interest, the observed arrival-time t of the seis-
mic waves can be calculated as:

t = tsrc + 1
v

[
(xrec − xsrc)2 +(yrec − ysrc)2 +(zrec − zsrc)2] 1

2

(11)

where tsrc is the origin time, (xsrc, ysrc, zsrc) is the source
location, and (xrec, yrec, zrec) is the receiver location. If
we assume that there is little prior information on tsrc
(the prior distribution is assumed to be uniform within
certain spatial boundaries), the origin time can be in-
tegrated out since we assume a Gaussian data likeli-
hood (Tarantola et al., 1982; Lomax et al., 2001). The
model parameters are then only the source location
(xsrc, ysrc, zsrc), and arrival time observations become
equivalent to travel time data. We treat the case of a het-
erogeneous velocitymodel separately in Section 4, since
it requires a more complex forward model.
Themethods used for heterogeneous velocitymodels

are also necessary if the topography deviates substan-
tially from a convex set, in which straight rays between
source and receivermight intersect the topographic sur-
face, which is not accounted for in the homogeneous ve-
locity model.

Uncertainty in the travel-time is expressed as the
combination of errors in picking the arrival times of
each seismic phase given the seismicwaveform, and the
contribution from the velocitymodel uncertaintywhich
arises from the true seismic energy travelling through
a heterogeneous medium which leads to a change in
travel-time. This forward model error is constant in in-
verse problems but in experimental design problems it
is unknown so we account for it through an uncertainty
in the travel-time. A combined standard deviation of σt

can be calculated as:

(12)σt(t)2 = σ2
p + t · σ2

v

where σp is the picking uncertainty and σv is the rela-
tive velocitymodel uncertainty scaled by the travel-time
t. Scaling the squared velocity model uncertainty by
the travel-time is inspired by a Gaussian random walk
model in which themean squared distance (here travel-
time noise) from the reference point (here the mean
value) is proportional to the time.
By using a fixed picking uncertainty term, we im-

plicitly assume that all arrivals have a sufficiently high
signal-to-noise ratio, and every event can be observed at
every station with the same uncertainty. Typically the
velocity uncertainty term is much larger than the pick-
ing uncertainty term in a volcano setting, making the
exact value of the picking uncertainty term relatively
less important.
In a volcano setting the velocity model uncertainty

term is typically much larger than the picking uncer-
tainty term. To define it site specific information is nec-
essary, but a value of 0.1 to 0.2 is a reasonable starting
point as it corresponds to an average relative velocity
model standard deviation of 10% to 20% from the speci-
fied homogeneous velocity model. This would result in
a standard deviation of 0.1 s to 0.2 s for a travel-time of
1 s. Tests show that while the EIG and derived quantities
are sensitive to the value of σv, the resulting optimal de-
sign is usually not particularly sensitive to it.
Columnoneof Figure 2 shows the resulting likelihood

for travel-time data from a synthetic true event for up to
four stations. For a single station, the uncertainty spans
a circle of equal travel-time. For multiple stations, the
likelihood is the product of the likelihoods of the indi-
vidual stations included in the design.
Due to their emergent onset and lack of clear phase

arrivals, long-period and tremor signals can not be lo-
cated using travel-times based on phase arrival picks.
However, several other methods, such as coherence
basedmethods (Ohminato et al., 1998; Kawakatsu et al.,
2000; Dawson et al., 2004; Almendros, 2003; Saccorotti
and Lokmer, 2021) and back-propagationmethods (Kao
and Shan, 2004; Langet et al., 2014) implicitly use travel-
time information to locate sources. Therefore, optimis-
ing a network for travel-time observations also provides
an optimal network for those methods.

2.2.2 Amplitude based Methods

Another commonmethod for locating volcano-induced
seismicity is amplitude source location (ASL), in which
an attenuation model is assumed for a single wave type
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(surface or body waves) propagating isotropically in a
homogeneous medium (Saccorotti and Lokmer, 2021;
Battaglia and Aki, 2003; Taisne et al., 2011; Ogiso and
Yomogida, 2012; Kumagai et al., 2013, 2011, 2009; Ogiso
et al., 2015; Yamasato, 1997; Jolly et al., 2002; Caudron
et al., 2018; Carbone et al., 2008). The source location
and strength can then be estimated by comparing ob-
served amplitudes with those predicted from the atten-
uation model. If we ignore corrections for measure-
ment site amplification, the observed amplitude A de-
cays as (Kumagai et al., 2013; Morioka et al., 2017):

(13)A = 1
r

exp (−C · t)

where r is the length of the ray path, and C = π f
Q is

the attenuation coefficient which depends on the fre-
quency f , the quality factor Q, and the travel-time t
of the seismic phase. The length of the ray path r as
well as the travel-time t depend on the source location
(xsrc, ysrc, zsrc) and receiver location (xrec, yrec, zrec).
We model the uncertainty in the amplitude through

linearised error propagation (Ku, 1966) of the uncer-
tainty terms σr, σt, and σQ for the ray path, travel-time
and quality factor, respectively. The final uncertainty in
the amplitude σA is typically dominated by uncertainty
in σQ. Internally, the final amplitude measurements
and uncertainties are converted to log-space, which
makes the Normal approximation in the DN method
more accurate.
Column two in Figure 2 shows the resulting likelihood

for amplitude data from a synthetic true event for up to
four stations. While at first glance, this looks similar to
the travel-time likelihood, the uncertainty is asymmet-
ric in the radial direction due to the log-space conver-
sion. For multiple stations the likelihood is again the
product of the likelihoods of the individual stations.

2.2.3 Array Methods

For the purposes of this paper we define an array
as seismic array as a set of seismometers with inter-
station spacings smaller than the wavelengths of in-
terest, which typically have an aperture (largest dis-
tance between two stations) significantly smaller than
the source-to-array distance (Saccorotti and Lokmer,
2021). This is done in order to discriminate them from
a network of seismometers that are processed indepen-
dently of each other. For this study, we treat an array as
an instrument at a single location which can measure a
back azimuth θ and an incident angle i (or alternatively,
the two components px and py of the horizontal slow-
ness vector). The back azimuth is the angle between the
propagation direction of the arriving wavefront and the
north direction, while the incident angle is the angle be-
tween propagation direction and the vertical direction.
These quantities can be estimated straightforwardly us-
ing the angles between the source and the array for ho-
mogeneous models (or the gradient of the local travel-
time grid for heterogeneous velocity models). In prac-
tice, the back azimuth and incident angle can be calcu-
lated using beamforming (e.g. Rost and Thomas, 2002;

Leva et al., 2022), MUSIC (e.g. Inza et al., 2011), or other
methods (e.g.Métaxian et al., 2002; Di Lieto et al., 2007).
The uncertainty of the array measurements can ei-

ther be defined through the standard deviation of the
two angular measurements σθ and σi or through the
standard deviation of the two components of the slow-
ness vector σpx

and σpy
. The latter implies that there is

an intuitive way to convert an array function to an un-
certainty estimate. Within the code package, the data
used are px and py, so σθ and σi are converted to σpx

and σpy
using linearised error propagation.

Column three of Figure 2 shows the resulting likeli-
hood for array data from a synthetic true event for up
to four arrays. It is clear that this data type imposes
substantially different constraints compared to travel-
time and amplitudedata: instead of a likelihood focused
around a circle of equal travel-time or amplitude, we in-
stead obtain a cone representing the uncertainty in the
arrival direction of the seismic energy. And as before,
the likelihood frommultiple arrays is the product of the
likelihoods of the individual arrays. Since the incident
angle is very sensitive to the local seismic velocity and
can change considerably for a gradient/heterogeneous
velocity model, it is also possible to use the back az-
imuth only. In this case, only σθ is used as the uncer-
tainty in the array measurements.

2.2.4 Hybrid Data Types

The fourth column in Figure 2 shows how likelihoods
of the different data types can be combined. As above,
these are simply point-by-point multiplications of the
likelihoods of each sensor.

2.2.5 Important Assumptions

While the above data types capture the usual data
used in volcano seismic monitoring, several important
assumptions are made to make the design problem
tractable, or because information necessary to model
the problem more accurately is typically unavailable at
the design stage. The most important assumptions are:

• Unless we have a subsurface velocity model avail-
able and use a considerably more expensive ray
tracing method, we assume a homogeneous veloc-
itymodel. While this is a severe assumption, it is of-
ten the only feasible way to simulate observed data
in a volcano monitoring scenario. All of the exper-
imental design methods can be extended to use a
heterogeneous velocity model, but this requires a
more complex forward function to be available.

• We assume a Gaussian data likelihood. This is a
common assumption in Bayesian inference and de-
sign studies, but both the choice of variances, and
deviations from aGaussian distribution can impact
the quality of results (Lomax et al., 2014). The
experimental design methods could readily be ex-
tended to use a different likelihood, but this would
require much scenario-specific information that is
hard to obtain, andwhich is almost never employed
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in practise even after data have been collected. Op-
timised designs are less important in already well-
monitored scenarios, where the likelihood might
be able to bemodelledmore accurately since there
is usually a diminishing return for a larger number
of stations/arrays.

• We assume that the uncertainty in each datum is
independent of the others. While this is also a com-
mon assumption in Bayesian inference, it can sig-
nificantly impact the results, especially sincediffer-
ent data types at similar locations depend in some
way on the same ray paths. The experimental de-
sign methods could readily be extended to include
correlations between the data types, but estimat-
ing the correlations a priori is usually difficult and,
again, requires a lot of scenario-specific informa-
tion. In practice, the impact of this assumption
may be limited since experimental design algo-
rithms typically spread out the locations of stations
over the area of interest. Even for designs with a
larger number of receivers (small inter-station dis-
tances), previous tests have shown that the perfor-
mance of the design is not significantly impacted
by the assumption of independent data (Callahan
et al., 2024)

While these assumptions may seem restrictive, they
are chosen to be practically implementable, and to de-
viate as little as possible from both the natural system
and the assumptions typically made in Bayesian infer-
ence once data have been collected.

3 Example Design Process

Finding an optimal experimental design depends on the
specific scenario and the goals of the monitoring cam-
paign. Instead of providing a one-size-fits-all solution,
we provide a step-by-step guide to design an optimal
monitoring network for any specific scenario. Nearly
every step in the following example can be adjusted
to specific needs. We provide a Jupyter notebook that
guides practitioners through the process and serves as
a template for each scenario. For more information see
the data availability statement (Section 7).

3.0.1 Volcano Data

The Smithsonian Institution’s Global Volcanism Pro-
gram (GVP) (Venzke, 2024) provides a comprehensive
database of volcanic activity, including eruption histo-
ries, reports, and data. We use this to obtain basic infor-
mation about any volcano by providing its name, such
as its location, type, and eruption history. This infor-
mation is used for several of the following steps. The
volcano used in this example is Etna, a stratovolcano in
Italy. By defining a bounding box around the volcano’s
location, we use the OpenTopography API to obtain a
digital elevation model (DEM) of the volcano. In this
example, we use the SRTM15Plus (Tozer et al., 2019),
which has a sufficient resolution formost volcanomon-
itoring scenarios and unlike many other DEM’s it in-

cludes bathymetric data. It is also possible to use a cus-
tom DEM, but this is often unnecessary.

3.0.2 Prior Information

We can define a prior distribution for source locations
based on the topographic information. We discretise
the subsurface into a grid of cells, and a uniform prior
distribution is assumed within each cell. For this ex-
ample, we assume that the prior distribution is a Gaus-
siandistributionwith a standarddeviationof 5 km in the
Easting and Northing directions, and 8 km in the depth
direction, centred the location of the volcano at a depth
of 2 km. In addition, we assume that the prior distribu-
tion in each vertical column is proportional to the ele-
vation at that point, which gives more weight to areas
in which the volcano has a higher relative surface ele-
vation. The result is, of course, a very simplified prior
distribution, but it is easy to define, and since it is de-
fined on a grid it is easy for any practitioner to adapt to
a more complex distribution that takes a specific geo-
logical setting and other available information into ac-
count. Figure 3 shows the prior distribution used in this
example.

3.0.3 Design Space

When optimising for the best design, we must consider
numerous constraints present in each real-world sce-
nario. In our code package, the design space (the set
of all locations where a station or array can be placed)
is defined on the grid of the (interpolated) DEM, where
each cell is assigned a true or false value depending on
whether or not a station can be placed there. In this ex-
ample, we assume that nodal stations canonly beplaced
in areas with an incline of less than 20 degrees, that ar-
ray stations can be placed in regions with an incline of
less than 3 degrees, that no station can be placed below
sea level, that there is a safety margin of 3 km around
the centre of the volcano if it erupted within the last
ten years, and that arrays are placed in areas of at least
10 km2 of flat (< 3 degrees) area. Figure 4 shows the
design spaces for the nodal and array stations, which
implement the above constraints.
Having the design space defined by general rules

makes it easier to adapt to more complex scenarios
with more constraints. Examples might include the use
of satellite imagery to avoid recent lava flows, heavily
wooded areas, urban areas, areas that are likely to expe-
rience high seismic noise, or any other area that is un-
suitable for a seismic station. Using a genetic algorithm
in the design optimisation process removes the need for
constraints to have specific analytical properties, and so
also makes it straightforward to include dynamic con-
straints such as the walking distance between stations,
monetary constraints, or any other constraint that can
be expressed as a function of the station locations.

3.0.4 Forward Function and Data Likelihood

To construct the forward function, we need to define
several parameters that govern the propagation of seis-
mic waves in the subsurface, with often limited infor-
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Figure3 Thepriordistributionof the source locations forEtna. Darkblue indicatesahigh likelihoodof seismicity,while light
blue indicates a low likelihood. The elevation of the volcano is shown in the background. The left figure shows the marginal
of the prior distribution along the depth axis, while the right figures show slices of the prior distribution at the Easting and
Northing of the synthetic true event.
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Figure4 Thedesign space for thenodal andarray stations
for the example volcano Etna. Red indicates that a station
can not be placed there. The elevation of the volcano is
shown by the background grey scale and the grey contour
lines.

mation available. For travel-time data we set the P-wave
velocity to 3.5 km/s (Patane et al., 2002) and the corre-
sponding uncertainties σt to 0.01 s and σv to 0.1 (corre-
sponds to a characteristic standard deviation of the ve-
locity of 10% along the ray path). For amplitude mea-
surements, the quality factor Q is set to 50, the fre-
quency of interest f to 2.0Hz, and the S-wave velocity
is set to vs = vp/

√
3 (Patane et al., 2002; Morioka et al.,

2017; Kumagai et al., 2009). A literature review, often in-
cluding other, analogue volcanoes or geologies, is often
necessary in order to estimate a suitable quality factor
Q and uncertainty for amplitude data. The low compu-
tational cost of the DN method allows possible values
to be tested rapidly, and in our experience, many dif-
ferent combinations of values typically result in simi-
lar experimental designs. The standard deviation of the
quality factor is set to 10 in this example, and this, to-
gether with the uncertainties of the S-wave travel-time
and thedistancebetween the source and receiver allows

the uncertainty in amplitude to be calculated. The un-
certainty in the azimuth is set to 6° (Inza et al., 2011),
and the incident angle is not used in this example. The
back azimuth measurements require the least prior in-
formation. Within the code, the orientation of the array
is corrected for the local topography.

3.0.5 Design Optimisation

To find the optimal design, we use a genetic algorithm
(Holland, 1975; Sambridge and Gallagher, 1993; Gad,
2023) and the EIG to be optimised is calculated using
the DN method. In this example, we optimise a net-
work of three nodal stations (travel-time and amplitude
information) and one array (travel-time, amplitude, and
back azimuth information). Using a population size of
64 designs, around 200 generations (iterations of the al-
gorithm) are needed for the optimisation to converge
to a solution, with only slight improvements occurring
thereafter up to around 600 generations. Figure 5 shows
the optimal design for this scenario.
On an average laptop, results are available within a

fewminutes for this example, if the DN method is used;
the NMC method would take tens of minutes for the
same number of samples, or several days if the num-
ber of samples is increased by an order of magnitude
which would be necessary for an unbiased result. Note
that the forward function used here, while not fully op-
timised, can still be calculated extremely rapidly. The
difference between the true EIG and the estimates from
either the DN or NMC method (for the number of sam-
ples used) is mostly constant for the seismic source lo-
cation example, resulting in similarly well-performing
designs Strutz and Curtis (2023). Therefore, both meth-
ods can be used in the design optimisation process.
In some scenarios (e.g., prior distribution is far from

Gaussian; a multimodal prior distribution; low noise
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Figure 5 The optimal design for a network of three nodal
stations and one array on Etna. The elevation of the vol-
cano is shown in the background grey scale and the grey
contour lines. Formore informationabout thedesign statis-
tics given in the box top-right, see Section 3.0.6.

levels), caremust be takenwhen theDN method is used
so as not to violate the assumptions of a roughly Gaus-
sian evidence too much. While this could be tested by
plotting the evidence for a few designs, it is often eas-
ier in practice to use the NMCmethod and run another
optimisation (with fewer generations) using the NMC
methodwhere the starting population is the optimal de-
sign found using the DN method (this is implemented
in the code package) to see whether the optimal design
changes significantly. If it does, theDN methodmaynot
be suitable for the scenario in question. Special care
must be taken in the case of multimodal prior distri-
butions (see Strutz and Curtis (2023) for an example of
the DN method failing in such a seismic source loca-
tion scenario). Nevertheless, in general, theDN method
has proven to be robust in previous design optimisation
studies (Strutz andCurtis, 2023; Coles et al., 2013; Bloem
et al., 2020).

3.0.6 Design Analysis

After an optimal design has been computed it can be de-
ployed. However, in many cases we would first like to
analyse its performance inmore detail, and possibly re-
fine it either semi-automatically ormanually. To under-
stand the expected uncertainties in the inversion results
using the final design, we can calculate the posterior
distribution for an example event. An example result is
shown inFigure 6, whereweobserve that the (synthetic)
true event lies well within the area of high posterior
probability. By running several such tests, and by vary-
ing the design slightly, we can test how the uncertainty
contours depend on the experimental design locations.
As expected, the uncertainty in the vertical direction
is substantially larger than in the horizontal directions
since data is only collected on the surface at substan-
tial offsets from the event. A receiver placed more di-
rectly above the event in question would conformmore
closely to the optimal design for a single event and al-
low more accurate estimates of the event depth (Bloem

et al., 2020; Rabinowitz and Steinberg, 1990; Steinberg
et al., 1995), but in this case those locations are pre-
cluded (Figure 4).
The main benefit of the EIG calculation is that it pro-

vides a measure of the information gain expected over
all possible true source locations (according to the prior
distribution) instead of just one or a small subset of
events. While we could use the EIG directly to compare
different designs, it is an unintuitive quantity which is
hard to interpret. If we assume that the posterior distri-
bution is a multivariate isotropic Gaussian distribution
(same standard deviation σpost for all parameters, and
no inter-parameter correlations - see black circles over-
lying contours in Figure 6), we canuse the expected pos-
terior information Īpost = Ep(m)

[
Ipost

]
= EIG − Iprior, to

estimate the expected standard deviation

(14)σ̄2
post = exp

{
−Īpost

3 − 1
2 (1 + log(2π))

}
by using the analytic expression for the information in a
multivariateGaussian in equation 7. This expected stan-
darddeviation is an intuitive quantity that canbeused to
compare different designs and to analyse the expected
uncertainty in the results. The effect of the isotropic as-
sumption is that σ̄post will often overestimate horizontal
uncertainties and underestimate vertical uncertainties.
We provide interactive plotting tools in the Jupyter

notebook that accompanies this paper (see data avail-
ability statement in Section 7), which allow the effects
of different design locations on the posterior distribu-
tion and the expected standard deviation to be explored
in real time. This makes it easy to refine the design and
to include additional design constraints that are hard or
impossible to include in the design space or the opti-
misation process. Another way to analyse the optimal
design process is to observe how the expected informa-
tion gain and standard deviation evolve as a function of
receiver count. Optimal networks of up to 10 receivers
which record travel-time and amplitude data, given the
same parameters as in the previous example, are shown
in Figure 7. We can calculate EIG and σ̂post for each of
these networks and plot them as a function of the num-
ber of receivers (Figure 8). This shows how many re-
ceivers are needed to reach any desired level of source
location uncertainty. In addition, we can also examine
the average L2-norm distance between the mean of the
posterior distribution and the true event location as a
function of the number of receivers. This shows that
the mean moves close to the true event location after
only three receivers havebeen added and improves only
slightly with the addition of more receivers.
The σ̂post results can also be used to compare the

optimal designs to randomly placed, or approximately
evenly spaceddesigns. To generate the randomdesigns,
we sample the design space according to a uniform dis-
tribution within the bounding box. The evenly spaced
designs are generated by sampling a Sobol sequence - a
quasi-random, space-filling sequencedefinedon (0, 1)D

(Sobol’, 1967) which is then scaled by a factor sampled
uniformly from0 to 20 km. While the latter procedure is
a complicated way to define reference space-filling de-
signs, most of the resulting designs are closer to what
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Figure 6 The posterior distribution for a synthetic true event for Etna, recordedwith the optimal design. The synthetic true
event is shown as a black star, and the uncertainty contours of the Bayesian posterior distribution are shown in red (high) to
orange (lowprobability density). The expected standard deviation of the posterior distribution derived from the EIG is shown
as a black circle with radius σ̄post. The left figure shows the marginal of the posterior distribution integrated over the depth
axis. The right figures show slices of the posterior distribution at the Easting and Northing of the synthetic true event.
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Figure 7 Example of optimal designs for Etna with up to
10 receivers. The coordinate axe span -15 to 15 km for both
Easting and Northing.

we might consider to be a reasonable, uniformly dis-
tributed random design than are purely uniformly ran-
dom designs, which is also reflected in the results. The
expected standard deviation of 1000 of the random and
Sobol designs are shown in Figure 8 as violin plots. It
is clear that the optimal designs are substantially bet-
ter than the random designs, and that the Sobol designs
are better than uniformly random designs, and indeed
the latter approach the performance of optimal designs.
However, for more than two receivers, an optimal de-
sign allows one to achieve the same uncertainty level as
the mean of the Sobol designs with one receiver fewer,
which is clearly desirable.
For more than around eight receivers, the reduction

in uncertainty for each additional receiver becomes rel-
atively small. This property of diminishing returns is
a common feature of optimal design problems (Maurer
and Boerner, 1998), but our code package allows this ef-
fect to be quantified rapidly. Even if sufficient receivers

are used to reach the point of diminishing returns (we
refer to such cases as large-N designs, where N is the
number of receivers), it is valuable to know how many
receivers are required at aminimum to reach consistent
performance for any approximately evenly spaced de-
sign. While the optimal large-N design process does not
add much information in such cases, the confirmation
that N is indeed large enough is valuable information in
itself.

4 Heterogeneous Velocity Model

This section briefly explores how a heterogeneous seis-
mic velocity model affects the formulation of the ex-
perimental design problem and the resulting optimal
designs. The first immediate effect is that the forward
function for all three data types is substantially more
computationally expensive since an eikonal solver or
seismic raytracer is needed to calculate travel-times, ray
lengths and arrival angles. We use the open-source soft-
ware package Pykonal (White et al., 2020) to calculate
travel-time fields from which the other data types can
be derived. To make the experimental design process
more efficient, we precompute the data for every pos-
sible receiver/array location for a sufficient number of
prior distribution samples such that results became sta-
ble under additional samples (typically around 103 - 104

samples) and store the results in a lookup table. We
tested a layered model (Villaseñor et al., 1998) and a
full 3Dheterogeneous velocitymodel inwhichweadded
variations with a spatial wavelength of around 3 km and
a relative amplitude of up to 50% to a smoothed version
of the layered velocity model (none of the velocity mod-
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Figure 8 The expected standard deviation, the mean L2-
distance between the posterior mean and the true model,
and the EIG of the posterior distribution as a function of the
number of receivers deployed in optimal configurations for
the example volcano, Etna (Figure 7). The error bars show
the standard deviation of the L2-distance for 1000 events
drawn from the prior distribution. The violin plots for ran-
dom and Sobol designs show the density of the expected
standarddeviation for 1000 randomandSobol designs. The
wider the violin plot, the more designs have that expected
standard deviation. Optimal designs provide the lowest ex-
pected standard deviation in all cases.

els in the literature was openly available e.g., Villaseñor
et al., 1998; Patane et al., 2002). Both models are shown
in Figure 9.
Since the computation time for the data table lookups

is in the order of the computation time for the NMC
method, in this case we use the more accurate NMC
method for the optimal design process. For this exper-
iment, we only consider travel-time and array-derived
data since calculating the large number of ray paths
necessary for the amplitude measurements would be
computationally expensive, and previous tests showed
that this data had a small effect on the optimal design
process. Again, weuse 500 generations in the genetic al-
gorithmwith a population size of 64, which still enables
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Figure 9 The layered and full 3D heterogeneous P-wave
seismic velocity models used in this study. The layered
model is thevelocitymodel fromVillaseñoret al. (1998), and
the heterogeneousmodel is a 3Dmodel in which noise with
a spatial wavelength of around 3 km and a relative ampli-
tude of up to 50% is added to a smoothed version of the lay-
ered model.

us to calculate the travel-time table and the optimal de-
sign within a few hours on a standard laptop.
The results of the optimal design process for a ho-

mogeneous, layered and heterogeneous velocity model
for three receivers and a single array, derived with the
same settings, are shown in Figure 10. EIG and approx-
imated expected standard deviation are calculated with
the heterogeneous velocity model for all three optimal
designs. The performance of the homogeneous and lay-
ered models are very similar, but as expected the opti-
mal design for the heterogeneous model performs bet-
ter. While the relative placement of the nodes follows a
similar pattern, the arrays are placed in different loca-
tions. Another observation not shown in the summary
statistic is that the three designs perform very similarly
for events at shallowormediumdepth, and the increase
in performance of the heterogeneousmodels is primar-
ily due to improved performance for deep events.
The results show that the optimal design process is

relatively robust towards the choice of velocity model,
but a performance increase can be achieved by going
beyond a 1D layeredmedia. This also suggests that care
must be taken for 3D velocity models with high uncer-
tainty, since the optimal design process will be sensitive
to the velocity model employed.

5 Discussion and Conclusion

We have presented a novel combination of experimen-
tal design methods for the optimal design of seismic
monitoring networks for volcano monitoring. The
methods are based on Bayesian experimental design to
take the full uncertainty of the inversion process into
account. We have shown that the expected standard de-
viation of the posterior distribution is a valuable quan-
tity to evaluate the design quality, and present ways to
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Figure10 Theoptimaldesign forahomogeneous, layered
and heterogeneous velocitymodel for three receivers and a
single array. The EIG and approximated expected standard
deviation are calculated using the heterogeneous velocity
model for all three optimal designs and shown in the box on
the right. The seismic velocitymodel at the surface is shown
in the background. Crosses denote arrays and triangles de-
note nodal stations.

interpret howmuch value an optimal design can add to
post-survey inversion results.
In the pursuit of accessibility, several assumptions

were made to allow for a straightforward use, even if
limited information is available. Most assumptions can
be relaxed if more information is available, as shown in
the example of the heterogeneous velocity model. The
methods are also flexible enough to include more com-
plex constraints and data types, but since those are typ-
ically scenario-specific, we have not included them in
this work. Extending the methods and code package to
design networks that are optimised to constrain the full
source solution including the moment tensor is a chal-
lenging problem that is not addressed in this work. The
methods presented here can be extended for this pur-
pose, but it is currently not clear how this can be done
in such a computationally efficient way.
The main advance of this work is the use of both fast

(DN ) and accurate (NMC) methods to calculate the ex-
pected information gain, and setting up the codes with
access to public databases such that they can be de-
ployed rapidly for any volcano in the world. This ap-
proach allows practitioners to optimise designs within
minutes andhave interactive tools available to refine the
results. We hope that this work will enable more re-
searchers to use optimal design methods without need-
ing to be experts in the field, andwill allow both experts
and non-experts alike to use optimal designs evenwhen
responding rapidly to evolving eruptive scenarios.
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8 Appendix
A Shannon Information
Shannon information (Shannon, 1948) is an intuitive
measure of information with several beneficial proper-
ties (e. g., linear additivity of information from inde-
pendent sources). The Shannon information I[·] of an
arbitrary continuous probability density function p(x)
is defined as

(15)
I [p(x)] = Ep(x) [logb (p(x))]

=
∫

X
p(x) logb(p(x))dx

where x ∈ X is a random variable distributed according
to p(x) and Ep(x) is the expectation with respect to p(x),
which is defined by the right-most expression. Depend-
ing on the context, information is also often expressed
through the entropy H[p(x)] = − I [p(x)], where entropy
H is defined to be the negative of either expression on
the right of equation (15). This absolute information
measure can be extended to the relative information
content of one pdf relative to another, also called the
Kullback-Leibler (KL) divergence (Kullback andLeibler,
1951)

(16)KL(P ||Q) =
∫

X
p(x) log

(
p(x)
q(x)

)
dx

For further information on the properties of informa-
tion, the reader is referred to Cover and Thomas (2006).

B Rearranging the Expected Information
Gain

(17)

EIG(ξ) = Ep(d|ξ) [I[p(m | d, ξ)] − I[p(m)]]

= Ep(d,m|ξ)

[
log p(m | d, ξ)

p(m)

]
= Ep(d,m|ξ)

[
log p(m, d | ξ)

p(m)p(d | ξ)

]
= Ep(d,m|ξ)

[
log p(d | m, ξ)

p(d | ξ)

]
EIG(ξ) = Ep(m) [I[p(d | m, ξ)] − I[p(d | ξ)]]

C CompareDN and NMCmethod
In Figure A1, we compare the results of calculating the
EIG for 1000 random and 1000 Sobol three receiver de-
signs using the DN and NMCmethods (see Section 3.0.6
for details about the Sobol designs). The results show
that the results of the DN method follow amostly linear
trend with the NMC method if calculated for the same
designs, but the estimated information gain lies slightly
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Comparison of NMC and DN method
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EIGDN = 1.29 EIGNMC − 0.64

Figure A1 Comparison of the expected information gain
for 1000 random and 1000 Sobol three receiver designs us-
ing the DN and NMC methods. The dashed line shows the
linear fit of the DN method to the NMCmethod.

above the line of equity (a diagonal). This indicates that
the DN method can be used in the optimisation process
to find optimal designs, but will overestimate the EIG
for all designs tested. Another promising result is that
the DN method seems to follow the linear trend more
closely for designs with a higher EIG, which is the most
important region for the design optimisation process.

D Inference Problem Summarized
In this section we define all necessary quantities to
solve the inference problem introduced in Section 2.1.1
in one place for the reader’s convenience. The infer-
ence problem is to find the posterior distribution of the
source location m given the data d, the design parame-
ters ξ, the data likelihood p(d | m, ξ), and the prior dis-
tribution p(m). The posterior distribution is given by
Bayes’ theorem

(18)p(m | d, ξ) = p(d | m, ξ)p(m | ξ)
p(d | ξ)

The prior distribution in this study is defined as a grid
of cells with a uniform distribution within each cell

p(m) =
N⋃

i=1
U

(
m(i) − 0.5dm, m(i) + 0.5dm

)
p(m(i))

(19)

where N is the number of cells in the grid, dm is the
grid spacing, U

(
m(i) − 0.5dm, m(i) + 0.5dm

)
is a uni-

form distribution covering the i-th cell, and p(m(i)) is
the prior probability of the i-th cell. The data likelihood
is assumed to be Gaussian

(20)p(d | m, ξ) = N (d | f(m, d, ξ), Σ)
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where f(m, d, ξ) is the forward function (combined for
all data types), and Σ is the covariance matrix of the
data. The covariance matrix is defined as

(21)Σii =


σ2

t (m, di, ξ) if di is travel-time data
σ2

a(m, di, ξ) if di is amplitude data
σ2

b (m, di, ξ) if di is array data

where σt, σa, and σb are the standard deviations of the
travel-time, amplitude, and array data, respectively.
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