A brief exploration of open-source gradient-based
numerical optimization Python libraries for

full-waveform inversion

Oscar Mojica (* 1,2

1Supercomputing Center for Industrial Innovation, SENAI CIMATEC, Salvador, Brazil, 2National Institute of Science and Technology of Petroleum
Geophysics (INCT-GP/CNPQ), Centro de Pesquisa em Geofisica e Geologia (CPGG-UFBA) Instituto de Geociéncias, sala 206-E, Salvador, Brazil

Author contributions: Conceptualization: Oscar Mojica. Methodology: Oscar Mojica. Validation: Oscar Mojica. Formal Analysis: Oscar Mojica. Writing - Original

Draft: Oscar Mojica. Writing - Review & Editing: Oscar Mojica.

Abstract Geoscientists favor Python for its user-friendly interface and scientific packages that support
application implementation. Python’s capabilities make it particularly useful for seismic full waveform in-
version (FWI), which can see its implementation time reduced by making use of its extensive library col-

Production Editor:
Gareth Funning
Handling Editor:

Hongyu Sun

lection. We compare four open-source gradient-based optimization Python packages—scipy.optimize, Copy & Layout Editor:

sotb-wrapper, NLopt, and PyROL—for solving the FWI optimization problem. The comparison is based on the

Abhineet Gupta

packages’ core features, documentation, and learning curves evaluated through the implementation of a 2D

time-domain FWI application, built using the Devito modeling engine along with the aforementioned opti-
mization packages. We detail how one can use a particular solver from each package for the solution of a
bound-constrained optimization problem such as FWI. The open-source FWI template models used to obtain

the numerical results are provided.

1 Introduction

Full-Waveform Inversion (FWI) of seismic data is a tech-
nique that allows for the estimation of high-resolution
subsurface models. It is formulated in its classic form
as the minimization of a misfit function defined as the
fit to the data through the /-2 norm of the residuals
and tends to be a highly nonlinear inverse problem
(Virieux and Operto, 2009; Bunks et al., 1995). Typi-
cally, such minimization is achieved using local opti-
mization techniques, as global optimization methods
are hindered by the large number of model parame-
ters involved. The technology was initially pioneered by
Lailly and Bednar (1983) and Tarantola (1984), and later
reintroduced by Pratt (1999). Since its reintroduction in
the late nineties, significant research efforts have been
directed towards addressing its recognized limitations,
particularly focusing on mitigating the cycle skipping
phenomenon (Li and Demanet, 2016; Hu et al., 2018).
These efforts, combined with the remarkable growth
of computational power, have enabled the technique to
advance to the point where its application in real data
has become both technically and commercially feasi-
ble (Michell et al., 2017; Shen et al., 2017; Wang et al.,
2019; Li et al., 2023). Despite this achievement, ongoing
research continually seeks further enhancements and
refinements, leveraging a variety of software sources
including in-house proprietary, commercial solutions,
and open-source initiatives. In this latter realm, Python
prominently stands out as the primary choice for soft-

*Corresponding author: oscar.ladino@fieb.org.br

Recei
September 30,
Accepted:

July 25,2025
Published:

August 19, 2025

2024

ware development. It emerges as a formidable ally to
geoscience professionals and students (undergraduate
or graduate) due to its versatility, ease of use, and ro-
bust library support. Its open-source nature also fos-
ters collaboration and knowledge-sharing within the
scientific community, making it an ideal platform for
advancing research in different fields of geosciences.
With an extensive collection of scientific computing
libraries, including several geoscience-related ones
(see https://github.com/softwareunderground/awesome-
open-geoscience), Python provides essential tools for
developing FWI implementations. Simply put, achiev-
ing a functional implementation of a traditional FWI
scheme, requires the integration of two main building
blocks: a wave propagator tool for both forward and ad-
joint wave equations, alongside an optimization frame-
work that drives the iterative estimation process. As
an outstanding example in the first block we can cite
the Devito package (Louboutin et al., 2019), a domain-
specific language for implementing high-performance
finite-difference partial differential equation solvers.
On the other hand, the second block presents multiple
alternatives, which offer abundant possibilities. More-
over, there exist frameworks designed to seamlessly in-
tegrate other tools from these two categories, streamlin-
ing FWIworkflows (Farris et al., 2023; Thrastarson etal.,
2022), as well as Python-based FWI packages (Mardan
et al., 2023; Modrak et al., 2018; Hewett and Demanet,
2017).

This article reviews some of the options available
for the second block, with a particular focus on those

SEISMICA | ISSN 2816-9387 | volume 4.2 | 2025

https://doi.org/10.26443/seismica.v4i2.1475
https://orcid.org/0000-0003-1358-8344
https://github.com/softwareunderground/awesome-open-geoscience
https://github.com/softwareunderground/awesome-open-geoscience

SEISMICA |

that employ local gradient optimization methods. De-
spite the variety of frameworks, there remains a lack
of comprehensive comparative studies. Such analyses
are crucial for helping researchers and practitioners se-
lect the most suitable tool for their specific needs, while
also identifying gaps where current solutions may fall
short. We examine scipy.optimize (Virtanen et al.,
2020), sotb-wrapper (Mojica, 2022), NLopt (Johnson,
2007), and PyROL by implementing a 2D time-domain
FWI. We choose a 2D time-domain FWI experiment be-
cause it is simple enough to illustrate the applicability
of the freely available optimization software to address
the inversion. While this choice highlights simplic-
ity, it’s worth noting that the most of the algorithms in
the optimization frameworks are implemented in effi-
cient, low-level languages like C, C++ and Fortran, mak-
ing them equally applicable to more complex 3D sce-
narios. Although optimization frameworks other than
these four exist (note that there are also various deep
learning frameworks with gradient optimization meth-
ods available), we are restricting ourselves to the four
to ensure manageable analysis. These four open-source
frameworks offer powerful capabilities for serious mul-
tivariate optimization problems. Our aim is to propose
a comprehensive comparison between the aforemen-
tioned optimization frameworks and provide guidance
to practitioners for when to use or not use a particular
framework.

2 Optimization frameworks

2.1 scipy.optimize

scipy.optimize is a sub-module within the SciPy li-
brary, which is a fundamental package for scientific
computing in Python. scipy.optimize provides a
collection of functions for minimizing (or maximizing)
objective functions, possibly subject to constraints. It
also includes solvers for nonlinear problems (with sup-
port for both local and global optimization algorithms),
linear programming, constrained and nonlinear least-
squares, root finding, and curve fitting .

Key features: The module offers local search via the
minimize () function, which takes as input the objec-
tive function that is being minimized and the initial
guess from which to start the search and returns an
OptimizeResult object that summarizes the success
or failure of the search and the details of the solution
if found. Optional arguments can be provided, such as
the bounds on the input variables, functions for com-
puting the first and second derivatives of the function,
and any constraints on the inputs. The “method” pa-
rameter of the minimize () function enables the selec-
tion of a particular optimization approach for the local
search. A variety of widely-used local search algorithms
are available, including:

* Nelder-Mead Algorithm
Mead').

(method="Nelder-

« Newton’s Method (method="'Newton-CG"').

Thttps://docs.scipy.org/doc/scipy/reference/optimize.html

| Open-Source Gradient-Based Optimization Tools in Python for Full-Waveform Inversion

« Powell’'s Method (method="'Powell"').

+ Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algo-
rithm (method="'BFGS").

« I-BFGS-B Algorithm (method='L-BFGS-B'),
which is a limited memory version of BFGS that
allows the incorporation of “box” constraints.

The Nelder-Mead, Powell, 1-BFGS-B, and Truncated
Newton (TNC) methods are viable options for opti-
mization problems with simple bound constraints,
with Nelder-Mead and Powell specifically not relying
on gradient information. Note that the Conjugate
Gradient (CG) method, widely used for FWI, is also
available in SciPy; however, the version provided is
limited to unconstrained minimization. A compre-
hensive list of these algorithms and their character-
istics can be found in the SciPy documentation at
https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.minimize.html#scipy.optimize.minimize.
The line search used in I-BFGS-B is the More-Thuente
method (Moré and Thuente, 1994), which seeks to
satisfy the Wolfe conditions through a series of polyno-
mial interpolation steps. The line search in TNC uses a
safeguarded cubic polynomial interpolation (Gill and
Murray, 1979; Nash, 1985).

Documentation: The module provides comprehen-
sive documentation with detailed explanations of each
optimization algorithm, including usage examples and
guidelines for choosing appropriate methods for differ-
ent types of problems.

2.2 sotb-wrapper

Sotb-wrapper (Mojica, 2022) is a a Python binding im-
plementation of the Seiscope optimization toolbox li-
brary (Métivier and Brossier, 2016), that provides a com-
plete coverage of Seiscope toolbox Fortran library APIin
Python. Python bindings to the Seiscope toolbox were
created using ctypes®. The ctypes bindings provide di-
rect access from Python to the gradient-based subrou-
tines in the Seiscope optimization toolbox.

Key features: The sotb-wrapper module contains a
main sotb_wrapper class that includes functions in-
corporating both first-order methods (steepest-descent
and nonlinear conjugate gradient) and second-order
methods (limited memory BFGS or [-BFGS and Trun-
cated Newton) for solving large-scale nonlinear opti-
mization problems. These implementations are bol-
stered by an efficient line-search strategy to ensure ro-
bustness. Sotb-wrapper has been designed to mirror
the functionality of Seiscope optimization toolbox in
Python, facilitating seamless integration with any com-
putational code requiring the resolution of such large-
scale minimization problems. Examples in geophysics
include traveltime tomography, least-squares migration
and FWI. Sotb-wrapper ensures the same benefits as
the original toolbox. Firstly, it maintains its key fea-
ture: the principle of the reverse communication pro-
tocol, which separates routines related to the problem’s

Zhttps://docs.python.org/3/library/ctypes.html

SEISMICA | volume 4.2 | 2025

https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
https://docs.python.org/3/library/ctypes.html

SEISMICA |

physics from those concerned with minimization. Fol-
lowing this principle, the optimization routine com-
municates with the user-defined function, which man-
ages the minimization process through a do while loop.
At each iteration, the routine requests quantities such
as the objective function, gradient, or Hessian-vector
product, based on an input/output variable. The val-
ues of this variable determine the specific actions to be
taken, which vary depending on the choice of optimiza-
tion routine. This separation provides greater flexibil-
ity in code development and maintenance, as changes
can be made to either the physics or optimization com-
ponents independently. Moreover, the framework re-
tains the ability to easily switch between different op-
timization algorithms, reducing the complexity of im-
plementing second-order methods and ultimately im-
proving computational efficiency, just as in the original
toolbox. An important feature of the Seiscope toolbox,
as well as the sotb-wrapper, is the inclusion of precon-
ditioned versions of the optimization algorithms. The
sotb-wrapper includes four distinct optimization meth-
ods, with separate implementations for preconditioned
and non-preconditioned versions in certain cases:

» For Steepest Descent and Nonlinear Conjugate
Gradient, single functions support both precondi-
tioned and non-preconditioned variants.

» For 1-BFGS and Truncated Newton methods, pre-
conditioned and non-preconditioned versions are
implemented as separate functions. This results in
a total of six functions available.

Because the FWI problem is poorly conditioned,
gradient-based methods suffer from a slow convergence
rate unless preconditioning techniques are employed.
Preconditioning is typically achieved by creating an eas-
ily invertible approximation of the Hessian matrix. One
of the simplest forms of this approximation involves us-
ing only the diagonal elements of the Hessian. A fairly
common choice to approximate the diagonal elements
of the Hessian is by means of the pseudo-Hessian ap-
proach proposed by Shin et al. (2001).

Documentation: Sotb-wrapper has basic tutorials on
its GitHub repository that are well-suited for novice
users. Its API comes with comprehensive documen-
tation provided through docstrings. These can be ac-
cessed conventionally using the help() command at
the interactive Python prompt upon instantiating a
sotb_wrapper object. For instance, you can type
“help(soth.PSTD)” to access documentation specific to
the preconditioned steepest-descent method.

2.3 PyROL

PyROL, available at https://github.com/trilinos/Trilinos/
tree/master/packages/rol/pyrol, serves as an interface
between Python and the Sandia National Laboratory’s
Rapid Optimization Library (ROL). ROL (Kouri et al.,
2022) stands as a robust C++ library designed for nu-
merical optimization tasks. Offering a wide array of
cutting-edge optimization algorithms, ROL seamlessly
integrates into diverse applications. Its versatile pro-
gramming interface accommodates various computa-

3

| Open-Source Gradient-Based Optimization Tools in Python for Full-Waveform Inversion

tional hardware, including heterogeneous many-core
systems featuring both digital and analog accelerators.
ROL has been used with success across a spectrum of
domains, such as optimal control, optimal design, in-
verse problems, image processing, and mesh optimiza-
tion. It's worth noting that there is a separate project
available at https://github.com/angus-g/pyrol, which also
aims to facilitate the use of the Trilinos ROL library from
Python.

Key features: ROL’s core design revolves around its ab-
stract linear algebra interface, primarily implemented
through the Vector class. This feature enables the uti-
lization of any ROL algorithm with various data types,
such as C++ std::vector, MPI-parallel data struc-
tures (e.g., Epetra, Tpetra, PETSc, HYPRE vectors), and
GPU data structures (e.g., Kokkos, ArrayFire), among
others. Notably, all ROL algorithms operate in a matrix-
free manner, relying on user-defined applications of
linear and nonlinear operators to vectors, as well as
their inverses, through ROL’s functional interface. Ad-
ditionally, ROL offers a specialized middleware called
SimOpt for simulation-constrained optimization. In
practice, users initially define vectors and functions,
then an optimization problem, and utilize optimization
solvers within ROL’s algorithmic interface to tackle op-
timization challenges effectively. ROL also offers an
extensive repertoire of established and innovative al-
gorithms for smooth optimization. It categorizes opti-
mization problems into four fundamental types: Type U
for unconstrained problems, Type B for problems with
bound constraints, Type E for problems with equality
constraints, and Type G for problems with general con-
straints. Each problem type may also incorporate linear
constraints.

Documentation: As of now, comprehensive documen-
tation for the Python interface is still in progress. How-
ever, users can make use of the C++ examples located
in the source directory for practical guidance. These
examples, located at Trilinos/packages/rol/tutorial, pro-
vide demonstrations of various optimization scenar-
ios, including unconstrained optimization, constrained
optimization, and simulation-constrained optimization
using ROL’s SimOpt interface. = While maintainers
aimed for a release of a user guide by the end of 2023, it
seems it is not yet available.

2.4 NLopt

The NLopt library (Johnson, 2007), short for Non-Linear
Optimization, is an open-source library for nonlinear
optimization. It provides a wide range of algorithms
for solving constrained and unconstrained optimiza-
tion problems, including (non)gradient-based local and
global optimization methods. NLopt is written in C,
but it includes interfaces for various programming lan-
guages, including Python.

Key features: NLopt provides a versatile interface ac-
cessible from a large array of programming languages.
With this unified interface, users can seamlessly switch
between different algorithms by adjusting a single pa-
rameter. It supports large-scale optimization tasks, with
certain algorithms capable of handling millions of pa-

SEISMICA | volume 4.2 | 2025

https://github.com/trilinos/Trilinos/tree/master/packages/rol/pyrol
https://github.com/trilinos/Trilinos/tree/master/packages/rol/pyrol
https://github.com/angus-g/pyrol

SEISMICA |

rameters and thousands of constraints. NLopt offers
a wide array of algorithms for both global and local
optimization, catering to diverse optimization needs.
These algorithms range from derivative-free methods
relying solely on function values to those utilizing user-
supplied gradients. For instance, MMA (Method of
Moving Asymptotes), SLSQP, and Low-storage BFGS are
some of the options available for local gradient-based
optimization, while DIRECT, CRS (Controlled Random
Search), and MLSL (Multi-Level Single-Linkage) are
popular choices for global optimization. Addition-
ally, NLopt encompasses algorithms suitable for un-
constrained optimization, bound-constrained optimiza-
tion, as well as general nonlinear inequality and equal-
ity constraints. In https://nlopt.readthedocs.io/en/latest/
NLopt_Algorithms/, a comprehensive list of available al-
gorithms is provided, along with descriptions, links to
the original code, and references to the corresponding
papers, including details on which algorithms support
specific types of constraints. As free/open-source soft-
ware under the GNU LGPL, NLopt provides accessibility
and flexibility for various applications.

Documentation: NLopt offers extensive documen-
tation®, which includes in-depth explanations of the
Python API*. Additionally, it offers a tutorial that
demonstrates the library’s functionality across various
programming languages through straightforward ex-
amples.

3 Numerical experiment

We ran a low-frequency FWI using the Marmousi2
model (Martin et al., 2006), which was discretized into
88x426 grid points with a 40-m grid interval. We
smoothed both the true and the initial models, since it
was a low-frequency experiment (Fig. 1). Seismic mod-
eling was performed to produce experimental synthetic
data using a Ricker wavelet with a peak frequency of
4 Hz. We used 16 shots and 426 receivers evenly dis-
tributed across surface of the model. FWI with box
constraints was executed separately for each frame-
work employing the 1-BFGS algorithm, which is com-
mon across all packages and tailored for the specific
constrained optimization problem at hand. The lim-
ited memory BFGS (I-BFGS) is one of the popular meth-
ods for solving the FWI problem (Luo et al., 2023; Shoja
et al., 2018; Fabien-Ouellet et al., 2017). Its implemen-
tation is almost identical to that of the standard BFGS
method, the only difference is that the inverse Hessian
approximation is not formed explicitly, but defined by
a small number of BFGS updates. We refer to Nocedal
(1980) and Liu and Nocedal (1989b) for a detailed review
of the 1-BFGS method, along with the more comprehen-
sive discussion in Nocedal and Wright (1999).

In the subsequent subsections, we provide a gen-
eral overview of the steps involved in setting up and
solving FWI using each framework, along with abbre-
viated code snippets illustrating these steps. In the
code snippets, ellipses (...) have been strategically in-

3https://nlopt.readthedocs.io/en/latest/
“https://nlopt.readthedocs.io/en/latest/NLopt_Python_Reference/

| Open-Source Gradient-Based Optimization Tools in Python for Full-Waveform Inversion

Distance (km)

Depth (km)

w

Figure1l (a) Marmousi2 model. (b) Initial model.

cluded to omit certain instructions due to space con-
straints. However, these omissions do not compro-
mise the understanding of the presented code syntax.
The complete codes are available at https://github.com/
ofmla/optim_python_fwi. Readeris invited to refer to the
repository to see these code snippets in the context of
the full FWI implementation, as well as to consult the
documentation of each framework to explore additional
customization options and advanced functionalities.

3.1 scipy.optimize

According to the documentation of
scipy.optimize.minimize, various options ex-
ist for performing bounds-constrained minimization.
By selecting the 1-BFGS-B method (Byrd et al., 1995),
FWI can be efficiently addressed by simply invoking the
minimize () function, using the bounds parameter.
Initially, we define a function that returns both the
objective function and its gradient, computed through
the adjoint-state method via Devito. In this specific
function design, the jac parameter, which is an op-
tional argument to minimize (), must be a Boolean,
configured to “True”. It's important to note that this
function, along with the initial guess, are mandatory
arguments for minimize(). Additionally, 1-BFGS-B
accepts a callback function, enabling operations on
the solution after every iteration. This feature can
be utilized, for instance, to monitor the true relative
solution error in experiments involving synthetic
models. Another important aspect of 1-BFGS-B in
SciPy is that it expects the gradient to be provided
as a flat array composed of 64-bit floats. Therefore,
even though the forward and adjoint computations in
the function are done in float32, casting the gradient
to float64 is required. Code for solving FWI by using
scipy.optimize.minimize is shown in Listing 1.
Note the options parameter, a dictionary of solver
options where we set maxiter, an integer denoting the
maximum number of iterations to execute and disp,
a boolean flag that enables to receive convergence
notifications. The outcome of the optimization is
encapsulated within result, an OptimizeResult
object. The attribute x attached to it is the array
representing the solution. One of the 1-BFGS-specific
options is the parameter m that determines the number
of BFGS corrections saved. In 1-BFGS-B, this parameter
corresponds to the maxcor variable, listed within
the options dictionary. Users can view detailed

SEISMICA | volume 4.2 | 2025

https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
https://nlopt.readthedocs.io/en/latest/
https://nlopt.readthedocs.io/en/latest/NLopt_Python_Reference/
https://github.com/ofmla/optim_python_fwi
https://github.com/ofmla/optim_python_fwi

SEISMICA |

information about the key-value pairs in the options
dictionary for a specific optimization method using
the show_options function. For example, calling
scipy.optimize.show_options(solver="'min-

imize', method='L-BFGS-B') displays additional
options available for the -BFGS-B method. Note that,
besides specifying maxiter, other stopping criteria
can also be configured in the options dictionary.

Listing 1 Syntax for solving FWI problem with
scipy.optimize. As of the submission of this
manuscript, the SciPy version is 1.14.1. In later versions of
SciPy, the disp keyword has been deprecated.

scipy.optimize minimize
numpy as np

Initial guess
vO= get_vp(...) # Get start vp - hdn. impl.
x=1.0/(vO.reshape(-1).astype(np.float32))*x2

Define bbox constrs. on the solution.

vmin=1.4

vmax=4.0

bounds=[(1.0/vmax**2, 1.0/vminxx2)
(x.size)]

out = minimize(loss, x, jac=True,
method="'L-BFGS-B',
bounds=bounds,
options={'disp': True,
'maxiter': 20,
'maxcor':10})

3.2 sotb-wrapper

All optimization algorithms within sotb.wrapper allow
you to specify bounds for the variables. Each function
comes with parameters called 1b and ub, which let you
define lower and upper bounds for the solution values.
By default, if users do not specify any bounds, the None
value is used. Unlike scipy.optimize, where solv-
ing FWI is as simple as making a function call, here
users have a bit more responsibility in designing the op-
timization process. To begin, users create an instance
of asotb_wrapper class. Then, they compute the cost
and gradient associated with their initial guess. The ini-
tial cost along with the maximum iteration number pa-
rameters are mandatory in the set_inputs function,
which sets up the optimization parameters. Once the
parameters are configured, users need to set up an exit-
controlled optimization loop. This loop continuously
calls an optimization solver as long as a flag variable
remains different from 2 and 4. A value of 2 indicates
successful convergence of the minimization process,
while a value of 4 indicates a failure in the line-search
process. This flag variable is part of the reverse com-
munication protocol, dictating what actions the mini-
mization routine should take. It must be initialized to
0 before usage in the algorithm routine within the op-
timization loop. A flag value of 1 indicates that the
line-search process is ongoing and necessitates a fresh
evaluation of the objective function along with its gradi-
ent to proceed. The implementation of FWI using sotb-

5

| Open-Source Gradient-Based Optimization Tools in Python for Full-Waveform Inversion

wrapper is demonstrated in Listing 2. Within the 1-BFGS
method in sotb-wrapper, if the 1 parameter is not spec-
ified in the set_inputs function, the default number
of factors (most recent vector pairs) utilized to implicitly
represent the inverse Hessian is set to 10.

Listing 2 Syntax for solving FWI problem with sotb-
wrapper.

numpy as np
sotb_wrapper interface

Initial guess and bbox constraints

vO= get_vp(...) # Get start vp - hdn. impl.
x=1.0/(vO.reshape(-1).astype(np.float32))*x2
Dimension and first flag initialization
n,flag = x.size,0

vmin,vmax = 1.4,4.0 # Min and max vp values
Lower and upper bound arrays

lb=np.full(n, 1.0/vmax*x*2, dtype=np.float32)
ub=np.full(n, 1.0/vminx*2, dtype=np.float32)

Create an instance of the SEISCOPE
optimization toolbox (sotb) Class.
sotb = dinterface.sotb_wrapper ()

Define fields of the UserDefined derived
type in Fortran (ctype structure).

print_flag, debug = 1, False

niter_max, 1 = 20, 10

Computation of the cost and gradient
associated with the initial guess
fcost, grad = loss(x, ...) # hdn. impl.

parameter initialization
sotb.set_inputs(
fcost, niter_max,
print_flag=print_flag,
1=1, debug=debug

)
flag != 2 flag != 4:
flag = sotb.LBFGS(n, x, fcost, grad,
flag, lb, ub)
flag == 1:
compute cost and gradient at point x
fcost, grad = loss(x, ...)
3.3 PyROL

PyROL allows for solving bound-constrained problems
(Type B) using various methods, including projected
gradient and projected Newton methods, as well as
primal-dual active set methods. Implementing FWI
with PyROL is more complex and requires several steps,
but ultimately FWI is solved by calling the solve()
method from the Solver class. Users must define the
initial guess x (as a NumpyVector object) and create
a subclass of the Objective class. This subclass in-
cludes its own versions of the value and gradient
methods. The value method computes the cost as-
sociated with x throughout the optimization process,
while the gradient method calculates the correspond-
ing gradient. Following these definitions, the user must
create instances of the subclass of FWIObjective and
Bounds class. The Bounds class is instantiated by

SEISMICA | volume 4.2 | 2025

SEISMICA |

providing two arguments: the lower and the upper
bounds on x, i.e., bnd = Bounds(lower, upper),
where lower and upper are both NumpyVector ob-
jects. The final step involves creating an optimization
problem via the Problemclass and then add the bounds
with its addBoundConstraint method. This problem
can then be resolved using the solve method of an in-
stance of the Solver class. The code block in Listing 3
illustrates the implementation of FWI using PyROL.

Listing3 Syntax for solving FWI problem with PyROL.

numpy as np
pyrol (getCout, Objective,
Problem, Solver, Bounds)
pyrol.pyrol.Teuchos
pyrol.vectors

ParameterList
NumPyVector

FWIObjective(Objective):
__init__(self, ...):
hdn. impl.
() .__init__()

value(self, x, tol):
f = ... # hdn. impl.
f

gradient(self, g, x, tol):
gl:] = # hdn. impl.

Initial guess and box constraints

vO = get_vp(...) # Get start vp - hdn. impl.

x = NumPyVector(np.array(1.0/(v0.reshape(-1).
astype(np.float32))*%2))

lower = NumPyVector (np.full(n, 1./vmax**2,
dtype=np.float32))

upper = NumPyVector (np.full(n, 1./vminxx*2,
dtype=np.float32))

Configure parameter list
params = build_parameter_list()

Set the output stream.
stream = getCout()

Set up the FWI problem
objective = FWIObjective(...)
bnd = Bounds(lower, upper)
problem = Problem(objective, x)
problem.addBoundConstraint(bnd)

Solve
solver = Solver(problem, parameters)
solver.solve(stream)

3.4 NLopt

NLopt comprises various gradient-based optimization
algorithms, categorized by the named constants L (for
local) and D (for gradient-based). In this case, we
opted for 1-BFGS algorithm (Liu and Nocedal, 1989a),
denoted in NLopt’s terminology as NLOPT_LD_BFGS.
The core of the NLopt API centers on an instance of
the nlopt.opt class. Through the methods provided
by this object, users define all the optimization pa-
rameters, including dimensions, algorithm selection,
stopping criteria, constraints, objective function, and

6

| Open-Source Gradient-Based Optimization Tools in Python for Full-Waveform Inversion

more. The user is required to create an instance
variable opt of the nlopt.opt class with algorithm
and dimensionality of the problem passed as argu-
ments. Then define a function f, which takes two
arguments, x and grad (the gradient of the cost func-
tion with respect to the optimization parameters at
x). It modifies grad in-place and also provides the
value of the function at the point x. To minimize the
objective function, one should specify the objective
function by calling opt.set_min_objective(f).
Additionally, set the lower bounds with
opt.set_lower_bounds (1lb) and the upper bounds
with opt.set_upper_bounds(ub), where “Ib” and
“ub” are arrays of length “n”, matching the dimen-
sion passed to the nlopt.opt constructor. Listing 4
displays the code demonstrating FWI resolution with
the use of NLopt. Different stopping criteria can be
utilized. In the code block in Listing 4, the maxi-
mum number of function evaluations is set via the
set_maxeval method. The number 1 of stored vec-
tors utilized to implicitly represent the inverse Hessian
is set with opt.set_vector_storage(1l). Finally,
the optimization process is initiated by invoking the
opt.optimize method.

Listing4 Syntax for solving FWI problem with NLopt.

numpy as np
nlopt

myfunc(x, grad):
grad.size > 0:
fcost, grad[:] = loss(x) # hdn. impl.
np.float64(fcost)

Initial guess and bbox constraints

v0 = get_vp(...) # Get start vp - hdn. impl.

x = 1.0/(v0.reshape(-1).astype(np.float32))
*%x2

grad = np.zeros_like(x, dtype=np.float32)

vmin,vmax = 1.4,4.0 # Min and max vp values
Lower and upper bound arrays
b = np.full(n, 1.0/vmax**2, dtype=np.float32

)
ub = np.full(n, 1.0/vmin**2, dtype=np.float32
)

opt = nlopt.opt(nlopt.LD_LBFGS,
opt.set_min_objective(myfunc)
opt.set_lower_bounds(1lb)
opt.set_upper_bounds (ub)
opt.set_maxeval(35)
opt.set_vector_storage(10)

(x.size))

Optimization
minx = opt.optimize(x)

4 Onthe FWIlresults

The reconstructed FWI models obtained by using the 1-
BFGS algorithm available in the different optimization
frameworks are shown in Fig. 2. The prevalent termi-
nation criterion among all frameworks, with the excep-
tion of NLopt, is the maximum number of iterations,

SEISMICA | volume 4.2 | 2025

SEISMICA |

which was set to 20 iterations. The number m of cor-
rection pairs stored was set to 10 in all cases. Addition-
ally, parameters that were not available in all frame-
works or that users could not explicitly set were left
at their default values. To ensure a fair comparison
with NLopt, we set its termination criterion based on
the highest number of function evaluations observed
among the other frameworks. Specifically, we consid-
ered the maximum number of function evaluations per-
formed by the sotb-wrapper 1-BFGS, which also imposes
weak Wolfe conditions in its line search strategy. As a
result, the NLopt optimization process was set to stop
after 34 function evaluations. SciPy’s 1-BFGS-B uses a
line search method based on cubic interpolation, which
determines a step length that satisfies the strong Wolfe
conditions—ensuring that the gradient magnitude de-
creases sufficiently. In contrast, the 1-BFGS implemen-
tation in the NLopt library attempts to find a point that
satisfies the weak Wolfe conditions by using cubic in-
terpolation (Luksan et al., 2007). The I-BFGS imple-
mentation in PyROL employs a simple backtracking line
search that only enforces the sufficient decrease con-
dition. Meanwhile, the soth-wrapper I-BFGS computes
step lengths that satisfy the weak Wolfe conditions using
a bracketing strategy proposed in Bonnans et al. (2003).
Fig. 3illustrates the convergence history, displaying the
normalized objective function’s value against the count
of function evaluations. It is noteworthy that, excluding
the NLopt library, the data presented in the figure cor-
respond to the cumulative number of function evalua-
tions per iteration for the other libraries. In these cases,
each iteration consistently produces a lower function
value than its predecessor, indicative of a descending
trend. However, fluctuations in function values may oc-
cur within each iteration, primarily attributable to line
search techniques. This variability is particularly evi-
dent in the NLopt case, where individual function eval-
uations exhibit fluctuations, especially during the ini-
tial stages of the inversion process. In terms of com-
putational cost, the 1-BFGS implementation in PyROL
is more expensive than initially expected, despite us-
ing only the sufficient decrease condition. This is be-
cause the computation of the objective function is de-
coupled from the gradient calculation, meaning the for-
ward pass used to compute the objective function is not
reused in the gradient computation. As a result, Py-
ROL requires 21 gradient evaluations (forward and ad-
joint) plus an additional 28 forward computations: 8
in the first iteration and at least 1 in subsequent itera-
tions. In contrast, the I-BFGS implementations in the
sotb-wrapper, NLopt, and SciPy frameworks are more
efficient, as they take advantage of a function that si-
multaneously computes both the objective function and
its gradient, eliminating the need for additional for-
ward passes. The sotb-wrapper and NLopt implemen-
tations required 34 gradient evaluations (with the stop-
ping criterion for the NLopt 1-BFGS set to match the
number of function evaluations performed by the sotb-
wrapper 1-BFGS). Meanwhile, SciPy’s I-BFGS-B imple-
mentation computed 26 gradient evaluations, making
it the fastest in terms of gradient evaluations among
the compared methods. Although the line-search al-

7

| Open-Source Gradient-Based Optimization Tools in Python for Full-Waveform Inversion

gorithms in PyROL, SciPy, and sotb-wrapper required
multiple internal iterations in the first minimization
step to adjust the step length, SciPy’s I-BFGS-B still
outperformed the other methods in terms of gradient
evaluations, making it the most computationally effi-
cient among the frameworks tested. The inversions
took an average of 04:01, 05:20, 05:52, and 06:20 min-
utes when using the scipy.optimize, sotb-wrapper,
NLopt, and PyROL frameworks, respectively. All exper-
iments were conducted on a Dell workstation equipped
with an Intel(R) Xeon(R) E5-1607 processor running
at 3.00 GHz with 16 GB of RAM. The processor has
four cores, and the operating system was Ubuntu 22.04.
Shots were distributed across the four cores during the
inversions. While our comparison primarily examines
specific characteristics of optimization packages rather
than the methods themselves, it’s notable that all tested
I-BFGS implementations successfully reconstructed ac-
ceptable models. However, in this particular case, it’s
worth emphasizing that SciPy’s 1-BFGS-B method pro-
duced the most accurate final result.

Distance (km)
8

Depth (km)

Depth (km)

Depth (km)

-

Depth (km)
~N
w

——
e, I

Figure 2 Estimated velocity model using different opti-
mization frameworks. (a) scipy.optimize, (b) sotb-
wrappetr, (c) PyROL, and (d) NLopt.

w

5 Discussion and conclusions

We examine and discuss various open-source optimiza-
tion software tools tailored for FWI (although they can
also be used for the inversion of various geophysical
data), all of which are built with Python interfaces.
These include scipy.optimize, sotb-wrapper, Py-
ROL, and NLopt. Additionally, we assessed the inver-
sion capabilities of each package through a simple nu-
merical experiment using the Marmousi2 model and
employing identical input data and algorithms.

PyROL distinguishes itself as the most comprehen-
sive framework due to its extensive collection of cutting-
edge optimization algorithms. Its versatility is evident

SEISMICA | volume 4.2 | 2025

SEISMICA |

10° —&— sotb-wrapper
scipy.optimize
—%— PyROL

NLopt

10714

Relative objective function (log scale)

6 é 1‘0 1‘5 2‘0 2’5 3b 3‘5
Number of function evaluations
Figure 3 Evaluation of the objective function for four dif-
ferent FWI tests shown in Fig. 2

in its successful application across a wide range of
fields, including geophysics. scipy.optimize isalso
a valuable resource for anyone working on optimiza-
tion problems in Python, offering a wide range of meth-
ods to suit different scenarios, such as constrained op-
timization. NLopt provides a unified interface for var-
ious optimization routines available online, alongside
original implementations of different algorithms. It
supports Python and also offers a wide range of opti-
mization algorithms for local optimization tasks. Sotb-
wrapper provides Python bindings for Seiscope Opti-
mization toolbox, featuring gradient-based algorithms
tailored for large-scale geophysical problems.

In terms of documentation scipy.optimize and
NLopt stand out. scipy.optimize has extensive and
detailed resources with simple examples. In contrast,
while the NLopt framework boasts comprehensive doc-
umentation, it only offers a basic Python example. Sotb-
wrapper has basic tutorials on its GitHub repository that
are well-suited for novice users. PyROL’s documenta-
tion website is under construction and not yet available,
but basic examples on its repository can assist users
in gaining a better understanding of the package’s fea-
tures.

When it comes to the learning process,
scipy.optimize’s documentation proves to be a
valuable resource, enabling a swift and efficient start.
Sotb-wrapper’s examples comprehensively encom-
pass the necessary elements for solving optimization
problems with the package, making it remarkably user-
friendly. On the other hand, while PyROL offers an
impressive array of features, its lack of documentation
can prove to be a hurdle for beginners, demanding
extra perseverance to fully comprehend and harness
its capabilities. Regarding NLopt, although there are
not many examples, given its simplicity, understanding
how it works and maximizing its potential is not very
difficult.

Our numerical experiment demonstrated accurate
model resolution across all tested optimization pack-
ages (refer to Fig. 2). However, variations arose due to
the distinct characteristics of each package. This, along
with the fact that algorithms, even if they were the same,

| Open-Source Gradient-Based Optimization Tools in Python for Full-Waveform Inversion

had been implemented differently, led to the aforemen-
tioned differences.

An important aspect not explicitly covered in
our comparison is the evolution and maintenance
of the optimization frameworks. Among the four
Python-based gradient-based optimization libraries
analyzed—scipy.optimize, NLopt, PyROL, and
sotb-wrapper—three are actively maintained and
continue to evolve, while one has remained largely
static. scipy.optimize benefits from being part of
the broader SciPy ecosystem, which is a fundamental
library in scientific computing with continuous con-
tributions from a large developer community. NLopt,
despite being an independent project, has gained
substantial popularity across various scientific and
engineering fields, leading to ongoing updates and im-
provements. PyROL, as a Python wrapper for ROL, has
a clear path for continued development and enhance-
ment. While its own updates may not be as frequent,
PyROL benefits from ROL’s ongoing maintenance and
improvements, given that ROL is a well-established
optimization package actively developed by a U.S.
national laboratory. These three frameworks, being
part of larger, well-recognized projects, are expected to
receive continued support and refinements over time.
In contrast, soth-wrapper has seen limited recent devel-
opment, as its functionalities are well-established and
were specifically designed with large-scale geophysical
optimization problems in mind. Unlike the other three
frameworks, which are widely used across multiple
disciplines, sotb-wrapper remains known within the
geophysics community. Nonetheless, while it may
not exhibit the same level of ongoing evolution, its
existing capabilities remain relevant for the problems
it was designed to address. Moreover, as open-source
libraries, they are inherently designed for extensi-
bility, allowing users with programming expertise to
modify and distribute the code in accordance with
their licenses, thereby adding new features, enhancing
existing ones, or developing entirely new applications
tailored to specific requirements.

Beyond maintainability, another crucial aspect to
consider is the scalability of these frameworks for han-
dling large-scale problems efficiently. While our study
focused on a simplified 2D example, nothing inherently
restricts these optimization frameworks from being ap-
plied to larger 3D experiments. The methodologies and
implementations presented can be directly adapted to
higher-dimensional problems. In our experiments, we
utilized Dask (Rocklin, 2015) and the Distributed Dask li-
brary to efficiently distribute computations across cores
in a workstation, demonstrating that these frameworks
can already leverage parallel execution. For 3D inver-
sions, one could integrate parallel computing frame-
works such as Dask-Jobqueue (https://github.com/dask/
dask-jobqueue) to scale computations across multiple
nodes in an HPC environment.

Although comparative studies like ours are impor-
tant, they are rare. FWI practitioners who wish to uti-
lize Python optimization packages for their research or
applications are confronted with a challenging decision
due to the various available options and the limited sci-

SEISMICA | volume 4.2 | 2025

https://github.com/dask/dask-jobqueue
https://github.com/dask/dask-jobqueue

SEISMICA | SOFTWARE REPORT | Open-Source Gradient-Based Optimization Tools in Python for Full-Waveform Inversion

entific evaluation conducted by the research commu-
nity to compare them. Our study aimed to simplify this
decision-making process and provide guidance to prac-
titioners in selecting the package that best suits their
needs.

Acknowledgements

The author would like to thank CENPES/Petrobras and
ANP for their support of this study under the LDE
project at Senai Cimatec. This work is also partially sup-
ported by the National Institute of Science and Tech-
nology of Petroleum Geophysics (INCT-GP). The author
gratefully acknowledges the contribution of OpenAI’s
ChatGPT for refining the sentence structure and en-
hancing the overall readability of this manuscript.

Data and code availability

The data used in this study is licensed under
the Creative Commons Attribution 4.0 Interna-
tional License. It is part of the SEG Open Data
collection and can be downloaded from https:
//s3.amazonaws.com/open.source.geoscience/open_
data/elastic-marmousi/elastic-marmousi-model.tar.gz.
The code is fully open-source and available at
https://github.com/ofmla/optim_python_fwi.

Competing interests

The author declares that he has no competing interests.

References

Bonnans, J. F., Gilbert, J. C., Lemaréchal, C., and Sagastizabal,
C. A. Numerical Optimization: Theoretical and Practical As-
pects. Springer Berlin Heidelberg, 2003. doi: 10.1007/978-3-
662-05078-1.

Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G. Multiscale seis-
mic waveform inversion. GEOPHYSICS, 60(5):1457-1473, Sept.
1995. doi: 10.1190/1.1443880.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. A Limited Mem-
ory Algorithm for Bound Constrained Optimization. SIAM Jour-
nal on Scientific Computing, 16(5):1190-1208, Sept. 1995. doi:
10.1137/0916069.

Fabien-Ouellet, G., Gloaguen, E., and Giroux, B. A stochastic L-
BFGS approach for full-waveform inversion. In SEG Technical
Program Expanded Abstracts 2017, page 1622-1627. Society of
Exploration Geophysicists, Aug. 2017. doi: 10.1190/segam2017-
17783222.1.

Farris, S., Barnier, G., Biondi, E., and Clapp, R. Pyseis:
A high-performance, user-friendly Python package for GPU-
accelerated seismic modeling and subsurface imaging, Dec.
2023. doi: 10.1190/image2023-3916155.1.

Gill, P. E. and Murray, W. Conjugate-Gradient Methods for Large-

Scale Nonlinear Optimization. Defense Technical Information
Center, Oct. 1979. doi: 10.21236/ada078713.

Hewett, R. J. and Demanet, L. PySIT: Seismic imaging toolbox for
Python. Mass. Inst. Technol., Cambridge, MA, USA, Tech. Rep,
2017. http://pysit.org.

Hu, W., Chen, J.,, Liu, J., and Abubakar, A. Retrieving Low
Wavenumber Information in FWI: An Overview of the

Cycle-Skipping Phenomenon and Solutions. IEEE Sig-
nal Processing Magazine, 35(2):132-141, Mar. 2018. doi:
10.1109/msp.2017.2779165.

Johnson, S. G. The NLopt nonlinear-optimization package. https:
//github.com/stevengj/nlopt, 2007.

Kouri, D., Ridzal, D., von Winckel, G., and Javeed, A. Get ROL-ing:
An Introduction to Sandia’s Rapid Optimization Library. In Pro-
posed for presentation at the International Conference on Contin-
uous Optimization held July 24-28, 2022 in Bethlehem, PA United
States of America. US DOE, July 2022. doi: 10.2172/2004204.

Lailly, P. and Bednar, J. The seismicinverse problem as a sequence
of before stack migrations. In Conference on inverse scattering:
theory and application, pages 206-220. Philadelphia, Pa, 1983.

Li, J., Rusmanugroho, H., Kalita, M., Xin, K., and Dzulkefli,
F. S. 3D anisotropic full-waveform inversion for complex salt
provinces. Frontiers in Earth Science, 11, Apr. 2023. doi:
10.3389/feart.2023.1164975.

Li, Y. E. and Demanet, L. Full Waveform Inversion With Extrapolated
Low Frequency Data. In Offshore Technology Conference Asia,
160TCA. OTC, Mar. 2016. doi: 10.4043/26626-ms.

Liu, D. C. and Nocedal, J. On the limited memory BFGS method for
large scale optimization. Mathematical Programming, 45(1-3):
503-528, Aug. 1989a. doi: 10.1007/bf01589116.

Liu, D. C. and Nocedal, J. On the limited memory BFGS method for
large scale optimization. Mathematical Programming, 45(1-3):
503-528, Aug. 1989b. doi: 10.1007/bf01589116.

Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P. A., Her-
rmann, F. J., Velesko, P., and Gorman, G. J. Devito (v3.1.0): an
embedded domain-specific language for finite differences and
geophysical exploration. Geoscientific Model Development, 12
(3):1165-1187, Mar. 2019. doi: 10.5194/gmd-12-1165-2019.

Luksan, L., Matonoha, C., and Vic¢ek, J. New subroutines for large-
scale optimization. Technical Report Tech. Rep. V-999, ICS AS
CR, Prague, Czech Republic, June 2007. https://asep.lib.cas.cz/
arl-cav/en/detail/?&idx=cav_un_epca*0085718.

Luo, J., Zhou, H., Wu, R.-S., and Huang, X. Salt and subsalt struc-
ture recovery-An envelope-based waveform inversion with lo-
cal angle domain illumination compensation and L-BFGS. GEO-
PHYSICS, 88(4):R453-R467, July 2023. doi: 10.1190/ge02022-
0550.1.

Mardan, A., Giroux, B., and Fabien-Ouellet, G. Pyfwi: A Python
Package for Full-Waveform Inversion and Reservoir Monitoring,
2023. doi: 10.2139/s5rn.4330227.

Martin, G. S., Wiley, R., and Marfurt, K. J. Marmousi2: An elastic
upgrade for Marmousi. The Leading Edge, 25(2):156-166, Feb.
2006. doi: 10.1190/1.2172306.

Michell, S., Shen, X., Brenders, A., Dellinger, J., Ahmed, I., and Fu,
K. Automatic velocity model building with complex salt: Can
computers finally do an interpreter’s job? In SEG Technical Pro-
gram Expanded Abstracts 2017, page 5250-5254. Society of Ex-
ploration Geophysicists, Aug. 2017. doi: 10.1190/segam2017-
17778443.1.

Modrak, R. T., Borisov, D., Lefebvre, M., and Tromp, J. SeisFlows-
Flexible waveform inversion software. Computers &
Geosciences, 115:88-95, June 2018. doi: 10.1016/j.ca-
£e0.2018.02.004.

Mojica, O. F. sotb-wrapper, 2022. doi: 10.5281/ZENODO.7117744.

Moré, J. J. and Thuente, D. J. Line search algorithms
with guaranteed sufficient decrease. ~ACM Transactions on
Mathematical Software, 20(3):286-307, Sept. 1994. doi:
10.1145/192115.192132.

Métivier, L. and Brossier, R. The SEISCOPE optimization toolbox:
A large-scale nonlinear optimization library based on reverse

SEISMICA | volume 4.2 | 2025

https://s3.amazonaws.com/open.source.geoscience/open_data/elastic-marmousi/elastic-marmousi-model.tar.gz
https://s3.amazonaws.com/open.source.geoscience/open_data/elastic-marmousi/elastic-marmousi-model.tar.gz
https://s3.amazonaws.com/open.source.geoscience/open_data/elastic-marmousi/elastic-marmousi-model.tar.gz
https://github.com/ofmla/optim_python_fwi
http://doi.org/10.1007/978-3-662-05078-1
http://doi.org/10.1007/978-3-662-05078-1
http://doi.org/10.1190/1.1443880
http://doi.org/10.1137/0916069
http://doi.org/10.1190/segam2017-17783222.1
http://doi.org/10.1190/segam2017-17783222.1
http://doi.org/10.1190/image2023-3916155.1
http://doi.org/10.21236/ada078713
http://pysit.org
http://doi.org/10.1109/msp.2017.2779165
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
http://doi.org/10.2172/2004204
http://doi.org/10.3389/feart.2023.1164975
http://doi.org/10.4043/26626-ms
http://doi.org/10.1007/bf01589116
http://doi.org/10.1007/bf01589116
http://doi.org/10.5194/gmd-12-1165-2019
https://asep.lib.cas.cz/arl-cav/en/detail/?&idx=cav_un_epca*0085718
https://asep.lib.cas.cz/arl-cav/en/detail/?&idx=cav_un_epca*0085718
http://doi.org/10.1190/geo2022-0550.1
http://doi.org/10.1190/geo2022-0550.1
http://doi.org/10.2139/ssrn.4330227
http://doi.org/10.1190/1.2172306
http://doi.org/10.1190/segam2017-17778443.1
http://doi.org/10.1190/segam2017-17778443.1
http://doi.org/10.1016/j.cageo.2018.02.004
http://doi.org/10.1016/j.cageo.2018.02.004
http://doi.org/10.5281/ZENODO.7117744
http://doi.org/10.1145/192115.192132

SEISMICA |

communication. GEOPHYSICS, 81(2):F1-F15, Mar. 2016. doi:
10.1190/ge02015-0031.1.

Nash, S. G. Preconditioning of Truncated-Newton Methods. SIAM
Journal on Scientific and Statistical Computing, 6(3):599-616,
July 1985. doi: 10.1137/0906042.

Nocedal, J. Updating quasi-Newton matrices with limited stor-
age. Mathematics of Computation, 35(151):773-782, 1980. doi:
10.1090/s0025-5718-1980-0572855-7.

Nocedal, J. and Wright, S. J. Numerical optimization. Springer,
1999. doi: 10.1007/978-0-387-40065-5.

Pratt, R. G. Seismic waveform inversion in the frequency domain,
Part 1: Theory and verification in a physical scale model. GEO-
PHYSICS, 64(3):888-901, May 1999. doi: 10.1190/1.1444597.

Rocklin, M. Dask: Parallel Computation with Blocked algorithms
and Task Scheduling. In Proceedings of the 14th Python in
Science Conference, SciPy, page 126-132. SciPy, 2015. doi:
10.25080/majora-7b98e3ed-013.

Shen, X., Ahmed, I., Brenders, A., Dellinger, J., Etgen, J., and
Michell, S. Salt model building at Atlantis with full-waveform
inversion. In SEG Technical Program Expanded Abstracts
2017. Society of Exploration Geophysicists, Aug. 2017. doi:
10.1190/segam2017-17738630.1.

Shin, C., Jang, S., and Min, D. Improved amplitude preservation for
prestack depth migration by inverse scattering theory. Geophys-
ical Prospecting, 49(5):592-606, Sept. 2001. doi: 10.1046/j.1365-
2478.2001.00279.x.

Shoja, S., Abolhassani, S., and Amini, N. A Comparison be-
tween Time-Domain and Frequency-Domain Full Waveform
Inversion. In 80th EAGE Conference and Exhibition 2018,
Copenhagen2018. EAGE Publications BV, June 2018. doi:
10.3997/2214-4609.201801667.

Tarantola, A. Inversion of seismic reflection data in the acoustic
approximation. GEOPHYSICS, 49(8):1259-1266, Aug. 1984. doi:
10.1190/1.1441754.

Thrastarson, S., van Herwaarden, D.-P., and Fichtner, A. Inversion-
son: Fully Automated Seismic Waveform Inversions, Mar. 2022.
doi: 10.31223/x5f31v.

Virieux, J. and Operto, S. An overview of full-waveform inversion in
exploration geophysics. GEOPHYSICS, 74(6):WCC1-WCC26, Nov.
2009. doi: 10.1190/1.3238367.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,
Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,
Carey, C. J., Polat, I, Feng, Y., Moore, E. W., VanderPlas, J., Lax-
alde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van
Mulbregt, P., Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll,
A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N.,
Fulton, C., Masson, C., Haggstrom, C., Fitzgerald, C., Nichol-
son, D. A,, Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E.,
Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price,
G. A, Ingold, G.-L., Allen, G. E., Lee, G. R., Audren, H., Probst,
., Dietrich, J. P, Silterra, J., Webber, J. T., Slavi¢, J., Nothman,
J., Buchner, J., Kulick, J., Schonberger, J. L., de Miranda Car-
doso, J. V., Reimer, J., Harrington, J., Rodriguez, J. L. C., Nunez-
Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kiim-
merer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N. J,,
Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P. A., Lee,
P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S., Sievert,
S.,Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel,
T. J., Robitaille, T. P, Spura, T., Jones, T. R., Cera, T., Leslie, T,,
Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y. 0., and Vazquez-
Baeza, Y. SciPy 1.0: fundamental algorithms for scientific com-

10

| Open-Source Gradient-Based Optimization Tools in Python for Full-Waveform Inversion

puting in Python. Nature Methods, 17(3):261-272, Feb. 2020.
doi: 10.1038/s41592-019-0686-2.

Wang, P., Zhang, Z., Mei, J., Lin, F., and Huang, R. Full-waveform
inversion for salt: A coming of age. The Leading Edge, 38(3):
204-213, Mar. 2019. doi: 10.1190/tle38030204.1.

The article A briefexploration of open-source gradient-based
numerical optimization Python libraries for full-waveform in-
version © 2025 by Oscar Mojica is licensed under CC BY 4.0.

SEISMICA | volume 4.2 | 2025

http://doi.org/10.1190/geo2015-0031.1
http://doi.org/10.1137/0906042
http://doi.org/10.1090/s0025-5718-1980-0572855-7
http://doi.org/10.1007/978-0-387-40065-5
http://doi.org/10.1190/1.1444597
http://doi.org/10.25080/majora-7b98e3ed-013
http://doi.org/10.1190/segam2017-17738630.1
http://doi.org/10.1046/j.1365-2478.2001.00279.x
http://doi.org/10.1046/j.1365-2478.2001.00279.x
http://doi.org/10.3997/2214-4609.201801667
http://doi.org/10.1190/1.1441754
http://doi.org/10.31223/x5f31v
http://doi.org/10.1190/1.3238367
http://doi.org/10.1038/s41592-019-0686-2
http://doi.org/10.1190/tle38030204.1
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Optimization frameworks
	scipy.optimize
	sotb-wrapper
	PyROL
	NLopt

	Numerical experiment
	scipy.optimize
	sotb-wrapper
	PyROL
	NLopt

	On the FWI results
	Discussion and conclusions

