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geophysical inversion: a case study on event location

4

Emanuele Bozzi (© * 12, Nicola Piana Agostinetti (0 13, Gilberto Saccorotti

!Department of Environmental and Earth Sciences, University of Milano-Bicocca, Milan, Italy, 2Department of Earth Sciences, University of Pisa,
Pisa, Italy, *Osservatorio Nazionale Terremoti (ONT), Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, *Istituto Nazionale di
Geofisica e Vulcanologia (INGV), Pisa, Italy

Author contributions: Conceptualization: Emanuele Bozzi, Nicola Piana Agostinetti, Gilberto Saccorotti. Methodology: Emanuele Bozzi, Nicola Piana
Agostinetti, Gilberto Saccorotti. Software: Emanuele Bozzi, Nicola Piana Agostinetti. Validation: Emanuele Bozzi, Nicola Piana Agostinetti, Gilberto Saccorotti.
Formal Analysis: Emanuele Bozzi, Nicola Piana Agostinetti. Writing - Original draft: Emanuele Bozzi. Writing - Review & Editing: Emanuele Bozzi, Nicola Piana
Agostinetti, Gilberto Saccorotti. Supervision: Nicola Piana Agostinetti, Gilberto Saccorotti. Funding acquisition: Nicola Piana Agostinetti.

Abstract Distributed Acoustic Sensing (DAS) technology offers meter-scale spatial sampling of seismic Production Editor:

X S L o . Yen Joe Tan
wavefields, which improves our seismic monitoring capabilities. However, the resulting data volumes often Handling Editor:
complicate expert-driven analysis, such as weighting measurements in geophysical inverse problems to mit- o Wenbo \/\/u
igate the influence of outliers. To address such difficulties in an automated manner, we focus on a represen- Copy & Layout Editor:
tative problem in seismology, source location, and we test a Bayesian weighting procedure applied to P-wave Théa Ragon

arrival/differential times estimated from DAS waveforms. This approach estimates the Posterior Probability
Densities of physical (epicenter) and non-physical (hyperparameters) parameters. The hyperparameters are
designed as a set of thresholds and weights that enable the automatic identification of portions of data asso-
ciated with higher reliability in the inversion. Specifically, the thresholds are values having the same dimen-
sion as specific waveform attributes and/or geometrical descriptors. Weights are then the scaling factors for
the variances of data that do not meet these thresholds. Consequently, several possible weighting schemes
(thresholds and weights) based on signal-to-noise ratios, cross-correlation indices, and interchannel distances
are explored in a Bayesian framework. We present synthetic tests and real-data applications that demonstrate
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the potential of this method as an alternative to a similar approach without data weighting.

1 Introduction

Distributed Acoustic Sensing (DAS) technology, from its
first applications in the early to mid-2010s, is nowadays
an established method for seismic monitoring (Cannon
and Aminzadeh, 2013; Daley et al., 2013; Parker et al.,
2014; Biondi et al., 2017; Lindsey et al., 2017; Jousset
et al., 2018; Zhan, 2020; Wuestefeld et al., 2024). DAS
provides meter-scale spatial resolution and an unprece-
dented full-waveform view of seismic wavefields, en-
hancing source characterization and subsurface imag-
ing (Li et al., 2023a; Lanza et al., 2024; Noe et al., 2026;
Biondi et al., 2023; Miller et al., 2025; Strumia et al.,
2024). However, the resulting data volumes not only
stress our storage capabilities (Segui et al., 2025) but
often complicate efficient data processing and expert
identification of outliers affecting source parameter es-
timation.

Among seismological monitoring tasks, event loca-
tion, which is one of the oldest problems in seismol-
ogy, remains an active area of research, with a par-
ticular focus on phase picking and the management
of data uncertainties (Lay and Wallace, 1995; Aki and
Richards, 2002). In fact, time picks are influenced by
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both experimental uncertainties, such as the accuracy
of the picker for a specific seismic phase, and the for-
ward model imprecision, which affects the accuracy
of travel time predictions. Such uncertainties are rou-
tinely addressed using subjective, though refined, data
processing in the source location inverse problem. For
instance, arrival times from an automated picker are
routinely weighted using thresholds based on Signal-
to-Noise Ratio (SNR), allowing experts to assign greater
importance to measurements where the signal is bet-
ter distinguished from background noise. Alternatively,
when the geometry permits, array processing tech-
niques can exploit phase coherence to obtain differen-
tial times (Rost and Thomas, 2002). In such a case, dif-
ferential times are inverted and often weighted based
on, e.g., waveform similarity, using the Maximum val-
ues of the Cross Correlation (MCC) functions. Differ-
ential times estimated from cross-correlation are con-
sidered more reliable with higher MCC values. Conse-
quently, subjective choices are made to identify appro-
priate threshold values in the MCC data space.

DAStechnology has emerged as a valuable distributed
sensor for earthquake location, as it can provide new
data from non-conventional experimental setups (e.g.,
glaciers, deep oceans) or add valuable observations
closer to the target hypocenter (Walter et al., 2020; Ajo-

SEISMICA | ISSN 2816-9387 | volume 4.2 | 2025


https://doi.org/10.26443/seismica.v4i2.1494
https://orcid.org/0009-0002-6570-9013
https://orcid.org/0000-0003-3145-2766
https://orcid.org/0000-0003-2915-1446

SEISMICA | RESEARCH ARTICLE | Automated weighting schemes for DAS data in geophysical inversion: a case study on event location

Franklin et al., 2019; Li et al., 2023b; Piana Agostinetti
etal., 2022; Lellouch et al., 2020; Nishimura et al., 2021;
Bocchini et al., 2025; Tilmann et al., 2024; Lior et al.,
2021; Hudson et al., 2024; Fichtner et al., 2022). Given
its unprecedented meter-scale spatial sampling, auto-
matic picking methods have been developed to address
the impossibility of manually picking seismic phases
recorded at the typically thousands of DAS channels
(Xiao et al., 2025; Zhu et al., 2023; Latorre et al., 2025).
Such arrival times can be incorporated into existing
monitoring pipelines to improve source location accu-
racy (Obermann et al., 2022; Baillet et al., 2025; Biondi
et al., 2025). Moreover, DAS has been successfully ex-
ploited as a receiver antenna to constrain the source of
a variety of signals (Klaasen et al., 2021; Biagioli et al.,
2024). Despite such evident advantages, the resulting
volumes of data may expose the event location process
to the influence of unidentified, meaningless data (e.g.,
arrival times), such as noise transients, which cause
spurious automatic triggers, often manually identified
and treated as outliers in conventional monitoring pro-
cedures. A possible solution is the automatic selection
of good-quality DAS channels, and thus of the associated
arrival times (Rodriguez et al., 2025; Bozzi et al., 2025).
Alternatively, if the goal is to exploit the full seismic-
wavefield resolution provided by fiber-optic sensors,
automatic data weighting can be considered to mitigate
potential bias from noisy channels in source location
estimation. In this framework, data selection is partic-
ularly important for reducing the amount of data and
supporting real-time applications, whereas weighting is
more critical for offline, more refined seismic analysis.
Here, the focus is on the latter application, as data se-
lection has already been covered in previous studies.

While expert (manual) data weighting is feasible for a
limited number of stations, it becomes more challeng-
ing with DAS sensors, given the large number of avail-
able observations (DAS channels). Additionally, DAS
waveforms are often affected by lower SNRs and strong
signal spatial amplitude/coherence variations due to di-
rectional sensitivity ground coupling (Celli et al., 2024,
Bozzi et al., 2024) and site effects (Yang et al., 2022; Pecci
et al., 2025). As a result, data are potentially influenced
by additional and typically complex noise sources, mak-
ing standard data processing less effective and pushing
the adoption of less conventional methods (Trabattoni
etal., 2023; Porras et al., 2024; Pascucci et al., 2025; Lap-
ins et al., 2024; Isken et al., 2022), while also increasing
the difficulty of subjective weighting.

To address the complexity and manage the redun-
dancy of DAS data, here we test a Bayesian automatic
weighting procedure, focusing on the event location in-
verse problem. Compared to expert-defined and of-
ten subjective weighting schemes, our approach iden-
tifies data families (i.e., portions of the complete set
of data) that are considered more reliable in the in-
version, through a probabilistic exploration of the data
space. The method is based on a hierarchical Markov
Chain Monte Carlo (MCMC) algorithm, thus estimat-
ing the Posterior Probability Distribution (PPD) of both
physical and non-physical (hyperparameters) parame-
ters (Mosegaard and Tarantola, 2002; Malinverno and
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Briggs, 2004; Tarantola, 2005). It works by produc-
ing a modified, i.e., weighted, version of the covari-
ance matrix, computed from a set of hyperparame-
ters (Piana Agostinetti et al., 2023). Different weight-
ing schemes are accepted or rejected according to the
Metropolis rule (Sambridge and Mosegaard, 2002), thus
itis guided by the agreement between the observed data
and the model predictions. Here, we define the hyper-
parameters as a set of “thresholds” and "weights”. The
thresholds are values with the same dimensions as spe-
cific waveform attributes, such as SNR and MCC, and
identify families of data within the data space. The
weights are values that scale the entries of the data co-
variance matrix, and thus the likelihood function, cor-
responding to the data families not meeting the thresh-
olds.

We test a DAS data weighting procedure tailored to
either P-wave arrival or differential times, consider-
ing these waveform attributes: a) SNR, b) MCC, and c)
INTER-channel DISTance (INTER-DIST). The weighting
scheme for P-wave arrival times is defined by a single
threshold on SNR and an associated weight: data below
the threshold are automatically weighted in the inver-
sion. For P-wave differential times, we develop models
defined by two sets of thresholds, one on MCC and one
on the INTER-DIST, and associated weights: data below
the MCC threshold and above the INTER-DIST threshold
are weighted in the inversion.

Results demonstrate the robustness of the automatic
weighting algorithm for both P-wave arrival times and
differential times in synthetic tests. Additionally, ap-
plications to real data indicate improvements in event
location accuracy while maintaining comparable com-
putational costs relative to a more standard unweighted
approach.

2 Data

To test the algorithm, we exploit earthquake signals of
tectonic and volcano-tectonic origin, recorded by two
distinct DAS deployments: a) a terrestrial cable running
along a civil route close to Azuma volcano (ID. AZ-V) in
Japan (Figure 1a) and b) an ocean bottom cable north-
east of the Gran-Canaria (ID. G-C) Island (Figure 1b)
(Ugalde et al., 2023). Tabs. S1 and S2 (see Supplemen-
tary Materials) summarize the DAS acquisition parame-
ters and the analyzed earthquake signals, respectively.

First, P-wave arrival and differential times are es-
timated using a conventional STA/LTA trigger (Allen,
1982) and a multichannel cross-correlation approach,
respectively. The data spaces have different dimen-
sions: given () available DAS channels, P-wave arrival
times are a subset S of @ (i.e., the channels triggered by
STA/LTA), while P-wave differential times are (S * (S —
1))/2.

SNR, MCC, and INTER-DIST waveform attributes are
estimated at the triggered channels within a window
centered on the P-wave arrival times, or atlinearly inter-
polated arrival times when a few channels are missing
(not triggered). When inverting P-wave arrival times,
SNR is the waveform attribute used to determine the
threshold for weighting the data (hyperparameter). In-
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Figure 1 Datasets used in the study. Panels (a) and (b) for AZ-V and G-C deployments illustrate (i) the DAS array-event ge-
ometrical relations, with the distribution of the inter-channel distances used for weighting data in the inversion, and (ii) the
event recordings (adopted filtering described in Tab. S2 of the Supplementary Materials). DAS data from the full length of ca-
ble deployments are used for all synthetic (red dotted line) and real-data tests (yellow dotted line) using P-wave arrival-time-
based weighting. For real-data tests using P-wave differential time weighting schemes, the focus is instead on subsections of
100 high-SNR channels closer to earthquake sources (green-blue dotted line).
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stead, when inverting P-wave differential times, MCC
and INTER-DIST are the waveform attributes. Tabs. S3
and S4 (see Supplementary Materials) provide examples
of data and associated attributes used in the algorithm
described in this work.

3 Methods

3.1 Computation of P-wave arrival/differen-
tial times and waveform attributes

P-wave arrival times are estimated using a conventional
STA/LTA triggering (Allen, 1982). Then, SNRs at the trig-
gered channels are computed using the power ratios of
the signal before and after the identified P-wave arrival
time (Eq. 1). Tailored time windows are defined to iso-
late the section of the seismogram corresponding to the
P-wave arrival time, thus depending on the event dura-
tion. In this work, as very local or local events are used,
time windows are set to two seconds. For a DAS channel
i triggered by a defined STA/LTA threshold:

o2
SNR; = 10log,, | -1 (1)
n2

i

where s? and n? are the mean squared amplitudes of
the signal and noise windows, respectively. SNR is ex-
pressed in decibels.

P-wave differential times are estimated using signal
cross-correlation for all triggered DAS channel pairs,
evaluated over time windows starting at the estimated
P-wave arrival times. When using data from the entire
length of the cable (synthetic tests), we spatially down-
sample by stacking a few contiguous waveforms (10 for
AZ~V and 50 for G-C) to keep the number of channel
pairs manageable for the algorithm. Cross-correlations
computed at channelslacking a P-wave arrival time, and
thus relying on interpolated estimates, may be affected
by a misestimate of the true arrival time. However,
because the purpose of the automatic weighting is to
reduce the influence of outliers in large DAS datasets,
we choose to retain a simple and broadly applicable
workflow that maximizes the number of usable P-wave
differential times, rather than adopt alternative, possi-
bly more accurate, methods that may be less generaliz-
able. Nevertheless, we also focus on high-SNR and high-
coherency sections of the cable and avoid spatial down-
sampling so that the algorithm can be evaluated with
DAS data at its full channel density. For such an applica-
tion, despite the limited azimuthal coverage, the result-
ing abundance of P-wave differential times is expected
to sufficiently constrain source locations. For two DAS
channels with strain/strain-rate waveforms U; and Uj,
the cross-correlation is computed as shown in Eq. 2:

N-1
> Ui(n) Uj(n + k)
n=0

CC; (k) = (2)

N—-1 N—-1
S UEn) | Y Ui(n)
n=0 n=0

where N is the length of the selected time window
around the P-wave arrival time, and k is the time lag.

4

CC; (k) is normalized to the product of the norms of U;
and Uj, thus providing a value of 1 for autocorrelation
and 0 for uncorrelated signals.

The MCC values and the P-wave differential times
T are, respectively, the maximum value of the cross-
correlation function (Eq. 3) and its corresponding tem-
poral lag (Eq. 4).

MC’C@J‘ = mgx CCZ',J' (ki) (3)

Ti;j = argmax CC; (k) -dt (4)
where dt is the sampling rate.

3.2 Automated DAS data weighting

3.2.1 Hyperparameters to define the weighting
scheme

To develop the automated weighting algorithm for
P-wave arrival and differential times, we follow the
method presented in Piana Agostinetti et al. (2023). Our
starting point is an existing hierarchical MCMC event
locator (Riva et al., 2024), which, in addition to sam-
pling physical parameters corresponding to the source
location, samples a non-physical parameter for an inde-
pendent data error estimation. Event locations are es-
timated within a homogeneous velocity model, where
the P-wave velocity (Vp) can be jointly sampled with the
source location parameters (easting, northing, depth,
origin time). In this work, however, we fix the P-
wave velocity and event depths to focus on epicen-
tral locations and to avoid possible trade-offs among
event depth, P-wave velocity, and origin time that arise
from inverting P-phase-only-derived arrival/differential
times. In Riva et al. (2024), the hyperparameter for P-
wave arrival times (H; in this work) is treated as a value
sampled within the Markov chains, alongside the other
physical parameters, and it scales the data error stan-
dard deviation. In other words, it provides an indepen-
dent estimate of the "uncertainty” associated with the
observed data and the assumed forward model, since
the hyperparameter adjusts the original, user-defined
value (Malinverno and Briggs, 2004). Here, the novelty
is the presence of additional hyperparameters (Hz, Hs,
H,, Hs)that define where and how the data are weighted
for the event location. These hyperparameters include:
a) "thresholds” based on waveform attributes (such as
SNR) to identify a subset of data with greater impor-
tance in the inversion, and b) "weights” to adjust the
error covariance matrix in the likelihood function. De-
spite the presence of new hyperparameters to be sam-
pled, the overall computational costs remain similar to
those of the original algorithm that does not weight the
data (Riva et al., 2024) for applications involving P-wave
arrival times: with just a few minutes (Intel i5-11320H,
3.20GHz, 8 logical CPUs, 2 threads, RAM 15 GB, GPU
Intel Corporation TigerLake-LP GT2 - Iris Xe Graphics)
the user can estimate a location considering a relevant
number of Monte Carlo models (> 10°). Applying the
method to P-wave differential times naturally requires
additional processing time due to the larger data volume
involved.
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Weighting P-wave arrival times: SNR

Hyp| UNI

»

P-wave arrival time [s]

A

v

Figure2 Weightingscheme forP-wave arrivaltimes using SNR attributes. H; represents the hyperparameter that uniformly
multiplies the diagonal covariance matrix, as in (Riva et al., 2024). The weighting scheme is represented by Hysnr) and
Hssnr)- Hacsnr) isthe threshold sampled on the SNR, while the associated weight (H3 (s r)) scales the covariance matrix
entries for data below Hy (s ). The total factor scaling each covariance matrix entry wy is therefore the combination of the
original uniform scaling (Hyp_U N I; in the figure) and the attribute-based weighting (Hyp_S N R; in the figure).

Data weighting is achieved by scaling the entries of
the diagonal error covariance matrix for the set of data
that do not satisfy the Bayesian-sampled threshold in
the form of a non-physical parameter. Specifically, the
adopted weighting schemes, implemented in two ver-
sions of the algorithm for application to either P-wave
arrival times or differential times, determine whether
data are weighted above (exceeding the threshold) or
below (falling short of the threshold) the threshold.
Consequently, data that exceed (falling short) the sam-
pled threshold are penalized in the event location pro-
cess by multiplying the original, uniform entries of the
diagonal covariance matrix (COV,,;,), defined a pri-
ori by the user and already coherently scaled by the
H, hyperparameter (Riva et al., 2024), by an additional
factor. The modified covariance matrix, also diagonal
(COViyeight), is then computed as follows (Eq. 5):

Covweight = W71 : COVorig ' W71 (5)

where W is a diagonal matrix built from the sampled
set of weights w,, defined as

W = diag(107%*) .

COVeighe enters the likelihood function, and the
weights are sampled according to the Metropolis rule
(Sambridge and Mosegaard, 2002), as are the thresh-
olds and physical parameters. More details of the gen-
eral hierarchical MCMC algorithm can be found in (Pi-
ana Agostinetti et al., 2023).

5

3.2.2 Adopted weighting schemes

Two versions of the algorithm are developed to account
for automated Bayesian weighting of P-wave arrival and
differential times.

P-wave arrival times The weighting scheme for ab-
solute arrival times is based on two hyperparameters
that depend on the SNR and is defined as follows: a
threshold (Hy( g r)) on the SNR and a weight (Hs(sn r))
which, together with the uniform (un-weighting) error
estimate (H(gnp)) is multiplied by the a priori-defined
and equal variances of the data having SNR lower than
Hysnry (Eq. 6). ws syristhusan array of weights with
the same dimension as the data.

if SNR, < H2(SNR)7

6
ifSNRS>H2(SNR), (©)

ws sNR = H3(snR)
ws sNr =0
As a result, the final multiplicative factor of the error
covariance matrix is given by the uniform hyperparam-
eter, H(snp), and the weighting, non-uniform hyper-
parameter, Hs (Figure 2).

SEISMICA | volume 4.2 | 2025



SEISMICA | RESEARCH ARTICLE | Automated weighting schemes for DAS data in geophysical inversion: a case study on event location

Weighting P-wave differential times: MCC or INTER-DIST
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Figure 3 Weighting scheme for P-wave differential times using MCC and INTER-DIST attributes. As in Figure 2,
Hy(nvcc,inTER-DIsT) represents the hyperparameter that uniformly multiplies the diagonal covariance matrix, as in
(Riva et al., 2024). The weighting scheme is presented here with two alternatives: MCC or INTER-DIST. Hy(3;cc) and
HyinTER-DIsT) are the thresholds on MCC and INTER-DIST, respectively, with the associated weights (Hsccy and
HsnreR-DIsT)) SCaling the covariance entries for data below Hy (¢ ¢y and above Hy(;nrer—prsT). The total factor
scaling each covariance matrix entry w; is therefore the combination of the original uniform scaling (Hyp_U N1;) and the
MCC or INTER-DIST weighting (Hyp_MCC; and Hyp_INTER — DIST;).

P-wave differential times The weighting scheme for P-wave differential times is based on four hyperparameters
that depend on MCC and INTER-DIST and are defined as follows:

* A threshold (Hy(cc)) on the MCC and a weight (Hs(ysc¢)) which is multiplied by the variances of the data
having an MCC value lower than Hy(y/cc);

* A threshold (Hy(;n7Er-p1sT)) On the INTER-DIST and a weight (Hs;y7£r—prs7)) Which is multiplied by the
variances of the data having an INTER-DIST higher than Hy(;yrEr—Drs7)-

While the algorithm can, in principle, estimate all four hyperparameters simultaneously, we used MCC and INTER-
DIST weighting independently to avoid potential trade-offs among the hyperparameters. Moreover, while the MCC
typically decreases with increasing inter-channel distance (Menke et al., 1990), in a previous study, we found that the
expected decay is often more complex in DAS data (Bozzi et al., 2024). Accordingly, the tests are conducted using two
distinct schemes: Hy ooy and Hyaroc), OFf Hyinrer—pirsT) and Hs nrer—-prst)- The final weight w, for each is
defined by the two sub-weights (ws prcc OF ws iNTER—DIST), depending on the application (Eq. 7):

ws,mcc = Haveo), if MCC, < Hyncoy,

ws,pcc =0, if MCC, > Hynco), @)

ws INTER-DIST = Hs(inTER-DIST), 1f INTER-DISTy > Hy(iNTER-DIST)
Ws, INTER—-DIST = 0, if INTER-DIST, < Hy(iNTER-DIST),

As a result, the final multiplicative factor of the error covariance matrix is determined by the uniform hyperpa-
rameter H; along with the appropriate non-uniform weighting hyperparameter: Hscc) when the MCC data space
is explored, or HsnrEr-pisT) When the INTER-DIST space is explored (Figure 3).

Figure 2 and 3 provide an overview of the weighting schemes tested in this work. Overall, the information required
for the algorithm differs depending on the data type: (a) P-wave arrival times and SNR at each triggered DAS channel,
or (b) P-wave differential times, MCC, and INTER-DIST values at a set of DAS channel pairs.

3.3 Tests

The automatic DAS data weighting algorithm is tested on synthetic data, part of which is shown in the text (Figs. 2 to
7) and part in the supplementary material (Figs. S1 to S15). Then, two earthquake recordings are used as a first
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application to real data (Figs. 8 and 9 and S16 to S18).
Synthetic tests are conducted by predicting P-wave ar-
rival and differential times from a known source in the
model space, with Gaussian noise added according to
the chosen hyperparameters, mimicking the weighting
schemes. More specifically, we first select the threshold
(hyperparameter) over waveform attributes, thereby
determining the portions of the data contaminated with
Gaussian noise. The noise standard deviation is then
defined by the corresponding weight (hyperparameter).
This procedure is consistent with the computation of
the weighting matrix (scaling the covariance matrix) W
(Eq. 5).

For synthetic tests, we use the geometrical informa-
tion from AZ-V and G-C deployments, along with the as-
sociated earthquake recordings, to compute the corre-
sponding waveform attributes (see Figures 1a and 1b).
These attributes are then paired with a chosen set of
hyperparameters to contaminate a portion of the syn-
thetic traveltimes with Gaussian noise. Tab. 5 (see Sup-
plementary Materials) summarizes the selected hyper-
parameter values for each synthetic test. We synthet-
ically invert for easting (X), northing (Y) and origin
time (7p), and the set of hyperparameters (H, sy gy with
Hysnry and Hzsnr) or Hioc) with Hyrcoc) and
Hsmeooy/HiinterR-DIsT) With HyynTER-DIsT) @nd
Hs(nrErR—DIsT))- Thus, we fix the depth and model
velocity to avoid trade-offs and to focus on the effects
of the weighting hyperparameters on the epicentral lo-
cation, since the P-wave is the only seismic phase con-
sidered. For synthetic P-wave arrival times, we use the
entire cable geometry for both AZ-V and G-C. For dif-
ferential times, however, we either use stacked wave-
forms from the full cable, providing a spatially down-
sampled version of the original channels, or we use full-
resolution channel data, but only for selected cable sec-
tions. This strategy limits computational costs given the
large number of possible channel pairs. Thus, while
the stacked waveforms ensure azimuthal coverage, the
original traces focus on sections closer to the epicenter,
where signal quality is generally higher.

For the applications to real DAS data, we use two
local earthquakes recorded by the AZ-V and G-C de-
ployments. While in the synthetic tests, the objective
is to recover the chosen epicenter and hyperparame-
ters, for the real-data tests, our goals are to: (i) deter-
mine whether the method retrieves meaningful (e.g.,
not zero, very-low, very-high) hyperparameter thresh-
olds on waveform attributes, and (ii) evaluate whether
the automatic weighting procedure improves event-
location accuracy relative to the unweighted approach
(Riva et al., 2024), via comparison with catalog loca-
tions. The reference locations are known from a lo-
cal dense network of seismometers (Nishimura et al.,
2021) (AZ-V) and from the catalog of the local monitor-
ing agency, that is, the Instituto Geografico Nacional of
Spain (G-C) (Instituto Geografico Nacional (IGN), 2022).
For consistency among the unweighted and weighted
cases, we fix the model velocity to 2500 m/s and 5000 m/s
for AZ-V and G-C, respectively. The depth is fixed at -800
m for AZ-V and -10,000 m for G-C. To weight the data, we
set flat and wide prior probability distributions for the
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physical parameters and hyperparameters (see Tab. S6
of the Supplementary Materials). Thus, the algorithm
samples from a broad range of possible combinations
of SNR, MCC, and INTER-DIST thresholds together with
their associated weights. In principle, we also allow for
inverse weighting by setting very wide prior distribu-
tions, including negative values, a further test of the al-
gorithm’s ability to retrieve meaningful thresholds and
weights.

4 Results
4.1 Synthetic tests

We present results from synthetic tests using automatic
weighting schemes based on P-wave arrival and differ-
ential times for both the AZ-V and G-C deployments.

4.1.1 P-wave arrival times

Figure 4 shows the source location and hyperparame-
ters PPDs for a synthetic test of the automatic weight-
ing algorithm using P-wave arrival times for the AZ-V
deployment. Additional tests are provided in the sup-
plementary material (Figs. S1to S4), which, through the
exploration of different source positions and weighting
schemes, support the presented results and the robust-
ness of the interpretations.

The estimated model parameters and hyperparam-
eters (Figures 4a and 4b) are generally consistent
with the true values used to generate the synthetic
data. Specifically, the true location falls within the
90% confidence bound of the possible solutions. The
model parameter PPDs exhibit clear bell-shaped distri-
butions. The PPDs for the hyperparameters H;(snr)
and Hjgnp) are also bell-shaped, while the PPD for
Hjy(snr) has a more box-like shape (Figure 4c).

Similar observations are made for the inversion of
synthetic P-wave arrival times from the G-C deploy-
ment, whose results are illustrated in Figure 5 and Fig-
ure S5. Wider epicentral location PPDs are observed, as
expected, given the quasi-rectilinear shape of the cable
(Figure 5c).

Ten Markov chains, each with 1 x 10° samples, are
used to sample the PPDs in these two tests. The runtime
islessthan one minute on the same machine mentioned
above.

4.1.2 P-wave differential times

Figure 6 shows the results from the test with synthetic
P-wave differential times for the AZ-V deployment. Ad-
ditional tests are provided in the supplementary mate-
rial (Figs. S6 to S15).

As in the synthetic tests with P-wave arrival times,
the estimated model parameters (Figures 6a and 6b)
and hyperparameters (Figures 6¢c and 6d) are gener-
ally consistent with the true values used to generate
the synthetic data. However, in this specific weight-
ing scheme, the PPDs for the hyperparameters Hy (/¢ ¢y
and Hy(ycc) deviate from a Gaussian distribution, ex-
hibiting spike-shaped distributions for both MCC (Fig-
ure 6¢) and INTER-DIST schemes (Figure 6d). Addi-
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Figure 6 Synthetic test for P-wave differential times weighted using MCC and INTER-DIST attributes with the AZ-V fiber lay-
out. (a) and (b) PPDs for easting and northing showing the solution densities for MCC and INTER-DIST weighting possibilities,
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observed, with secondary peaks.
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tionally, a secondary peak is observed for INTER-DIST
weighting, with corresponding weights that, when com-
bined, almost reproduce the true value (given the true
H, value equal to zero).

Figure 7 presents the results of the test for synthetic P-
wave differential times from the G-C deployment, with
additional tests shown in Figs. S11 to S15. Given the
quasi-rectilinear geometry of the cable, ambiguities in
the solution are expected. Nevertheless, the estimated
model parameters (Figures 7a and 7b) are consistent
with the true epicenter. The hyperparameters (Fig-
ures 7c and 7d) are consistent with the true values,
although their distributions deviate from a Gaussian
shape, as in the AZ-V case. In this case as well, a sec-
ondary peak is present for Hy(ycc) and Hyyrcco) with
MCC-based weighting.

Similar computational costs are observed compared
to the P-wave arrival-time case, due to the dimensional-
ity reduction achieved through channel stacking.

4.2 Applications to real data

We present results from the application of the auto-
matic weighting schemes based on P-wave arrival and
differential times to real DAS data from both the AZ-V
and G-C deployments.

4.2.1 P-wave arrival times

Figure 8 shows locations obtained with the weight-
ing schemes, which are either comparable to the un-
weighted solutions (Riva et al., 2024) (Figure 8c) or
closer to the reference epicenters (Figure 8d). We used
the distance between the peak density of the solutions
and the reference epicentral solutions as a metric for
accuracy. Moreover, the PPDs for the SNR threshold
hyperparameters (H,) are centered on values far from
model boundaries: about 10 and 4 dB for AZ-V and G-
C, respectively (Figures 8e and 8f). Indeed, the iden-
tified thresholds effectively separate data with clearly
lower SNRs from higher-quality data (Figs. 8a and 8b).
In other words, data with associated SNRs below 10 dB
for AZ-V and 4 dB for G-C are treated by the algorithm as
less reliable in the inversion.

4.2.2 P-wave differential times

Figure 9 shows the automatic weighting scheme based
on P-wave differential times applied to subsections of
100 channels. Additionally, results using data from
the full cable length are shown in Figs. S16 and S17.
We omit these latter results from the main text be-
cause of the poor event locations in both the weighted
and unweighted cases, with high H; values indicat-
ing large data uncertainties in this configuration (Pi-
ana Agostinetti et al., 2023).

Overall, the results for cable subsections show very
similar unweighted and weighted epicentral solutions
(Figures 9c and 9d). The PPDs for the MCC and
INTER-DIST threshold hyperparameters (Ha(psccy and
HynTER-DIST)) are centered on values far from
model boundaries: about 0.67 and 0.64 for MCC, and
90 m and 700 m for INTER-DIST, for AZ-V and G-C,
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respectively (Figures 9e and 9f). In other words, P-
wave differential times with MCC values below thresh-
olds of 0.67 for AZ-V and 0.64 for G-C are treated by
the algorithm as less reliable in the inversion (see also
Figure 9b). Similarly, P-wave differential times with
INTER-DIST values above thresholds of 90 m for AZ-
V and 700 m for G-C are treated as less reliable (see
also Figure 9b). Nevertheless, all identified weights
(Hyvecy and HyrnrER-DIsT)) are very small com-
pared with Hy, as shown in Figure S18. Moreover, as ob-
served in some of the synthetic tests, the distributions
for Hs(yccoy and Hs(nrer—p1sT) are closer to a Gaus-
sian shape when compared with those for Hy /¢y and

Hy(iNTER-DIST)-

5 Discussion

We present the testing of a hierarchical MCMC method
that automatically weights DAS data for epicentral loca-
tion. Synthetic tests are conducted using both P-wave
arrival and differential times for two cable geometries:
one complex, with subsections of different orientations
in a volcanic area, and one quasi-rectilinear in a sub-
marine context. Results highlight the method’s robust-
ness to variations in source-cable geometry and to dif-
ferent threshold and weight configurations, which are
here sampled as hyperparameters of the MCMC algo-
rithm.

Applications of the method to real data show that au-
tomatic weighting allows the recovery of eventlocations
at least comparable to those obtained with unweighted
inversions (Riva et al., 2024) (Figure 8). Notably, the
use of a homogeneous velocity model is not ideal for
the complex installation contexts of the two DAS ar-
rays. Therefore, the resulting event locations are not
expected to be more accurate than those in the refer-
ence catalog, which were obtained using 1D velocity
models. However, since the purpose of this study is
to evaluate the relative impact of the automatic weight-
ing scheme compared to an unweighted location, the
adoption of a homogeneous model is justified, as it en-
ables a consistent comparison with the reference cata-
log. For the weighting scheme based on SNR and P-wave
arrival times, we observe improvements in event loca-
tions, with maxima of the epicentral parameters’ PPDs
closer to the reference locations. Additionally, for both
P-wave arrival and differential times, the algorithm con-
sistently identifies realistic SNR, MCC, and INTER-DIST
thresholds in real-data tests, even when the prior model
space is wide and allows for opposite weighting (i.e.,
higher weights for less accurate observations). In these
cases, it automatically favors high-SNR, high-MCC, and
low-INTER-DIST observations as the most accurate for
inversion, while down-weighting less trustworthy data,
without external constraints. Since the computational
cost is comparable to that of the unweighted algorithm
and the resulting locations are at least as accurate, the
presented MCMC-based weighting method represents
an opportunity to potentially obtain more accurate epi-
central estimates.

The assumptions of this probabilistic weighting, in-
cluding a wide prior model space for hyperparameters,
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Figure 7 Synthetic test for P-wave differential times weighted using MCC and INTER-DIST attributes with the G-C fiber lay-
out. (a) and (b) PPDs for easting and northing showing the solution densities for MCC and INTER-DIST weighting possibilities,
respectively. The maximum-density solution is plotted as an orange star and compared with the true solution (red star); (c)
PPDs for the hyperparameters when MCC attributes are used for data weighting, compared with their true values (red dashed
lines). An initial trade-off between Hy (M CC') and H3(MCC) is observed, with secondary peaks; (d) PPDs for the hyperpa-
rameters when INTER-DIST attributes are used for data weighting, compared with their true values (red dashed lines).
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Figure 8 Real-data test for P-wave arrival times weighted using SNR attributes and the AZ-V and G-C fiber layouts. (a) and
(b) Estimated P-wave arrival times obtained with STA/LTA and their associated SNR values. The yellow dotted line repre-
sents the identified SNR thresholds, automatically classifying data as “less reliable” in the inversion (below the threshold) or
“more reliable” (above the threshold); (c) (AZ-V) and (d) (G-C) PPDs for epicentral location showing solution densities for the
unweighted solution (Riva et al., 2024) and the automatic weighting presented here. The maximum density of the solution
is shown as an orange star for comparison with the reference solution (red star). The distance between the peak density and
the reference solution, used as a metric for accuracy, is shown with a white dotted line. DAS channels with an associated
estimated P-wave arrival time are plotted in light blue; (e) (AZ-V) and (f) (G-C) PPDs for the hyperparameters Hy gy ) and
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are appropriate for the specific characteristics of DAS
technology. Indeed, compared to point-like conven-
tional sensors, DAS sensors and their data are affected
by additional factors such as axial sensitivity, poorly
constrained site conditions, and cable coupling. These
factors lead to strong spatio-temporal variability in DAS
signal attributes, such as SNR and waveform coherence,
making subjective data weighting difficult either be-
cause of the data volume or the complexity of model-
ing DAS signal properties. The proposed probabilistic
framework explores a large number of potential weight-
ing configurations without prior assumptions, relying
exclusively on waveform attributes such as SNR, MCC,
or INTER-DIST. This approach minimizes subjective in-
tervention while identifying less reliable observations
through systematic data-space exploration.

In principle, additional user-defined attributes, such
as cable-ground coupling (Celli et al., 2024) or direc-
tional sensitivity (Martin et al., 2017), could also be
incorporated. Moreover, as new DAS quality metrics
are emerging (Rodriguez et al., 2025), these can read-
ily serve as input to the algorithm. Indeed, the method
remains flexible and effective as long as selected at-
tributes are quantifiable within a defined range of val-
ues. We therefore encourage tests by the broader seis-
mological community.

Most difficulties arise when locating real events using
P-wave differential times, likely due to complex signal
coherence and challenges in tracking the P phase along
the entire cable length (van den Ende and Ampuero,
2021; Bozzi et al., 2024). Our tests confirm that event
locations derived from differential times using channel
pairs along the full cable are mislocated (Figs S16 and
S17), near the limits of the model space, even when au-
tomatic weighting is applied. Conversely, when using
P-wave differential times retrieved from high-SNR cable
sections, the estimated locations are closer to the ref-
erence catalog. Still, when applying automatic weight-
ing, the algorithm assigns very low weights, suggest-
ing difficulties in isolating clear outlier patterns within
the data space. Overall, tests on real data using P-
wave differential times reveal limitations likely unre-
lated to the weighting scheme, confirmed to work with
synthetic tests, but instead to the highly complex data-
space structure.

From a computational perspective, the use of P-wave
differential times substantially increases the number of
data points to be inverted, as each channel is cross-
correlated with all others, compared with the arrival-
time case. The algorithm remains fast for absolute P-
wave arrival times, achieving converged PPDs within
seconds even for thousands of DAS channels. However,
computational costs increase approximately quadrati-
cally when using differential times, as the number of
observations grows from N to N(N — 1)/2.

Because automated processing is essential for data-
intensive technologies like DAS, the proposed method
can support their integration into conventional seis-
mic networks (Biondi et al., 2025; Baillet et al., 2025).
Its main advantage lies in mitigating the influence of
unreliable DAS data, ensuring that such data are not
weighted equally with the more precise, often manually
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verified, measurements from traditional instruments.
The weighting framework currently operates on P-wave
arrival and differential times, with a justified focus on P-
waves due to the difficulty of automatically identifying
S-phases in DAS data using energy-based methods such
as STA/LTA. However, as new Al-based algorithms (Zhu
etal., 2023) improve coherent P- and S-phase picking in
DAS, extending the weighting framework to include S-
phases represents a natural next step.

6 Conclusions

The algorithm presented here represents a step to-
ward the automatic weighting of DAS P-wave arrival
and differential times for source location. Weighting
schemes are defined through thresholds and weights
applied to measured waveform attributes, which are
sampled as non-physical parameters (hyperparame-
ters) in a Bayesian framework that scales the covariance
matrix of the inverse problem. This allows the algo-
rithm to automatically distinguish between portions of
data, more or less reliable, during the inversion.

Synthetic tests demonstrate that the identified
weighting schemes successfully recover both the
epicentral parameters and the hyperparameters. We
show that automatic data weighting applied to real
datasets can improve epicentral location accuracy
compared to unweighted solutions for the applica-
tion involving P-wave arrival times weighted using
SNR attributes. On the other hand, no significant
improvements are observed when applying automatic
P-wave-differential-time-based weighting schemes
using either the MCC or INTER-DIST features. Since
the unweighted and weighted solutions are obtained in
comparable runtime and with at least similar accuracy,
the proposed algorithm provides a valid and efficient
alternative.

The method is fully data-driven and therefore well-
suited for instruments that generate high data density,
such as DAS, where subjective data treatment is partic-
ularly challenging. Although this study focused on at-
tributes such as SNR and MCC for weighting, the algo-
rithm remains flexible and can incorporate other prop-
erties, provided they are quantifiable within a defined
range of values.
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