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Abstract Accurately and rapidly estimating coseismic slip is crucial for characterizing the rupture and
magnitudeofearthquakesand improvingearlywarningsystems. However, slip inversionsoften involvehyper-
parameters related to prior information, whose selection significantly affects solution efficiency and quality.
In this study, wepresent a novelmethod for estimating fault slip distributions fromGNSSdisplacements using
neural networks. Themethodwas initially developedwith syntheticmodels to define an optimal architecture
for accurately recovering target slip. This approachdemonstratedexceptional computational efficiency, deliv-
eringaccurate slipdistributionpredictions in just 0.07 secondswithout specializedhardware. Themethodwas
then validated with real-world data from the 2015Mw 8.3 Illapel earthquake, achieving a GNSS displacement
RMSE of 0.07m and yielding a slip distribution consistent with published solutions. Compared to Regularized
Least Squares (RLS) inversion, the neural network estimated slip closer to the trench, aligning with tsunami
observations despite slightly higher residuals. Additionally, hyperparameter exploration revealed that using
theGELUactivation functionanda35%dropout rateprovided thebest balance. Model performance improved
with larger datasets, and while reducing GNSS stations increased uncertainty, more data enhanced accuracy.
These findings highlight the importance of hyperparameter tuning and data selection in improving slip esti-
mations, offering insights for future improvements.

1 Introduction
Plate tectonics, through the accumulation and release
of strain, is responsible for the most powerful earth-
quakes on Earth, especially within subduction zones,
where one tectonic plate slides under another. Sub-
duction zones have the potential to produce devastat-
ing tsunamigenic earthquakes, such as the 2004 Mw
9.1 Sumatra-Andaman earthquake (e.g., Okal and Stein,
2009; Lay et al., 2005; Chlieh et al., 2007) and the 2011
Mw 9.0 Tohoku earthquake (e.g., Fujii et al., 2011; Ozawa
et al., 2012; Tajima et al., 2013; Simons et al., 2011). In
these convergent margins, elastic strain energy builds
up over decades or centuries, with a significant frac-
tion being subsequently released during earthquakes
within the shallow part of the subduction interface.
Chile is a highly active seismic region (e.g., Cisternas
et al., 2017), where someof the largest-magnitude earth-
quakes ever recorded have occurred along the subduc-
tion zone where the Nazca Plate subducts beneath the
South American Plate at a rate of 66mm/year (Altamimi
et al., 2016). Notable recent events at this margin in-
clude the 1960 Mw 9.5 Valdivia Earthquake (e.g., Barri-
entos and Ward, 1990; Fujii and Satake, 2012; Lorenzo-
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Martín et al., 2006), the 2010 Mw 8.8 Maule Earthquake
(e.g., Moreno et al., 2010, 2012; Bedford et al., 2013; De-
louis et al., 2010), the 2014 Mw 8.2 Iquique Earthquake
(e.g., Duputel et al., 2015; Jara et al., 2018; Meng et al.,
2015) and the 2015 Mw 8.3 Illapel Earthquake (e.g., Mel-
gar et al., 2016; Tilmann et al., 2016; Heidarzadeh et al.,
2016).

Within the past few decades, the use of Global Navi-
gation Satellite System (GNSS) stations has significantly
improved the observation of both interseismic and co-
seismic surface displacements, advancing our under-
standing of earthquake dynamics. As GNSS stations
have become more widespread globally, they now pro-
vide high-resolution measurements of crustal defor-
mation, especially in subduction zones, allowing us
to identify the characteristics and behaviors of large
megathrust earthquakes (e.g., Ruegg et al., 2009; Chen
et al., 2015; Luo et al., 2020). Estimating coseismic slip
of earthquakes is essential to comprehending the un-
derlyingmechanics, including energy release, stress re-
distribution, and fault dynamics. This understanding
is vital for seismic risk evaluation, developing mitiga-
tion strategies, and informing rapid response efforts
(Iinuma et al., 2012).

Commonapproaches for estimating coseismic slip in-

1
SEISMICA | ISSN 2816-9387 | volume 4.1 | 2025

https://doi.org/10.26443/seismica.v4i1.1509
https://orcid.org/0009-0004-1404-5311
https://orcid.org/0000-0002-6023-7283
https://orcid.org/0000-0003-4732-067X
https://orcid.org/0000-0002-2983-8646
https://orcid.org/0000-0001-7213-4567
https://orcid.org/0000-0002-4846-3173


SEISMICA | RESEARCH ARTICLE | Neural Networks for Estimating Coseismic Slip Distribution

volve constructing a linear forward model through the
generation of Green’s functions based on elastic dislo-
cations (e.g., Okada, 1985; Nikkhoo and Walter, 2015).
Despite the linearity of the forward model, estimating
coseismic slip remains a complex and ill-posed inverse
problem, characterized by non-unique solutions. There
are two end-member approaches to deal with the in-
verse problem. The first, known as the optimization
approach, focuses on finding a solution to the inverse
problem that minimizes a data misfit term and a regu-
larization term, the latter used to define prior informa-
tion that stabilizes the solution (e.g., Harris and Segall,
1987; Ortega-Culaciati et al., 2021). The second is a
Bayesian approach, where an ensemble of models is
sampled fromaposterior probability distribution of slip
(e.g., Minson et al., 2013; Duputel et al., 2014).
With the advance of technology and the proliferation

of big data, Machine Learning (ML) algorithms have
taken on a significant role in seismological problems.
Recent progress includes the application of deep learn-
ing techniques for detecting low-frequency earthquakes
(Münchmeyer et al., 2024) and denoising HR-GNSS data
(Thomas et al., 2023), as well as the automatic identifi-
cation of slow slip events (Donoso et al., 2021), tectonic
analysis through the clustering of interseismic veloci-
ties fromGNSS stations (e.g., Yáñez-Cuadra et al., 2023),
earthquake magnitude estimation (Lin et al., 2021), co-
seismic slip distribution prediction (Cui et al., 2024),
and estimation of plate interface locking using super-
vised ML (Barra et al., 2024).
In this study, we propose a novel and efficient ap-

proach to estimate coseismic slip by employing artifi-
cial neural networks, where we define prior informa-
tion on slip through the characteristics of the training
set — in a similar manner as Barra et al. (2024) — to im-
prove stability and deal with the complexities of the ill-
posed inverse problem. Our model is trained using a
diverse set of synthetic earthquake scenarios, designed
to reflect a wide range of fault slip behaviors.
Unlike traditional inversion methods, which require

explicit regularization and can be computationally ex-
pensive, our approach implicitly incorporates prior
constraints through the characteristics of the training
dataset—similar to Barra et al. (2024)—enhancing solu-
tion stability and addressing the ill-posed nature of the
inverse problem. Our model consists of a neural net-
work trained to infer the slip distribution from surface
GNSS displacements. To achieve this, we generate a
diverse set of synthetic earthquake scenarios ensuring
that the training data captures a wide range of slip be-
haviors. By learning the relationship between surface
deformation and fault slip, the neural network provides
a fast and data-driven alternative to conventional inver-
sion techniques. Once trained, the neural network uses
GNSS observations to predict coseismic slip.
Once the model is trained, we evaluate its effec-

tiveness in a real-world scenario by estimating the
coseismic slip of the September 16, 2015 (Mw8.3) Il-
lapel, Chile, earthquake. Widely felt across the region,
this earthquake shook a broad segment of the central
Chilean subduction zone at 22:54:31 (UTC). We con-
strained the slip distribution using GNSS co-seismic dis-

placements available from Klein et al. (2017). Further-
more, we conduct a sensitivity analysis on different hy-
perparameters and data conditions that impact the per-
formance of the neural network. This analysis is cru-
cial for demonstrating the sensitivity of our model to
different settings and optimizing its configurations. To
validate our methodology, we compare it with the tra-
ditional Regularized Least Squares inversion technique
to identify and evaluate the differences in performance
between these two methods.

2 Methods
2.1 Synthetic Earthquake Data
We used the SLAB 2.0 geometry defined by Hayes et al.
(2018) to represent the subduction megathrust fault in-
terface. This geometry is discretized into a triangular
mesh consisting of 1002 elements acrossCartesian coor-
dinates ranging from approximately 29°S to 33°S along
the Chilean coastline, corresponding to the area im-
pacted by the Illapel earthquake. Green’s functions, for
modeling the surface displacements due to subsurface
slip, are derived using the TDdispHS triangular disloca-
tion model by Nikkhoo andWalter (2015).
For the generation of synthetic earthquakes, we

adapted the code developed by Carr Agnew (2013), orig-
inally designed to simulate synthetic GNSS time series
for slow slip events, to incorporate a representation of
surface displacements associatedwith slip distributions
of synthetic earthquakes. For simulating coseismic slip,
we employed a linear forward model to relate coseis-
mic slip on the fault interface, along both the strike and
dip components, to the GNSS surface displacements.
The synthetic dataset was generated at the positions
of the 107 continuous GNSS stations provided by Klein
et al. (2017), which include continuous (daily) and sur-
vey data.
Synthetic earthquake slip distributions are modeled

as elliptical sources, each generated by sampling source
parameters from uniform distributions. The ellipse di-
mensions are set within specific ranges, while slipmag-
nitudes are assigned within predefined limits. Rake an-
gles are based on typical values observed in Chilean
seismic subduction events, and Gaussian noise is added
to the calculated surface displacements to reflect the
standard deviation of the uncertainties reported for the
GNSS stations. These synthetic earthquakes, with mag-
nitudes ranging from approximatelyMw 7 toMw 9, have
spatial extents that fall within the mesh dimensions.
The ranges used for the properties of these synthetic
earthquake sources are detailed inTable 1. Anoverview
of the geometry, GNSS station distribution, and exam-
ples of synthetic slip scenarios is shown in Figure 1.

Properties Minimum Maximum
Slip (m) 5 20
Rake (°) 80 100
Length (km) 30 300

Table 1 Properties of synthetic earthquake slips and el-
lipses: This table summarizes the minimum and maximum
values for slip magnitude, rake angle, and length extent.
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After training our model, we employed Monte Carlo
error propagation to estimate uncertainties arising
from measurement errors, which were assumed to fol-
low independent Gaussian distributions with standard
deviations based on actual measurements. To assess
these uncertainties, we generated 50,000 data realiza-
tions, a slightly larger number than that used by Barra
et al. (2024).

2.2 Least Squares Inversion
For the quasi-static slip estimation problem, the rela-
tionship between observed data (d) and model param-
eters (m) is often represented as the linear forward
model:

d = Gm (1)

where the Green’s functionmatrixG defines amapping
frommodel parametersm into observable datad vector
spaces, thus allowing us to predict the data for a partic-
ular model m. The inverse problem deals with the esti-
mation of values ofm, given experimental observations
d and their relation defined by the forward model (e.g.,
Menke, 1989; Tarantola, 2005; Aster et al., 2013).
Among the various inversion techniques that can be

applied to estimate a slip distribution, the Least Squares
method is widely utilized due to its simplicity and ease
of uncertainty quantification, as it has an analytical so-
lution for the estimated model and the covariance ma-
trix representing its uncertainties. This method aims
to find the model parameters m that minimize the sum
of the squared differences between the observed data
and their prediction by the forwardmodel (Lawson and
Hanson, 1995).
As slip inversion is known to be a highly ill-posed

problem, a regularization term is often added to the ob-
jective function of the Least Squares problem. In most
cases, slip inversion relies in solving the Least Squares
problem with Tikhonov Regularization,

min
m

‖Wd(Gm − d)‖2
2 + ε2‖Hm‖2

2 (2)

where Wd is a weight matrix such that W>
d Wd = C−1

d ,
Cd is the covariance matrix of the observed data d, H
is a regularization operator, and ε is a regularization
parameter that needs to be determined using a model
class selection technique (e.g., Craven andWahba, 1978;
Hansen and O’Leary, 1993). The solution of equation 2
can be written as,

m̃ = (GTC−1
d G + ε2H>H)−1GTC−1

d d (3)

C̃m = (GTC−1
d G + ε2H>H)−1 (4)

where m̃ is the estimatedmodel parameters and C̃m the
covariancematrix representing the uncertainties of the
estimated model parameters. As a typical choice (e.g.,
Lohman, 2004; Delouis et al., 2010; Awaluddin et al.,
2012; Tung and Masterlark, 2016; Yáñez-Cuadra et al.,
2023), we use H = ∇2, a Laplacian operator, to define a
slip smoothing constraint, aimed to deal with the inher-
ent instability of the slip inversion. We refer the reader
to Ortega-Culaciati et al. (2021) and references therein,
for further details on the Linear Least Squares method

and on the effectiveness of the variety of regularization
types that can be defined to deal with the inherent in-
stabilities of the quasi-static slip estimation problem.
When estimating the coseismic slip distribution of a

megathrust earthquake, it is generally expected that slip
on each subfault will exhibit a reverse (updip) direction.
As a result, imposing a positivity constraint on the dip-
slip component becomes a natural requirement, lead-
ing to the following inverse problem:

min
m

‖Wd(Gm − d)‖2
2 + ε2‖Hm‖2

2

subject to mδ ≥ 0. (5)

where mδ refers to the subset of m representing the dip
component of slip at each subfault. To solve this prob-
lem 5, we apply a trust-region reflective method (Cole-
man and Li, 1996), which allows for the definition of
bounds constraints on a specific subset ofmodel param-
eters, m. In the Discussion section, we will compare
this method with the proposed neural network model.

2.3 Artificial Neural Networks
Artificial Neural Networks (ANNs) are a type ofMachine
Learningmethod inspired by the structure and function
of the human brain, capable of solving complex prob-
lems through interconnected layers of neurons. In gen-
eral, a neural network comprises an input layer, one
or more hidden layers, and an output layer. The in-
put layer receives the data, the hidden layers process it
by extracting patterns and features through a series of
computations, and the output layer delivers the final re-
sult—mimicking the flow of information in neural path-
ways (e.g., Wang, 2003; Goodfellow et al., 2016).
In our study, we use a neural network as the pre-

dictive model to estimate earthquake slip distributions.
Specifically, the network is trained to learn the relation-
ship between surface crustal displacements (recorded
atGNSS sites) and their causative fault slip distributions,
using a large synthetic dataset of earthquake scenarios.
During training, an optimization algorithm iteratively
adjusts the internal parameters (weights and biases) via
backpropagation (Yegnanarayana, 2009) to minimize a
loss function. The training data are split into batches
and processed over several epochs, allowing the net-
work to gradually refine its predictions. Once trained,
the network can predict fault slip distributions from
new displacement data it has not previously seen.
The architecture of our preferred model is straight-

forward, consisting of just one hidden layer with 100
neurons, alongside the input and output layers. The in-
put layer receives surface crustal displacements at the
location of GNSS sites, and the output layer predicts
quantities that will be later translated into a fault slip
distribution. To prevent overfitting, we incorporate a
dropout layer with a 35% rate between the hidden and
output layers. In our dense layers, each neuron is con-
nected to every neuron in both the preceding and sub-
sequent layers.
For the activation function in the hidden layer,

we employ the Gaussian Error Linear Unit (GELU)
(Hendrycks D., 2016), which serves as a smoother alter-
native to the traditional ReLU (Krizhevsky et al., 2017).
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Figure 1 (a) Representation of the configuration used, including the SLAB 2.0 model for the subductionmegathrust geom-
etry and the triangular mesh discretization. The red triangles indicate the distribution of GNSS stations. (b) Example of a
synthetic earthquake scenario showing the corresponding slip distribution. (c) A second synthetic scenario with a different
slip distribution.

GELU is mathematically defined as:

GELU(x) = x Φ(x), (6)

where Φ(x) represents the cumulative distribution
function of the standard Gaussian. This non-linear
function weights the input x by the probability that x is
less than or equal to itself, thus enabling gradual adjust-
ment of the outputs. In the output layer, we use the sig-
moid function to transform the outputs into the range
[0, 1]:

Sigmoid(x) = 1
1 + e−x

. (7)

Additionally, we tested different activation functions,
including ReLU (Krizhevsky et al., 2017), SELU (Klam-
bauer et al., 2017), Mish (Misra, 2019), ELU (Clevert
et al., 2015), and Swish (Ramachandran et al., 2017). For
further details on these experiments, the reader is re-
ferred to the supplementary material.
The network was implemented and trained using the

TensorFlow library (Abadi et al., 2015). Prior to training,
the data were normalized using min-max scaling to en-
sure that all values fell within the 0 to 1 range, thereby
optimizing the efficiency of the learning process. Our
training dataset comprises 300,000 synthetic cases (as
detailed in Section 2.1), partitioned into 80% for train-
ing and 20% for testing, with 10% of the training set fur-
ther allocated for validation. The network was trained
over 10 epochs using the Adam optimizer (Kingma and
Ba, 2014) to minimize the Mean Squared Error (MSE):

MSE = 1
n

n∑
i=1

(yi − ŷi)2
, (8)

where yi and ŷi denote the actual and predicted slip
values, respectively, and n is the total number of sam-
ples. Performancewas further evaluated using the Root

Mean Squared Error (RMSE) and the Mean Absolute Er-
ror (MAE):

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2
, MAE = 1

n

n∑
i=1

|yi − ŷi| .

(9)
After training, the network’s outputs were rescaled to
their original range using the same normalization pa-
rameters.

3 Results

3.1 Synthetic case

Initially, we tested our model on the synthetic cases we
developed. The model demonstrates the capability to
capture the coseismic slip, aligning closely with the an-
ticipated magnitudes, with minor discrepancies in the
slip distribution (as shown in Fig. 2). The predicted slip
tends to be smaller and more concentrated in the cen-
ter. This pattern, which appears consistently across all
synthetic cases, indicates a slight underestimation in
the slip distribution. The mean RMSE for the GNSS dis-
placements of the synthetic cases is 0.13 m, while the
mean MAE is 0.06 m.

3.2 Illapel case

Using our preferred model to estimate the coseismic
slip of the Illapel earthquake (Figure 2), we found that
the mainshock slip distribution spans from 30.3°S to
31.9°S in latitude and from 72.6°W to 71.1°W in longi-
tude. The peak coseismic slip reached 9 meters, with
an along-strike rupture length of approximately 177 km
(Figure 3). The slip distribution yields a geodetic seis-
mic moment of Mo = 3.35 × 1021 Nm, equivalent to an
Mw = 8.32 earthquake.
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Figure 2 Example of a synthetic case: (a) Slip distribution with displacement vectors shown in yellow for a synthetic sce-
nario; magnitude and RMSE details displayed in the bottom right. (b) Model prediction for the synthetic case. (c) Residuals
and slip differences for the presented synthetic case.

Regarding the GNSS displacement vectors in the hor-
izontal components, they are generally well-recovered
from the original data but are slightly more oriented
towards the south and larger than expected (i.e., mea-
sured) values. Similarly, the vertical components are
accurately captured but also appear slightly larger than
anticipated, as shown in Figure S1. Despite these dis-
crepancies, the overall recovery of the displacement
vectors is notably accurate in both components. For the
horizontal components, the average residual is 3.5 cm,
while for the vertical components, it is 1.6 cm,whichwe
consider acceptable given the maximum displacement
values of approximately 2 meters.

3.3 Analysis of impact of hyperparameters
and data conditions

In this section, we demonstrate the impact of both
model hyperparameters and experimental conditions
on the estimation of coseismic slip for the Illapel case.
To ensure a consistent comparison, we maintained the
same data volume and architecture across all models,
modifying only thenecessary parameters or conditions.
Specifically, we explored the influence of the choice of
activation function for the hidden layer, the dropout
rate, and the number of training epochs. Concurrently,
we examined various experimental conditions critical
to our study. We utilized a subset of only 13 GNSS sta-
tions, as described by Shrivastava et al. (2016), to un-
derstand the impact of the number of GNSS stations on
the model performance. We also varied the volume of
synthetic cases used for training. Additionally, to as-
sess the model’s robustness, we introduced noise to the
GNSS training data. Although such noise is not consid-
ered as a hyperparameter, its incorporation is crucial in
defining the training environment and data character-
istics that influence model training and performance.
The results of this analysis are presented in Fig. 4 and
additionally in Figures S2 to S9.

With respect to activation functions, Mish demon-
strated the second-best performance after GELU (Fig-
ure 4a), followed by SELU,while ReLU and Swish exhib-
ited the poorest performance. This trend is reflected in
both themetric values and residual analysis as shown in
Figures S2 and S3. Although most activation functions
tend to overestimate slip, the GELU function used in
the preferredmodel is capable of accurately recovering
it. This can be attributed to GELU’s smooth probabilis-
tic curve, which preserves gradient information better
than other activation functions. Further details on the
performance of other activation functions can be found
in the supplementary material.
The dropout rate plays a crucial role in enhancing the

model ability to generalize bymitigating overfitting. In-
termediate dropout rates between 30 and 50% perform
better, as evidenced in Figures S4 and S5. In contrast,
lower dropout rates, such as 10 to 20%, lead to higher
RMSE and MAE values, and higher residuals (Figure
4b). Conversely, higher dropout rateshelp to smooth the
results but canmask finer details in the data. A dropout
rate of 35% is considered to be the most effective in this
case, achieving the best balance.
Changing the number of training epochs did not re-

sult in significant changes in RMSE, MAE, or residuals
(Figures 4c, S6, and S7). The lack of a clear pattern
suggests that increasing the number of epochs does not
lead to better model performance. This analysis iden-
tifies the activation function as the most critical hyper-
parameter for our model, followed by the dropout rate
and the number of training epochs.
In terms of data conditions, the reduction in the num-

ber of GNSS stations negatively impacted themodel per-
formance, leading to higher RMSE andMAE values. De-
spite this, the model was still able to reasonably esti-
mate the slipmagnitude and distribution, althoughwith
larger uncertainties due to the sparsely-distributed sta-
tions (Figure 4d). As expected, the use of more syn-
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Figure 3 Estimated coseismic slip distribution for the Illapel earthquake using our preferredmodel, showing displacement
vectors. Predicted vectors are in yellow, observed vectors are in red, and95%confidence intervals are includedas red ellipses
to illustrate the uncertainties in the model predictions.

thetic cases resulted in better performance (Figures S8
and S9), indicating that at least 200,000 synthetic cases
for training are needed for robust results (Figure 4e).

Introducingnoise confirmed themodel robustness, as it
still accurately estimated coseismic slip and magnitude
as shown in Figure 4f.

6
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Figure 4 Impact of different hyperparameters and experimental conditions on coseismic slip estimation for the Illapel case.
Each panel displays the predicted and observed displacement vectors, with predictions in yellow and observations in red.
Thepanels also include 95%confidence ellipses illustrating the uncertainty in the predictions. Subfigures show the effects of:
(a) Mish activation function in the hidden layer, (b) 20% dropout rate, (c) 50 training epochs, (d) using 13 only GNSS stations,
(e) training with 200,000 synthetic cases, (f) introducing noise into the training data.

4 Discussion

The preferred neural network model, tested on the Il-
lapel earthquake, is consistent with the slip distribution
estimated in other studies. Our model maximum slip (9
m) is consistent with the estimates from Melgar et al.
(2016), Klein et al. (2017), and Zhang et al. (2017) (10 m);
Shrivastava et al. (2016) (8 m); Williamson et al. (2017)
(11 m); and Carrasco et al. (2019) (9 m). The along-
strike length of the slip (177 km) is similar to other stud-
ies: Zhang et al. (2017) (170km); Klein et al. (2017), Mel-
gar et al. (2016), and Shrivastava et al. (2016) (200 km);
Williamson et al. (2017) (125 km); and Carrasco et al.
(2019) (180 km). Furthermore, the seismic moment in
our model (3.66 × 1021 Nm, i.e. Mw 8.32) is consistent
with the USGS W-phase model of 3.19 × 1021 Nm, i.e.

Mw 8.27.

Comparing our preferredmodel with an inversion us-
ing the Regularized Least Squares (RLS)method, we ob-
served that ourmodel exhibits higher residuals. Specif-
ically, the root mean square (RMS) of the GNSS data
residuals for our model is 6 cm, compared to 2.2 cm for
the RLS inversion model. As illustrated in Fig. 5, the
RLS inversionmodel consistently shows lower residuals
across the study area. This discrepancy is particularly
noticeable in the southern zone, where ourmodel resid-
uals are significantly higher, as seen in Figure 5a and
Figure 5b. This may be attributed to the distribution of
GNSS stations, as thehigher station density in thenorth-
ern region provides better constraints for themodel, re-
sulting in lower residuals. TheGNSSdata residual graph
(Figures 5c and 5d) indicates that residuals from our
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Figure 5 (a) Preferred model slip distribution with residuals highlighted in green. (b) Slip distribution from Regularized
Least Squares inversion. (c) Comparison of East-West (E-W) component residuals for the preferredmodel (in blue) and classic
inversion (in orange). (d) Comparison of North-South (N-S) component residuals across both models.

model are more dispersed and include more extreme
values, although their values are generally distributed
around 0 cm. The vertical components exhibit lower
residuals compared to the horizontal components, as
detailed in Figure S10.
Furthermore, a significant observation from our

model is the estimation of substantial slip close to the

trench, contrastingwith the inversionmodel slip, which
is positioned further away from the trench. This find-
ing aligns with the slip patterns noted by Carrasco et al.
(2019) and Caballero et al. (2023), where the slip is also
estimated near the trench and is consistent with the
tsunami observations of Lay et al. (2016), underscoring
a possible area-specific frictional behavior at the sub-
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ductionmegathrust that ourmodel capturesmore effec-
tively, even though is constrained only by on-land GNSS
observations.

5 Conclusions
In this study, we developed a novel neural network
model that rapidly and accurately estimates coseismic
slip. The model demonstrated high accuracy in pre-
dicting both the magnitude and spatial distribution of
slip for synthetic cases, and was subsequently validated
with the Mw 8.3 Illapel earthquake, achieving a GNSS
displacement RMSE of 0.07 m and showing consistency
with previously published solutions. This capability is
essential for improving early warning systems and ad-
vancing real-time seismic hazard assessments.
A standout feature of our approach is its computa-

tional efficiency: once trained, themodel generates slip
estimations in just 0.07 seconds on a conventional com-
puter without requiring iterative model tuning, signifi-
cantly simplifying the estimation process. These com-
putations were performed on a standard personal com-
puter equipped with an AMD Ryzen 5 5600G processor
and 16 GB of RAM, without the use of a dedicated GPU.
This speed, combined with minimal hardware require-
ments, highlights the potential of neural networks to
help with quick earthquake response and risk mitiga-
tion.
The impact of hyperparameters and data conditions

on model performance was evident. Among the activa-
tion functions tested, GELUproduced themost accurate
slip magnitudes, while others tended to overestimate.
Dropout rates between 30% and 50% improved general-
ization, and varying the number of training epochs had
little effect. Reducing the number of GNSS stations and
synthetic cases increased errors, reinforcing their im-
portance for model accuracy. Despite the added noise,
the model remained robust, consistently delivering re-
liable slip estimates.
Performance analysis showed that theEast-West com-

ponent of slip had the highest residuals and variabil-
ity, indicating more potential errors in this direction.
The North-South component followed, while the verti-
cal component showed the lowest variability, likely due
to its smallermagnitude, making it easier for the neural
network to learn. Although the horizontal components
generally have higher accuracy in GNSSmeasurements,
their larger magnitudes seem to pose a greater chal-
lenge for the model, leading to higher residuals com-
pared to the vertical component. These patterns sug-
gest specific areaswhere themodel could be further im-
proved.
However, the model applicability is inherently lim-

ited by the distribution of GNSS stations used for train-
ing, as station density directly affects its ability to re-
solve slip patterns. Furthermore, themodelwas trained
exclusively on single-asperity earthquakes, making it
well-suited for events with similar rupture character-
istics. Expanding its applicability to more complex,
multi-asperity earthquakeswould require abroader and
more diverse training dataset, as well as exploringmore
complex neural network architectures. To develop a

more generalizable model capable of predicting slip for
various megathrust earthquakes in Chile, it would be
necessary to incorporate data from all available GNSS
stations in the region and a wider range of rupture sce-
narios.
Ultimately, while the model performs well for single-

asperity events and offers significant computational
advantages, enhancing its training dataset with more
synthetic cases and realistic rupture patterns would
strengthen its predictive accuracy. Incorporating more
diverse scenarios, particularly ellipses that closely re-
semble real events, could further improve model relia-
bility. These refinements would contribute to develop-
ing a more versatile tool for estimating coseismic slip
across a broader spectrum of seismic events.
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