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Abstract We present simple and optimized workflows for computing empirical Green’s functions in
ambient-noise tomography that enhance computational efficiency and numerical stability. A key improve-
ment is a phase-only instrument-response correction applied only once after stacking instead of to the raw
data before correlation. This prevents instability in spectral division, simplifies computations, and reduces
execution time. While some of the additional optimizations we employ are already in use within the ambient-
noise tomography community, we provide a detailed description along with systematic benchmarks that
quantify their actual impact on runtime and stability. Key improvements include reducing redundant Fourier
transforms and combining spectral equalization, cross-correlation, and stacking into a single frequency-
domain step. An additional optimization reuses spectral representations of individual stations across mul-
tiple station pairs, maintaining linear complexity. We also propose a completely new optimization: apply-
ing a phase-only instrument-response correction only once after stacking instead of before correlation. This
prevents instability in spectral division, simplifies computations, and reduces execution time. We validate
the workflows using datasets from Southern California, Brazil, and Uganda. For individual station pairs, our
primary optimized workflow (WF2) reduces execution time by approximately 67–75% (speed-up factors of
3.0–3.9), closely matching theoretical expectations (∼5.1). A more scalable variant (WF3) achieves speed-up
factors of 15–60 for moderate-sized networks. Furthermore, we demonstrate that a partial implementation
into existing codes, requiring only minimal modifications, yields about 10% execution-time savings and im-
provednumerical stability. TheproposedworkflowsproduceEGFsnearly indistinguishable fromconventional
methods and are particularly suitable for large-scale ambient-noise tomography in computationally limited
environments.

1 Introduction
Imaging the structure and composition of the Earth’s
lithosphere and asthenosphere is essential for under-
standing tectonics, geodynamics, and geological pro-
cesses and structures, with additional implications for
resource exploration and hazard assessment (e.g., No-
let, 2008; Artemieva, 2011; Routh et al., 2017; Cathles
et al., 2023; Muir and Ross, 2023). Seismic tomography,
using earthquake-generated seismic waves, has been
paramount in constructing detailed subsurface images
(e.g., Aki et al., 1977; Dziewonski, 1979; Nolet and Ken-
nett, 1990; Thurber, 2003; Martin and Wenzel, 2006;
Priestley andTilmann, 2009; Fishwick, 2010; Plomerová
and Babuška, 2010; Kumar et al., 2012; Clouzet et al.,
2018; Audhkhasi and Singh, 2022; Ciardelli et al., 2022;
Vaddineni and Singh, 2023). However, the uneven spa-
tial and temporal distribution of earthquakes poses a
significant limitation, leading to gaps in the resolution
and coverage of tomographicmodels (Nolet, 2008; Rawl-
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inson and Sambridge, 2003), especially in aseismic re-
gions such as the South American Platform (Almeida
et al., 2000; Petersen et al., 2018) where seismicity is
sparse.

Ambient-noise tomography (ANT) has emerged as a
valuable complement to traditional earthquake-based
tomography. By using continuous background seis-
mic noise, ANT offers more uniform spatial cover-
age controlled by the distribution of stations rather
than earthquakes (Bensen et al., 2007). The method-
ology involves cross-correlating ambient seismic noise
recorded at pairs of seismic stations to extract empiri-
cal Green’s functions (EGFs) (Weaver and Lobkis, 2004;
Snieder, 2004; Larose et al., 2006; Stehly et al., 2006;
Yang and Ritzwoller, 2008), which are then used to in-
fer subsurface properties such as seismic wave veloci-
ties and lithospheric units (e.g., Moschetti et al., 2007;
Lin and Ritzwoller, 2011; Witek et al., 2018) and at-
tenuation (e.g., Prieto et al., 2009). This approach has
proven effective in providing high-resolution images of
the Earth’s lithosphere (e.g., Shapiro et al., 2005; Ritz-
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woller et al., 2011; Ojo, 2021), even in regions with lim-
ited seismic activity.
Removing the instrument response is a routine step

in ANT to account for sensor effects before estimating
EGFs (Bensen et al., 2007; Lin et al., 2008). This is typ-
ically done prior to cross-correlation and involves the
removal of both amplitude and phase response (e.g.,
Herrmann, 2013; Lecocq et al., 2014; Jiang and Denolle,
2020; Clements and Denolle, 2020; Li et al., 2021; Ma-
grini et al., 2022; Makus and Sens-Schönfelder, 2024).
However, full deconvolution requires spectral division,
which can amplify noise in frequency bands where
the instrument is less sensitive, thereby introducing
instability (Scherbaum, 1996; Akkar and Boore, 2009;
Havskov and Alguacil, 2016).
We present a modified ANT workflow that improves

numerical stability and reduces computational cost by
eliminating redundant Fourier transforms, performing
spectral equalization, cross-correlation, and stacking
in a single frequency-domain operation, and applying
phase-only instrument-response correction after stack-
ing. This last modification is sufficient because normal-
ization and spectral equalization largely suppress am-
plitude information (Bensen et al., 2007; Ritzwoller and
Feng, 2019), and it avoids the instability of full spec-
tral division. While correctly removed instrument re-
sponse is secondary to more significant sources of un-
certainty in ANT, this optimization is simple to imple-
ment and improves robustness at minimal cost. We val-
idate the method on datasets from three tectonic set-
tings, benchmark it on multiple hardware platforms,
and introduce a scalable variant that reuses station-level
spectra across pairs. Even partial adoption within exist-
ing codes yields measurable gains in efficiency and sta-
bility, making the approach suitable for large-scale ANT
applications.

2 Methodology
Bensen et al. (2007) proposed aworkflow for calculating
EGFs from ambient-noise cross-correlation: (1) remove
linear trend; (2) taper; (3) remove instrument response;
(4) trim; (5) apply time-domain normalization; (6) ta-
per again; (7) perform spectral equalization; (8) cross-
correlate; and (9) stack. While widely used, the order of
steps (5) and (7) is critical. Applying time-domain nor-
malization first—especially one-bit—suppresses high-
amplitude transient signals, yielding amore stable time
series for spectral analysis and reducing bias from fre-
quency bands where they dominate. A potential draw-
back is that one-bit normalization can reduce the con-
tribution of weaker frequencies, whose influence be-
comes limited to the zero crossings of stronger sig-
nals. However, this effect is much less pronounced
with running absolute-mean normalization, which pre-
serves relative amplitude variations. Performing spec-
tral equalization after normalization also enables com-
putational optimizations discussed later.
The most computationally demanding steps are typi-

cally I/O, response removal, spectral equalization, and
cross-correlation, though their relative costs depend
on hardware-specific factors such as memory access

speed and cache size. Response removal and spec-
tral equalization are applied to individual time series in
the frequency domain. Cross-correlation can be per-
formed in either the time or frequency domain, but
for long time series, the frequency-domain approach
is more efficient, reducing the complexity from O(nnc)
to O(n log2 n), where n is the number of samples and
nc is the cross-correlogram length. For real-valued sig-
nals, using the Real FFT (RFFT) and its inverse (IRFFT)
(Cooley and Tukey, 1965) further reduces the opera-
tion count. Limiting the maximum lag time reduces nc

and allows segmentation into overlappingwindows, en-
abling the use of multiple short FFTs in place of a sin-
gle long one. FFTs are typically more efficient when the
input length is a power of two. After removing linear
trends and applying a taper, the instrument response is
removed by deconvolving the RFFT of the signal, S(ω),
by the instrument response R(ω), followed by an IRFFT
to recover the corrected time series sc(t), as described
in Equation 1.

sc(t) = F−1
[

S(ω)
R(ω)

]
(1)

To stabilize the deconvolution, we restrict the opera-
tion to the broad frequency band where the instrument
response is sufficiently sensitive by applying a band-
pass filter—referred to as a pre-filter—prior to deconvo-
lution, thereby eliminating the need for a water level
(Clayton and Wiggins, 1976). The signal is then trans-
formed back to the time domain for time-domain nor-
malization, which mitigates the influence of transient
or anomalous signals such as earthquakes, instrument
glitches, and local noise (Bensen et al., 2007; Ritzwoller
and Feng, 2019). Afterward, the signal is returned to the
frequency domain for spectral equalization—typically
combined with a spectral taper—to balance frequency
contributions and suppress dominanceby features such
as the secondary microseismic peak (Bensen et al.,
2007). A final IRFFT yields the preprocessed signal for
cross-correlation.
Time-domain normalization methods differ in how

strongly they suppress amplitude variations. One-
bit normalization converts the signal to a binary
time series by retaining only the sign of each sam-
ple. This approach is highly effective at suppressing
large-amplitude transients (e.g., earthquakes, instru-
mental glitches), ensures uniform contribution across
timewindows, and is computationally efficient (Bensen
et al., 2007). However, it discards all amplitude in-
formation and can significantly distort phase infor-
mation, especially in low signal-to-noise ratio (SNR)
conditions, which reduces the quality of EGFs. Run-
ning absolute-mean normalization preserves relative
amplitude variations by dividing the signal by a mov-
ing average of its absolute value over a specified win-
dow (Bensen et al., 2007; Ritzwoller and Feng, 2019).
Although more computationally intensive and some-
what sensitive to window length, it is better suited for
datasets with stable ambient noise and moderate tran-
sients, as its less aggressive processing reduces wave-
form distortion, which can yield higher-quality EGFs.
We adopted running absolute-mean normalizationwith
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awindow length equal to half themaximumwavelength
(Bensen et al., 2007).
Among spectral equalization strategies, one com-

monly used method is aggressive spectral equalization,
which completely flattens the amplitude spectrum over
a selected frequency band by dividing the spectrum
by its own absolute value (Ritzwoller and Feng, 2019).
This procedure enhances the broadband character of
the cross-correlation and suppresses dominant narrow-
band noise, but it also eliminates physicallymeaningful
amplitude information andmay introduce non-physical
artifacts (Fichtner et al., 2020). A more conservative al-
ternative involves dividing the spectrum by a smoothed
version of its amplitude, thereby reducing large spec-
tral peakswithout fully flattening the spectrum (Bensen
et al., 2007; Ritzwoller and Feng, 2019). In this scheme,
the equalization acts to mitigate spectral biases while
preserving some spectral variability and physical inter-
pretability. However, this method has been found to be
less successful at removing some local persistent noise
sources fromcross-correlationsbetween stations in cer-
tain cases (Ritzwoller and Feng, 2019), and determining
the optimal amount of smoothing in the frequency do-
main canbe challenging. Given that both strategies pro-
duced comparable results in our tests, we selected the
more aggressive equalization procedure for its simpler
implementation and robust performance.
Cross-correlation in the frequency domain involves

computing the RFFT of signals from two stations (s1(t)
and s2(t)), multiplying the complex conjugate of the
transform of the first signal with that of the second,
and applying an IRFFT to obtain the cross-correlogram.
Because the Fourier transform is linear, the signals
can be normalized and transformed once (one RFFT
per signal), after which spectral equalization, cross-
correlation, and stacking are all performed in the fre-
quency domain. A single IRFFT then converts the final
stack back to the time domain.
A novel optimization we introduce consists in ap-

plying the phase-only instrument-response correction
only once after stacking, rather than before correlation,
to improve numerical stability and computational effi-
ciency. Since time-domain normalization and spectral
equalization arenonlinear operations that suppress am-
plitude information while preserving phase, the ampli-
tude component of the instrument response becomes
irrelevant. Correcting only the phase avoids potentially
unstable spectral division—especially under noise, sub-
optimal pre-filters, or poorly chosen water levels—and
is appliedonce to the stacked spectrum,which is amuch
shorter signal. This involves multiplying the stacked
spectrum by a complex exponential that accounts for
the combined phase responses of the two instruments.
The final EGF is then obtained via an inverse transform:

Ge = F−1


 N∑

j=0
S1(ω)jS2(ω)j

 e−i[φ1(ω)−φ2(ω)]

 , (2)

where S1(ω)j and S2(ω)j are the normalized and equal-
ized spectra of each signal pair, φ1(ω) and φ2(ω) are
the instrument phase responses, and the overline de-

notes complex conjugation. Technically, assuming the
cross-correlation function is symmetric about the ori-
gin, the EGF is the derivative of the cross-correlation
function for t > 0, taken with a minus sign (Snieder,
2004; Lin et al., 2008). Nonetheless, many studies (e.g.,
Shapiro et al., 2005; Bensen et al., 2007) refer to the
cross-correlogram itself (or a scaled version) as the EGF,
a convention we adopt here.
We define the baseline approach—using RFFT,

frequency-domain cross-correlation, and traditional
response removal—as Workflow 1 (WF1), and the mod-
ified version—with phase-only correction applied after
stacking and fewer transformations—as Workflow 2
(WF2). Figure 1 contrasts the two workflows.
In the timedomain, cross-correlationwith 100%over-

lap requires that s1(t) be longer than s2(t). If n1 and
n2 are their respective lengths, then the resulting cross-
correlogram has ncc = n1 − n2 + 1 samples. This is
known as the “valid mode”, which we adopt. In the fre-
quency domain, the same result requires zero-padding
s2(t) so that n1 = n2 = n before applying the RFFT.
For simplicity, we assume n ≈ 4ncc. Since both RFFT
and IRFFT involve approximately n log2 n operations,
we can estimate the computational cost of each work-
flow following Figure 1 and using Equations 3–4:

WF1 → N ×
[
10 × n log2 n + n

4 log2

(n

4

)]
, (3)

WF2 → N × 2 × n log2 n + n

4 log2

(n

4

)
, (4)

where N is the number of stacks. Note that the ex-
pressions in Equations 3–6 represent concrete opera-
tion counts (not asymptotic big-O bounds) used to es-
timate the numerical speed-up factor.
The theoretical speed-up factor SPFT for replacing

WF1 withWF2 is given by:

SPFT := WF1
WF2 ≈

N ×
[
10 × n log2 n + n

4 log2

(n

4

)]
N × 2 × n log2 n + n

4 log2

(n

4

)
(5)

Usually, N is on the order of hundreds or even thou-
sands. Thus, we can approximate the number of opera-
tions forWF2 as N × 2 × n log2 n:

SPFT ≈
10 × n log2 n + n

4 [log2 n − 2]

2 × n log2 n
= 5+ 1

8 − 1
4 log2 n

(6)
A typical n ranges from a few thousands to several hun-
dreds of thousands. Hence, it is reasonable to assume
that 0.01 ≤ 1

4 log2 n
≤ 0.02 =⇒ 1

4 log2 n
≈ 0.015. With

this final approximation, we conclude that SPFT ≈
5.11.
The actual speed-up depends not only on algorith-

mic complexity but also on hardware-specific factors
such as cache size, memory bandwidth, and I/O perfor-
mance, which can significantly affect execution time.
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Figure1 Flowchart comparing the twoworkflows. The standardworkflow (WF1) removesboth the amplitude (A) andphase
(P) informationof the instrument before time-domain normalization and spectral equalization. Ourmodifiedworkflow (WF2)
removes only the phase response at the end while also avoiding all redundant RFFTs and IRFFTs.

Additionally, the impact of workflow optimizations de-
pends on the ratio between the number of stations and
station pairs. While previous estimates assume com-
parable costs for operations performed per station and
per pair, this holds primarily for small networks. In
most practical cases, even when autocorrelations are
excluded and symmetric pairs are not repeated, the
number of station pairs grows quadratically with the
number of stations:

np = ns(ns − 1)
2 , (7)

where ns is the number of stations and np the number
of unique station pairs. np = O(n2

s) in typical network
configurations.
As ns increases, execution time becomes increas-

ingly dominated by pairwise operations such as cross-
correlation and stacking, while station-level steps—
such as response removal, time-domain normaliza-
tion, and spectral equalization—contribute progres-
sively less. This shift, however, depends on implemen-
tation. By reusing spectral representations of each sta-
tion across its multiple pairings, the number of RFFTs
can be kept proportional to ns rather than np. Com-
bined with stacking in the frequency domain, this strat-
egy preserves linear complexity in ns and improves
scalability. The strategy of computing FFTs once per
station and reusing them for all pairwise correlations
is fully implemented in SeisNoise.jl (Clements and
Denolle, 2020). Elements of this idea also appear
in Mirmex (Fichtner et al., 2017), although the au-
thors do not go as far as precomputing the FFTs. In-
stead, they perform several preprocessing operations
(e.g., band-pass filtering, downsampling, detrending,
and instrument-response removal) once and store the
processed time-domain waveforms on disk for reuse,

thereby eliminating redundant preprocessingwhile still
requiring a new FFT for each correlation pair.
As shown in our benchmarks, this approach reduces

execution time by more than an order of magnitude
even for moderate-sized networks (ns < 100), with-
out requiring parallelization. We refer to this optimized
configuration as Workflow 3 (WF3), which produces
EGFs identical to those of WF2 at substantially reduced
computational cost. Its structure is illustrated in Fig-
ure 2.

3 Computational Experiments

For this study, we implemented the routines in Python
and conducted most benchmarks on two machines.
The first was a laptop with a 12th Generation Intel
Core i9-12900HK processor (24 MB cache, 14 cores, 20
threads, up to 5.00 GHz), a 2 TB PCIe NVMe Gen4x4
SSD (M.2 2280), and 64 GB of DDR5 RAM (2 × 32 GB,
4800 MHz, dual-channel). The second was a Google Co-
lab instance with an Intel Xeon processor, 2 vCPUs (vir-
tual CPUs), and 13 GB of RAM. The code was based on
a Seismo-Live tutorial on ANT (Hadziioannou and Rijal,
2024). While Python is not optimized for speed ormem-
ory usage, it is an accessible, open-source program-
ming language that allowed us to validate the method
and demonstrate its robustness. For production-scale
runs, a compiled or fast just-in-time (JIT) compiled
language—such as C, C++, Fortran, or Julia—would bet-
ter leverage the efficiency ofWF2, and especiallyWF3.
All tests used a sampling rate of 20 Hz and a 2-

hour window length. Each continuous segment was de-
trended and tapered at its edges before gaps were filled
with zeros, minimizing artifacts during instrument re-
sponse removal and spectral equalization. Although the
workflows are compatible with gap-skipping strategies,
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Figure 2 Schematic overview of Workflow 3 (WF3). Each RFFT is computed only once per station and reused across all
cross-correlation pairs. In practice, two RFFTs per station are required to accommodate differences in time window lengths
dependingonwhether the stationappears first or second. Nevertheless, this strategy ensures that thenumberof RFFTsgrows
as O(ns) rather than O

(
ns

2)
.

we used zero-padding in this study for its simpler im-
plementation. For actual applications, however, skip-
ping gaps is generally amore reliable approach to avoid
potential artifacts introduced by missing or corrupted
data.
Figure 3 shows theEGFs computedwithWF1 andWF2

using one year of ambient noise from two Southern Cal-
ifornia stations (Figure 4, right). InWF2, only the phase
response is removed, resulting in stable corrections
even at frequencies where instrument sensitivity is low.
To allow comparison with WF1 at very low frequencies
(< 0.01 Hz), we applied a pre-filter (dashed green in
Figure 4, left) that is zero below 0.001 Hz (1000 s) and
above 9 Hz (0.11 s), and unity between 0.0014 Hz (714 s)
and 8.1 Hz (0.123 s). We compared results in two pe-
riod bands: 0.11–1000 s and 10–30 s, including zoomed-
in views to highlight differences. Figure 3 shows neg-
ligible differences between the results of the two work-
flows. WF3 plots are identical to those of WF2; the dis-
tinction lies solely in computational cost. We further
quantified the differences by calculating the residuals
between WF1 and WF2 (Figure S1, Supplementary Ma-
terial) and the cosine similarity (CS) values for both pe-
riod bands (see caption of Figure 3).
We repeated the tests for twelve station pairs in Brazil

(Figure 5) using one year of continuous data. To accom-
modate the different instrument responses, we adjusted
the retained frequency band to 0.002–2 Hz (500–0.5 s).
This choice ensured stable computation of WF1 and
allowed a meaningful comparison with WF2. The re-
sults again showed very close agreement betweenWF1

Figure 3 EGFs derived from one year of continuous data
recorded at stations MLAC and PHL. WF1 is shown in black
and WF2 in red; both waveforms were normalized to the
maximumamplitude ofWF1. Upper left: full broadband pe-
riod range within instrument sensitivity; lower left: primary
microseismic noise band (10–30 s); right column: zoomed-
in views of the boxed regions in the left panels. Cosine sim-
ilarity values measured in the 0.11–1000 s and 10–30 s pe-
riod bands within the boxed regions are 0.97 and 1.00, re-
spectively. Residuals for the sameconfigurations are shown
in Figure S1 (SupplementaryMaterial) and exhibitmarkedly
lower values within the primary microseismic band.

andWF2 (and thus WF3), confirming the robustness of
the optimizedworkflows evenwhen combining stations
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Figure 4 Left: Map of Southern California showing stations MLAC and PHL (network CI), also used by Hadziioannou and
Rijal (2024) and Shapiro et al. (2005), marked as yellow triangles. The red line represents the great-circle path along which
waves would propagate between the two stations. Right: Amplitude and phase response to ground velocity at stationsMLAC
(blue) and PHL (orange). The green dashed line indicates the broadest frequency band retained and has been scaled by 109

for visualization purposes.

Figure 5 Upper-left panel: Analogous to Figure 4 (left), but for three station pairs in Brazil (networks BL, BR, and IU). The red
lines correspond to the EGFs shown in the other three panels: BSCB–VABB (upper right), VABB–TEFE (lower left), and PRPB–
RCBR (lower right); their residuals are displayed in Figure S1 (Supplementary Material). Blue lines indicate additional station
pairs whose EGFs and residuals are presented in Figures S2–S5.
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Figure 6 Left: Instrument response (amplitude and phase) to ground velocity at stations PRPB (blue) and RCBR (orange).
As in Figure 4, the green dashed line marks the retained frequency band. The minimum frequency was raised to 0.002 Hz
because of the low sensitivity of PRPB below this value, whereas the maximum frequency was lowered to 2 Hz owing to the
sharp decline in sensitivity of RCBR above this threshold. Right: Same as the left panel, but for the three Ugandan stations
MBAR (blue), KMBO (orange), and MASD (red).

Data days Elapsed TimeWF1 [s] Elapsed TimeWF2 [s] Speed-up Factor ExecutionTimeDrop [%]
10 55.4 16.8 3.29 69.7
90 416.2 134.3 3.10 67.7
365 1694.5 565.0 3.00 66.7

Table 1 Elapsed times for WF1 and WF2 over different numbers of days. This benchmark was conducted on a laptop with
a 12th Generation Intel Core i9-12900HK processor (24 MB cache, 14 cores, 20 threads, up to 5.00 GHz), a 2 TB PCIe NVMe
Gen4x4 SSD (M.2 2280), and 64 GB of DDR5 RAM (2×32 GB, 4800 MHz, dual-channel). The reported times are averages over
two runs on a single core.

Data days Elapsed TimeWF1 [s] Elapsed TimeWF2 [s] Speed-up Factor ExecutionTimeDrop [%]
10 150.0 38.7 3.88 74.2
90 1147.3 292.9 3.92 74.5
365 4353.7 1158.7 3.76 73.4

Table 2 Elapsed times for WF1 and WF2 over different numbers of days. This benchmark was conducted on Google Cloud
(Colab) using an Intel Xeon with 2 vCPUs (virtual CPUs) and 13 GB of RAM.

from different networks equippedwithmarkedly differ-
ent sensors (Figure 6, left). For example, station PRPB
(network BR) uses a Trillium 120P, 120 s, 1201 V/m/s –
Trident 305, 40 V, whereas station RCBR (network IU) is
equipped with a Geotech KS-54000 borehole seismometer;
nevertheless, the resulting EGFs exhibit no significant
differences.
Quantitatively, CS values across the full retained pe-

riod band remained above 0.98 for nearly all pairs.
The only exception was the PRPB–RCBR pair with CS
= 0.90, which is still high. Within the primary micro-
seismic band (10–30 s), CS values were essentially 1.00
in all cases. The residuals confirm these observations:
they remain small across nearly all pairs even over the
0.002–2 Hz frequency band. Only when instrument re-
sponses differ significantly, as in the PRPB–RCBR pair,
residuals become noticeably larger—but only above ap-
proximately 1 Hz, which is well above the primary mi-

croseismic band’s frequencies. Below 1 Hz, the EGFs
are nearly identical across all frequencies, with CS
reaching 0.98 between 0.002 Hz and 1 Hz.
While WF2 offers substantial speed-up (Tables 1

and 2), integrating it into existing codes may require
extensive modifications. However, partial adoption is
straightforward. We tested a minimal modification of
an existing ANT code (Kabanda et al., 2023) by applying
only the phase-only response correction at the end of
the workflow. Benchmarks (Table 3) were run on Ugan-
dan station pairs using a third machine: a laptop with a
13th Gen Intel Core i9-13900H processor (24 MB cache,
14 cores, 20 threads, up to 5.40 GHz), a 1 TB PCIe Gen4
SSD, and 32 GB of DDR5 RAM. We refer to the origi-
nal and modified workflows as Workflow A (WFA) and
Workflow B (WFB), respectively. WFA resembles WF1
but lacks most performance optimizations; however, it
is more flexible, handling data gaps by skipping them
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Data days Elapsed TimeWFA [s] Elapsed TimeWFB [s] Speed-up Factor ExecutionTimeDrop [%]
10 370.8 332.0 1.12 10.5
90 3321.4 3024.6 1.10 8.9
365 13753.0 12369.4 1.11 10.1

Table 3 Elapsed times for WFA andWFB over different numbers of days. This benchmark was conducted on a laptopwith a
13th Generation Intel Core i9-13900H processor (24MB cache, 14 cores, 20 threads, up to 5.40 GHz), a 1 TB PCIe NVMeGen4x4
SSD (M.2 2280), and 32 GB of DDR5 RAM (2×16 GB, 4800 MHz, dual-channel).

Figure 7 Analogous to Figure 5, but for three station pairs in Uganda (networks II, IU, and Z5). The upper-left panel shows
the regional map, whereas the remaining three panels display the EGFs computed from one year of continuous data using
the original code of Kabanda et al. (2023) (WFA in blue, WFB in yellow). The corresponding residuals between WFA and WFB
are shown in Figure S6 (Supplementary Material).

rather than filling with zeros. Figure 7 shows results for
three station pairs.

The three Ugandan stations used in this test belong to
different networks and are equipped with different sen-
sor types (Figure 6, right). Station MBAR (network II)
uses a Streckeisen STS-6 seismometer, KMBO (network IU)
a Streckeisen STS-1VBB with E300 electronics, and MASD
(network Z5) a Streckeisen STS-2 Generation 3. CS val-
ues exceed 0.98 across the entire retained period band
and approach 1.00 in the primary microseismic band
(10–30 s). The low residual amplitudes shown in Fig-
ure S6 (Supplementary Material) further confirms the
robustness of the phase-only response-correction opti-

mization.

These results confirm that the optimized workflows
remain stable and effective across markedly different
instruments. This stability, however, depends on the
use of running absolute-mean normalization with the
window length defined earlier. When one-bit nor-
malization is applied instead, its strong nonlinearity
severely distorts the phase content once the instrument
response is deconvolved at the end of the workflow. For
example, in the case shown in Figure 3, CS valueswithin
the boxed regions drop to 0.77 (0.11–1000 s band) and
0.93 (10–30 s band), respectively.
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ns np TimeWF1 [s] TimeWF2 [s] TimeWF3 [s] Speed-up
(WF1/WF3)

Speed-up
(WF2/WF3)

2 1 85.49 53.76 58.22 1.47 0.92
3 3 256.15 157.99 87.94 2.91 1.80
4 6 520.08 320.57 119.15 4.36 2.69
9 36 2932.48 1767.00 250.86 11.69 7.04
45 990 79011.34 46259.41 1286.60 61.41 35.95

Idealized scenario: station-wise preprocessing assumed to have zero cost
2 1 3.62 3.34 5.47 0.66 0.61
3 3 11.30 10.92 9.28 1.22 1.18
4 6 22.18 20.93 12.55 1.77 1.67
9 36 150.97 144.67 34.62 4.36 4.18
45 990 4476.11 3957.23 293.01 15.28 13.51

Table 4 Execution times and speed-up factors for WF1, WF2, and WF3 across different numbers of stations (ns) and station
pairs (np). The top block assumes naive implementations of WF1 and WF2, where all preprocessing is repeated for each
station pair. The bottom block corresponds to an idealized scenario in which all preprocessing steps that can be performed
station-wise are assumed to have negligible cost.

4 Computational Benchmarks

In this section, we benchmark WF1 and WF2 on three
hardware configurations—two laptops and a Google
Cloud instance—using a 20 Hz sampling rate, 2-hour
windows, and amaximum lag of 2000 s (Tables 1 and 2).
We also benchmarkWF3 on one of the laptops (Table 4),
and workflowsWFA andWFB on the other (Table 3). Al-
though the observed speed-up factors forWF2 overWF1
are lower than theoretical estimates, they consistently
show execution time reductions of 67–75%. Contrary to
expectation, the speed-up decreases with the number
of days stacked, likely due to I/O and hardware bottle-
necks offsetting the computational savings. Translating
the code to a faster programming language and optimiz-
ing I/O may mitigate these limitations. Runtime and
speed-up are strongly hardware-dependent: absolute
runtimes on the laptop are roughly three times shorter,
but speed-up factors are larger on the Google Cloud in-
stance.
Given the performance gains of WF2 over WF1, we

recommend adopting all proposed optimizations. How-
ever, because fully integrating WF2 into existing ANT
packagesmay require extensive changes, we also evalu-
ated a partial implementation. Using the ANT package
by Kabanda et al. (2023), we compared its default work-
flow (WFA) with a modified version (WFB), where only
the phase response is removed after stacking, rather
than performing full response removal on the raw data.
This minor change yielded an ∼10% reduction in ex-
ecution time (Table 3) and simplified the workflow by
removing parameter choices and reducing potential
sources of numerical instability.
As discussed earlier, np � ns in most cases, which

reduces the relative advantage of WF2 over WF1. How-
ever, WF3 addresses this by further optimizingWF2 for
pairwise operations. Table 4 compares WF1, WF2, and
WF3using ten days of data, with earlier benchmarks ad-
dressing longer time spans. Speed-up factors depend
not only onhardwarebut also onhow thebaselinework-

flows are implemented. To capture this variability, we
benchmarked WF3 against two scenarios: a naive im-
plementation where preprocessing is repeated for ev-
ery pair, and a second case where all station-level pre-
processing steps are disabled, simulating zero cost for
those operations. These serve as endmembers, illus-
trating the range of expected speed-up factors.
Table 4 highlights the efficiency ofWF3 overWF1 and

WF2, particularly for larger networks. In the naive case,
WF3 achieves speed-up factors over 60× relative toWF1
and 35× relative toWF2 for 45 stations. Even in the ide-
alized scenario where per-station preprocessing is cost-
less, WF3 still yields gains of about 15× and 13×, re-
spectively. These results show that shifting the com-
putational load from pairwise to per-station operations
ensures better scalability without requiring paralleliza-
tion. Further improvements are possible by using high-
performance FFT libraries such as FFTW (Frigo, 1999)
or cuFFT (NVIDIA Corporation, 2025), which optimize
FFT execution plans that can be reused across all oper-
ations due to the uniform signal length.

5 Conclusions
We developed optimized workflows for ambient-noise
cross-correlation that improve computational effi-
ciency and numerical stability. WF2 streamlines the
standard method by reducing redundant Fourier trans-
forms and applying phase-only response correction
after stacking, while WF3 further enhances scalability
by reusing station-level spectra across pairs. These
changes simplify implementation, reduce execution
time, and make large-scale ANT processing more
accessible.
We demonstrated that WF2 produces EGFs that are

nearly identical to those from the standard workflow
(WF1), while significantly reducing execution time for
a single station pair. Theoretical analysis predicts a
speed-up factor of approximately 5.1, and empirical
benchmarks confirm reductions in runtime between
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67% and 75% (speed-up factors from 3.0 to 3.9), depend-
ing on hardware and the number of stacked days. These
gains are achieved without requiring parallelization,
which is particularly valuable for researchers working
in regions with limited access to high-performance in-
frastructure. We also evaluated a partial implemen-
tation of WF2 (WFB) within an existing codebase, re-
quiring only minor modifications. This version consis-
tently reduced execution time by ∼10% and improved
numerical stability by avoiding unstable spectral divi-
sion, showing that even partial adoption of WF2 can
yield measurable benefits with minimal effort.
WF3 offers even greater efficiency, particularly in re-

alistic scenarios where the number of station pairs far
exceeds the number of stations. Benchmarks show
speed-up factors exceeding 60× relative toWF1 and 35×
relative to WF2 for networks with 45 stations. Even
in idealized conditions where station-level preprocess-
ing is assumed to have negligible cost, WF3 yields
speed-ups of 15× or more relative to WF1. These re-
sults demonstrate that minimizing redundant opera-
tions across station pairs by reusing station-level spec-
tral representations is critical for maintaining perfor-
mance as network size increases.
The proposed workflows increase the efficiency

and robustness of ambient-noise processing. They
are simple to implement, compatible with existing
frameworks, and particularly well-suited for large
datasets. Additional gains are possible by adopting
high-performance FFT libraries and using compiled
or JIT-compiled languages. These improvements can
make large-scale ANT more accessible and scalable,
supporting applications from local studies to global ar-
rays.

6 Data and Code Availability

The Python routines and datasets used for Work-
flows 1, 2 , and 3 are available at https://doi.org/10.5281/
zenodo.16785574. Seismic data for stations BSCB, BOAV,
PRPB, CNLB, MCPB, TEFE, VABB, PDRB, and RCBR
were obtained from the BL, BR, and IU networks:
https://ds.iris.edu/mda/BL/, https://ds.iris.edu/mda/BR/,
and https://ds.iris.edu/mda/IU/, respectively.
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