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Text S1: Evaluating the use of 0D vs. 1D velocity models

In evaluating seismic phase associators, the choice between a simple homogeneous (0D)

velocity model and a more detailed 1D velocity model can significantly impact perfor-

mance. While 0D models offer simplicity and computational efficiency, they may overlook

critical depth-dependent variations in seismic wave propagation that 1D models capture

and introduce systematic errors when predicting traveltimes at larger distances. We thus

compare the performance of REAL, GaMMA and PyOcto with 0D and 1D velocity mod-

els, for the crustal as well as the subduction zone scenario. Results from these runs are

shown in Figures S2 and S3, and raw results are provided in Table S8. In the crustal

scenario, where seismicity is shallow and thus occurs in a region of relatively uniform
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velocities, the differences between 0D and 1D models are generally modest. GaMMA

and PyOcto showed slight improvements in precision, recall, and runtime efficiency when

using the 1D model, particularly at higher event counts and noise levels. For REAL, the

1D model reduced runtime but led to slightly lower performance scores overall. In the

subduction zone scenario, characterized by a greater hypocentral depth range and longer

raypaths, i.e. higher expected model errors, we encounter larger differences between 0D

and 1D model versions. For GaMMA and especially PyOcto, the 1D version significantly

outperforms the 0D one, whereas REAL once again shows better performance with the

0D model, suggesting that the simpler homogeneous model is more effective here. Based

on these findings, we selected the 0D version of REAL, and 1D versions of GaMMA and

PyOcto for comparison against the deep learning-based associators, as shown in Section

4.

Text S2: Training the deep learning based algorithms

The deep learning-based algorithms need to be trained prior to application, which is

usually done with synthetic data. The algorithms’ performance critically depends on how

large and realistic the training datasets are, as well as on the adequate choice of a number

of parameters that steer the training process. We here outline the training approaches

for PhaseLink and GENIE. These associators require extensive synthetic data generation

to expose the model to a wide range of event-station geometries. We used an approach

highly similar to the one previously outlined (Section 3.2) to create synthetic arrival time

data from 1D velocity models of the regions of interest.

PhaseLink is trained with a supervised learning approach, where the ground truth asso-

ciations (labels) are known. We train PhaseLink for 100 epochs, saving model checkpoints

at each epoch, and select the checkpoint with the lowest validation loss. During train-

ing, the selection of training parameters for PhaseLink is conducted through an iterative
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process, similar to how we optimized parameters for the other associators (Section 3.4).

For instance, a batch size of 64 is found to be optimal for the subduction zone scenario,

whereas the higher station density of the crustal scenario necessitates a higher value of

300. Likewise, we vary the number of fake picks (n_fake) to simulate different noise levels

in the training data. Higher values of fake picks were tested for the crustal scenario to

reflect its higher noise environment, ultimately selecting 400 fake picks per batch. For

the subduction scenario, we find that 25 fake picks provided a good model performance.

Lastly, we generate 1,000,000 synthetic training samples for each scenario (for all param-

eter choices, refer to Table S6), ensuring that the model is exposed to a wide variety of

event locations and noise conditions. The model’s performance is evaluated by monitor-

ing the validation loss and assessing the quality of the associations in preliminary runs.

To illustrate the model’s convergence during training, Figure S4 shows the evolution of

validation loss through the 100 epochs, with the best model chosen at epoch 61.

The input of GENIE consists of any number of phase picks over an arbitrary station

network, and the model is trained to predict source space-time likelihoods and source-

arrival association assignments for the set of input picks. Internally, the model uses two

graphs: one for the stations, and another for the source region. For each pair of source and

station nodes, the misfit between observed arrivals and the theoretical arrivals is measured,

and this information is then shared and transformed between both neighboring stations

and source nodes with graph convolutions to detect when and where earthquakes have

occurred, and the likely association assignments to these events. Through the training

process the model can learn to detect subtle signatures of moveout patterns over seismic

networks for both small and large events, and learn to account for the heterogeneous

station distribution, noise level, and monitoring conditions. Similar to PhaseLink, GENIE

is trained using supervised learning. To train the model, a diverse suite of synthetic
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training data is generated, which includes sources with arbitrary positions and highly

variable levels of noise and observational characteristics. Key training parameters include

the maximum moveout distances of sources, the level of travel time noise, the amount of

false and corrupted picks, and the maximum rate of events (Table S7). Additionally, users

must set the target source region, velocity model, and choose kernel sizes for the space-

time Gaussian labels. Hence, while the model can handle changing station distributions

between training and future applications, for applying the model to entirely new regions it

is helpful to retrain the model so that the chosen kernel sizes, velocity model, and spatial

extent of the source graphs are all well calibrated to the study region of interest. The

number of epochs, learning rate, and batch size can also be varied, however these are

typically set to nominal values.

Text S3: Testing different station densities

To test the effect of different seismic network densities on associator performance, we

conducted an additional test by modifying the California-based crustal scenario. While

a higher station density can enable more accurate event detection, having more closely-

spaced stations also increases the possibility of cross-associating phases to the wrong event

in the case of dense seismicity such as aftershock sequences. We created two distinct

station configurations derived from the crustal scenario within the same geographic area

of 1.5◦×1.5◦ (Figure S5), using real-world seismic networks from the Southern California

Seismic Network (SCSN). The low-density configuration comprises a total of 21 stations,

the high-density configuration has 91 stations.

When repeating the different runs from the crustal scenario (see Section 4) with the

modified station sets, we find that the precision of most associators decreases significantly,

which is mainly due to our choice of the same association threshold (10 picks) for all runs.

What we find is an inherent trade-off between event detection sensitivity and precision. In
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high-density networks, a low association threshold enhances sensitivity to smaller events

but increases the risk of false associations due to random noise picks. Conversely, increas-

ing the threshold improves precision by filtering out false associations, but will reduce

sensitivity. Notably, GENIE is less affected by this issue. It consistently maintains high

precision and recall across both scenarios without the need to adjust the association

threshold or other parameters, and even in the high-density crustal case worked well with

10 required picks while maintaining a low rate of false positives. This independence of

parameter optimization appears to be an important advantage of neural network based

methods. While GENIE could be applied in all three cases (high density, low density,

original) with the same training, we found that PhaseLink needs to be re-trained in order

to perform well across different station densities (see Figure S6).
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Figure S1. Distributions of event pick count for 2000 events in subduction zone (left) and

crustal (right) scenario.

Figure S2. Comparison of Event F1 Score for GaMMA, REAL, and PyOcto using 0D (homo-

geneous) and 1D velocity models across different noise levels and event densities in subduction

zone scenario. For the processing times of the different runs, please refer to Table S8.
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Figure S3. Comparison of Event F1 Score for GaMMA, REAL, and PyOcto using 0D

(homogeneous) and 1D velocity models across different noise levels and event densities in the

crustal scenario. For the processing times of the different runs, please refer to Table S8.

Table S1. Dataset statistics of subduction scenario.
Events Noise (%) Event picks False picks Total picks Picks per event
100 30 2794 838 3632 27.940
100 100 2912 2912 5824 29.120
100 300 2946 8838 11784 29.460
500 30 14150 4244 18394 28.300
500 100 13864 13864 27728 27.728
500 300 14100 42300 56400 28.200
2000 30 55874 16762 72636 27.937
2000 100 55822 55822 111644 27.911
2000 300 55190 165570 220760 27.595

Table S2. Dataset statistics of shallow seismicity scenario.
Events Noise (%) Event picks False picks Total picks Picks per event
100 30 8178 2452 10630 81.780
100 100 8298 8298 16596 82.980
100 300 8124 24372 32496 81.240
500 30 40490 12146 52636 80.980
500 100 40842 40842 81684 81.684
500 300 40788 122364 163152 81.576
2000 30 163270 48980 212250 81.635
2000 100 163240 163240 326480 81.620
2000 300 161874 485622 647496 80.937
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Figure S4. Validation loss vs. epochs for an example training of PhaseLink. The plot shows

the validation loss at each epoch during the training process. The best model, indicated by the

red marker, was achieved here at epoch 61 with a validation loss of 0.0089. The plot shows a

general trend of decreasing validation loss as the training progresses, demonstrating the model’s

improvement over time.
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Figure S5. Station density configurations within the 1.5◦ x 1.5◦ area of the crustal scenario.

Left: Low station density configuration (21 stations). Right: High station density configuration

(91 stations). The seismic networks (CE, PB, ZY, NN, CI, GS, NP) are indicated in the legend

by colors.
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Figure S6. Comparison of associators for low (top) and high station density (bottom) scenarios.

Triangles indicate station locations and circles represent events, colored by the achieved F1 score

on pick level by each associator. The increase in station density (bottom row) generally improves

event association and pick recovery, as shown by the more densely populated and darker-colored

events in those subplots. PhaseLink-HD and PhaseLink-LD refer to the PhaseLink associator

that was trained with the high-density and low-density scenario, respectively. GENIE was only

trained on the high-density scenario here.
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Figure S7. Columns step from the easiest subduction scenario catalog (100 events / 30% noise) to the hardest (2000
events / 300% noise). Metrics reflect only those seismic events that met or exceeded a 50% matching threshold with the
ground truth synthetic dataset. Bars are color-coded by associator (legend, top); numbers above each bar give the mean
value per event, while blank slots with a red “×” denote runs that did not finish. Sub-plots: (a) Predicted picks returned
by the associator; (b) Missed picks that should have been returned but were not; (c) False picks newly attached to an event;
(d) Common picks correctly shared between prediction and ground truth; (e) total ground-truth picks available (baseline);
(f) picks wrongly associated with a different event. The slight algorithm-to-algorithm variation in panel (e) arises because
averages are taken only over the events each method recovered.
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Figure S8. Columns step from the easiest crustal scenario catalog (100 events / 30% noise) to the hardest (2000
events / 300% noise). Metrics reflect only those seismic events that met or exceeded a 50% matching threshold with the
ground truth synthetic dataset. Bars are color-coded by associator (legend, top); numbers above each bar give the mean
value per event, while blank slots with a red “×” denote runs that did not finish. Sub-plots: (a) Predicted picks returned
by the associator; (b) Missed picks that should have been returned but were not; (c) False picks newly attached to an event;
(d) Common picks correctly shared between prediction and ground truth; (e) total ground-truth picks available (baseline);
(f) picks wrongly associated with a different event. The slight algorithm-to-algorithm variation in panel (e) arises because
averages are taken only over the events each method recovered.
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Figure S9. Pick-level performance of five associators in the subduction scenario after ac-

counting for all predicted events, including false-positive events (no 50 %-match filter). Columns

group the associators (GaMMA 1D, Genie, PhaseLink, PyOcto 1D, REAL 0D). Rows give the

three metrics: Precision, Recall, and F1 score, shown once as row labels on the left. Within each

heat-map the x-axis steps through increasing catalog noise (30%, 100%, 300% false picks) and

the y-axis through higher pick rates (100, 500, 2000 events). The three rows display, from top

to bottom, precision, recall, and F1-score; warmer colors indicate better performance according

to the shared scale bar, which now spans the full range 0 - 1. Blank cells mark runs that were

not completed. Each panel shows the mean performance derived from events that matched the

synthetic ground truth.
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Figure S10. Pick-level performance of five associators in the crustal scenario after accounting

for all predicted events, including false-positive events (no 50 %-match filter). Columns group

the associators (GaMMA 1D, Genie, PhaseLink, PyOcto 1D, REAL 0D). Rows give the three

metrics: Precision, Recall, and F1 score, shown once as row labels on the left. Within each

heat-map the x-axis steps through increasing catalog noise (30%, 100%, 300% false picks) and

the y-axis through higher pick rates (100, 500, 2000 events). The three rows display, from top

to bottom, precision, recall, and F1-score; warmer colors indicate better performance according

to the shared scale bar, which now spans the full range 0 - 1. Blank cells mark runs that were

not completed. Each panel shows the mean performance derived from events that matched the

synthetic ground truth.
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Figure S11. Columns step from the easiest subduction scenario catalog (100 events / 30% noise) to the hardest
(2000 events / 300% noise). No 50 % match threshold is applied here; every event returned by an association, including
false positives, is evaluated. Bars are color-coded by associator (legend, top); numbers above each bar give the mean value
per event, while blank slots with a red “×” denote runs that did not finish. Sub-plots: (a) Predicted picks returned by
the associator; (b) Missed picks that should have been returned but were not; (c) False picks newly attached to an event;
(d) Common picks correctly shared between prediction and ground truth; (e) total ground-truth picks available (baseline);
(f) picks wrongly associated with a different event. The slight algorithm-to-algorithm variation in panel (e) arises because
averages are taken only over the events each method recovered.
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Figure S12. Columns step from the easiest crustal scenario catalog (100 events / 30% noise) to the hardest (2000
events / 300% noise). No 50 % match threshold is applied here; every event returned by an association, including false
positives, is evaluated. Bars are color-coded by associator (legend, top); numbers above each bar give the mean value per
event, while blank slots with a red “×” denote runs that did not finish. Sub-plots: (a) Predicted picks returned by the
associator; (b) Missed picks that should have been returned but were not; (c) False picks newly attached to an event; (d)
Common picks correctly shared between prediction and ground truth; (e) total ground-truth picks available (baseline); (f)
picks wrongly associated with a different event. The slight algorithm-to-algorithm variation in panel (e) arises because
averages are taken only over the events each method recovered.
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Figure S13. Event-level performance of five associators in the subduction scenario. Each

column corresponds to an associator (GaMMA 1D, GENIE, PhaseLink, PyOcto 1D, REAL 0D).

Within every heatmap, the x-axis steps through higher proportions of false picks (30%, 100%,

300%), while the y-axis steps through denser catalogues (100, 500, 2000 events). The three rows

show precision, recall, and F1-score (top-to-bottom); warmer colors indicate better performance

according to the shared scale bar. Blank cells mark runs that did not complete.
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Figure S14. Event-level performance of five associators in the crustal scenario. Each column

corresponds to an associator (GaMMA 1D, GENIE, PhaseLink, PyOcto 1D, REAL 0D). Within

every heatmap, the x-axis steps through higher proportions of false picks (30%, 100%, 300%),

while the y-axis steps through denser catalogues (100, 500, 2000 events). The three rows show

precision, recall, and F1-score (top-to-bottom); warmer colors indicate better performance ac-

cording to the shared scale bar. Blank cells mark runs that did not complete.
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Table S3. Parameters for GaMMA 1D in the Crustal and Subduction Scenarios. Italicized

values represent parameters that were adjusted during the tuning process, while non-italicized

values indicate parameters that were kept fixed.
Parameter Crustal Scenario Subduction Scenario
use amplitude False False
vel p 6.2 7.0
vel s 3.4 4.0
method BGMM BGMM
use dbscan True True
oversample factor 3 2
dbscan eps 7 20
dbscan min samples 20 5
min picks per eq 10 10
max sigma11 2.0 2.0
max sigma22 1.0 1.0
max sigma12 1.0 1.0
ncpu 25 25
1D velocity model True True
x(km) [385, 520] [250, 600]
y(km) [3860, 4040] [7200, 8000]
z(km) [0, 30.0] [0, 250]
local crs 32611 9155
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Table S4. Parameters for PyOcto 1D in the Crustal and Subduction Scenarios. Italicized

values represent parameters that were adjusted during the tuning process, while non-italicized

values indicate parameters that were kept fixed.
Parameter Crustal Scenario Subduction Scenario
spatial limits xlim [385, 520] [250.0, 600.0]
spatial limits ylim [3860, 4040] [7200.0, 8000.0]
spatial limits zlim [0, 30] [0, 250.0]
association cutoff distance 200 350
time before 100.0 300.0
min node size 10 10
min node size location 2.5 1.5
pick match tolerance 0.8 0.8
min interevent time 3.0 3.0
max pick overlap 4 4
n picks 10 10
n p picks 5 5
n s picks 5 5
n p and s picks 4 4
refinement iterations 3 3
time slicing 1200.0 1200.0
location split depth 6 6
location split return 4 4
min pick fraction 0.0 0.25
n threads 25 25
VelMod1D True True
velocity model tolerance 1.0 1.0
local crs 32611 9155
tt table grid spacing 1.0 0.5
tt table x extent 300 500
tt table y extent 300 800
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Table S5. Parameters for REAL 0D in the Crustal and Subduction Scenarios. Italicized

values represent parameters that were adjusted during the tuning process, while non-italicized

values indicate parameters that were kept fixed.
Parameter Crustal Scenario Subduction Scenario
tt config dist 4 9
tt config dep 30 250
tt config ddist 0.6 1.0
tt config ddep 1 8
1D velocity model False False
latitude 35.0 -21.18148
R rx 1 1
R rh 30 250
R tdx 0.1 0.1
R tdh 8 10
R tint 0.1 0.1
V vp0 6.2 6.8
V vs0 3.3 4.0
V s_vp0 5.4 5.3
V s_vs0 3.3 3.1
V ielev 1 1
S np0 4 4
S ns0 4 4
S nps0 10 10
S npsboth0 4 4
S std0 2.0 2.0
S dtps 0 0
S nrt 2 2
S drt 2 2
S nxd 0.4 0.4
S rsel 6 6
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Table S6. Parameters for PhaseLink in the Crustal and Subduction Scenarios. Italicized

values represent parameters that were adjusted during the tuning process, while non-italicized

values indicate parameters that were kept fixed.
Parameter Crustal Scenario Subduction Scenario
t win 250 120
n epochs 100 100
n max picks 300 120
batch size 64 64
n min nucl 12 6
n min merge 2 2
n min det 10 10
avg eve sep 20 12
pr min 0.5 0.5
n train samp 1000000 1000000
n min radius 8 8
n fake 400 25
max event depth 30 250
min hypo dist 50.0 80.0
max hypo dist 80.0 450.0
max pick error 1.0 1.0
min pick dist 0.5 0.5
min sep 0.6 0.6
lat min 34.87 -25.0
lat max 36.5 -17.0
lon min 118.28 -71.0
lon max 116.7 -66.0

September 8, 2025, 12:04pm



: X - 23

Table S7. Chosen parameters for GENIE 1D in the Crustal and Subduction Scenarios.

Italicized entries were partially tuned with 2−3 rounds of re-training, all other values were chosen

to reflect the characteristic spatial scale and expected event rates of either scenario.

Parameter Crustal Scenario Subduction Scenario
k_sta_edges 8 8
k_spc_edges 15 15
n_of_spatial_nodes 1000 1500
kernel_sig_t 3.0 8.0
src_t_kernel 3.0 8.0
src_x_kernel 15000 45000
spc_random 15000 10000
spc_thresh_ran 15000 135000
sig_t 0.01 0.0075
min_sta_arrival 12 8
thresh_noise_max 2.25 0.75
total_bias 0.01 0.0075
dist_range [5000, 250000] [100000, 1490000]
max_rate_events 225 280
max_false_events 650 650
miss_pick_fraction [0.05, 0.35] [0.05, 0.35]
thresh 0.6 0.6
thresh_assoc 0.6 0.6
tc_win 2.5 8.0
sp_win 12500 45000
d_win 0.2 0.45
d_win_depth 20000 50000
Latitude [34.82◦, 36.55◦] N [-25.0◦, -17.0◦] N
Longitude [-118.33◦, -116.65◦] E [-71.0◦, -66.0◦] E
Depths [-35, 5] km [-250, 5] km
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Table S8. Performance comparison using homogeneous (0D) and 1D velocity models
Events Noise Associator Event_Precision Event_Recall Event_F1_Score Runtime (s)

100 30 GaMMA 0D 0.84 0.88 0.86 2.91
100 30 GaMMA 1D 0.91 0.90 0.90 5.03
100 30 PyOcto 0D 1.00 0.99 0.99 1.29
100 30 PyOcto 1D 1.00 0.97 0.98 3.16
100 30 REAL 0D 1.00 0.98 0.99 60.98
100 30 REAL 1D 0.98 0.86 0.91 72.06
100 100 GaMMA 0D 0.86 0.84 0.85 2.93
100 100 GaMMA 1D 0.88 0.84 0.86 5.28
100 100 PyOcto 0D 1.00 1.00 1.00 0.99
100 100 PyOcto 1D 1.00 1.00 1.00 1.42
100 100 REAL 0D 1.00 0.93 0.96 169.51
100 100 REAL 1D 0.99 0.90 0.94 209.14
100 300 GaMMA 0D 0.92 0.93 0.93 6.10
100 300 GaMMA 1D 0.99 0.95 0.97 6.71
100 300 PyOcto 0D 0.98 0.98 0.98 42.68
100 300 PyOcto 1D 1.00 0.99 0.99 1.19
100 300 REAL 0D 1.00 0.94 0.97 453.73
100 300 REAL 1D 0.96 0.92 0.94 626.48
500 30 GaMMA 0D 0.83 0.78 0.80 41.84
500 30 GaMMA 1D 0.92 0.83 0.87 17.73
500 30 PyOcto 0D 0.99 0.97 0.98 91.96
500 30 PyOcto 1D 1.00 0.97 0.98 6.74
500 30 REAL 0D 1.00 0.90 0.95 306.16
500 30 REAL 1D 0.96 0.82 0.88 424.37
500 100 GaMMA 0D 0.86 0.75 0.80 57.15
500 100 GaMMA 1D 0.90 0.80 0.85 25.74
500 100 PyOcto 0D 0.99 0.97 0.98 45.06
500 100 PyOcto 1D 1.00 0.97 0.98 12.29
500 100 REAL 0D 0.99 0.92 0.95 754.36
500 100 REAL 1D 0.94 0.83 0.88 931.85
500 300 GaMMA 0D 0.53 0.47 0.50 584.25
500 300 GaMMA 1D 0.56 0.51 0.54 145.93
500 300 PyOcto 0D 0.99 0.97 0.98 85.44
500 300 PyOcto 1D 1.00 0.97 0.98 33.46
500 300 REAL 0D 0.98 0.91 0.95 2032.63
500 300 REAL 1D 0.90 0.81 0.85 2226.60

2000 30 GaMMA 0D 0.58 0.42 0.49 1789.12
2000 30 GaMMA 1D 0.68 0.48 0.57 210.15
2000 30 PyOcto 0D 0.96 0.89 0.93 201.67
2000 30 PyOcto 1D 1.00 0.91 0.95 96.97
2000 30 REAL 0D 0.99 0.73 0.84 1300.54
2000 30 REAL 1D 0.93 0.64 0.76 1427.40
2000 100 GaMMA 1D 0.32 0.35 0.33 3598.16
2000 100 PyOcto 0D 0.91 0.88 0.90 417.81
2000 100 PyOcto 1D 0.99 0.92 0.95 131.74
2000 100 REAL 0D 0.95 0.70 0.81 2848.73
2000 100 REAL 1D 0.87 0.61 0.72 2830.46
2000 300 PyOcto 0D 0.16 0.44 0.24 1023.65
2000 300 PyOcto 1D 0.76 0.78 0.77 1790.04
2000 300 REAL 0D 0.54 0.54 0.54 6706.46
2000 300 REAL 1D 0.43 0.43 0.43 5274.96
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Table S9. Subduction Zone Scenario: event-level evaluation of seismic phase associators
Events Noise Associator Event_Precision Event_Recall Event_F1_Score Runtime (s)

100 30 GaMMA 1D 0.91 0.90 0.90 5.03
100 30 Genie 1.00 0.99 0.99 294.52
100 30 PhaseLink 0.93 0.82 0.87 4.99
100 30 PyOcto 1D 1.00 0.97 0.98 3.16
100 30 REAL 0D 1.00 0.98 0.99 60.98
100 100 GaMMA 1D 0.88 0.84 0.86 5.28
100 100 Genie 0.99 0.99 0.99 313.33
100 100 PhaseLink 0.91 0.85 0.88 3.79
100 100 PyOcto 1D 1.00 1.00 1.00 1.42
100 100 REAL 0D 1.00 0.93 0.96 169.51
100 300 GaMMA 1D 0.99 0.95 0.97 6.71
100 300 Genie 1.00 0.99 0.99 325.05
100 300 PhaseLink 0.88 0.81 0.84 4.15
100 300 PyOcto 1D 1.00 0.99 0.99 1.19
100 300 REAL 0D 1.00 0.94 0.97 453.73
500 30 GaMMA 1D 0.92 0.83 0.87 17.73
500 30 Genie 0.99 0.97 0.98 530.98
500 30 PhaseLink 0.85 0.60 0.71 5.11
500 30 PyOcto 1D 1.00 0.97 0.98 6.74
500 30 REAL 0D 1.00 0.90 0.95 306.16
500 100 GaMMA 1D 0.90 0.80 0.85 25.74
500 100 Genie 1.00 0.99 0.99 548.01
500 100 PhaseLink 0.84 0.67 0.75 5.99
500 100 PyOcto 1D 1.00 0.97 0.98 12.29
500 100 REAL 0D 0.99 0.92 0.95 754.36
500 300 GaMMA 1D 0.56 0.51 0.54 145.93
500 300 Genie 0.97 0.99 0.98 593.40
500 300 PhaseLink 0.15 0.25 0.19 11.36
500 300 PyOcto 1D 1.00 0.97 0.98 33.46
500 300 REAL 0D 0.98 0.91 0.95 2032.63

2000 30 GaMMA 1D 0.68 0.48 0.57 210.15
2000 30 Genie 0.98 0.92 0.95 1211.63
2000 30 PhaseLink 0.54 0.19 0.28 14.08
2000 30 PyOcto 1D 1.00 0.91 0.95 96.97
2000 30 REAL 0D 0.99 0.73 0.84 1300.54
2000 100 GaMMA 1D 0.32 0.35 0.33 3598.16
2000 100 Genie 0.95 0.89 0.92 1256.66
2000 100 PhaseLink 0.07 0.01 0.02 16.87
2000 100 PyOcto 1D 0.99 0.92 0.95 131.74
2000 100 REAL 0D 0.95 0.70 0.81 2848.73
2000 300 Genie 0.80 0.78 0.79 1474.35
2000 300 PhaseLink 0.00 0.00 0.00 25.66
2000 300 PyOcto 1D 0.76 0.78 0.77 1790.04
2000 300 REAL 0D 0.54 0.54 0.54 6706.46
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Table S10. Crustal Scenario: event-level evaluation of seismic phase associators
Events Noise Associator Event_Precision Event_Recall Event_F1_Score Runtime (s)

100 30 GaMMA 1D 1.00 1.00 1.00 9.89
100 30 Genie 1.00 1.00 1.00 319.66
100 30 PhaseLink 0.93 0.89 0.91 5.82
100 30 PyOcto 1D 1.00 1.00 1.00 2.71
100 30 REAL 0D 1.00 0.98 0.99 9.46
100 100 GaMMA 1D 1.00 0.99 0.99 13.22
100 100 Genie 0.99 0.99 0.99 333.67
100 100 PhaseLink 0.99 0.96 0.97 5.10
100 100 PyOcto 1D 1.00 0.98 0.99 3.42
100 100 REAL 0D 1.00 0.98 0.99 31.51
100 300 GaMMA 1D 0.99 0.99 0.99 18.56
100 300 Genie 0.99 0.99 0.99 345.50
100 300 PhaseLink 1.00 0.98 0.99 6.45
100 300 PyOcto 1D 1.00 0.99 0.99 5.84
100 300 REAL 0D 1.00 0.99 0.99 75.32
500 30 GaMMA 1D 0.99 0.99 0.99 46.43
500 30 Genie 0.99 0.98 0.99 582.32
500 30 PhaseLink 0.98 0.88 0.92 10.78
500 30 PyOcto 1D 1.00 0.97 0.98 19.02
500 30 REAL 0D 1.00 0.93 0.96 48.30
500 100 GaMMA 1D 1.00 1.00 1.00 67.81
500 100 Genie 1.00 1.00 1.00 663.37
500 100 PhaseLink 0.99 0.88 0.93 13.31
500 100 PyOcto 1D 1.00 0.98 0.99 10.95
500 100 REAL 0D 0.99 0.93 0.96 145.26
500 300 GaMMA 1D 0.79 0.99 0.88 150.07
500 300 Genie 0.99 0.98 0.99 635.51
500 300 PhaseLink 0.96 0.88 0.92 20.48
500 300 PyOcto 1D 1.00 0.98 0.99 21.26
500 300 REAL 0D 0.98 0.93 0.96 419.16

2000 30 GaMMA 1D 0.98 0.99 0.98 312.27
2000 30 Genie 0.98 0.94 0.96 1445.19
2000 30 PhaseLink 0.93 0.61 0.74 48.07
2000 30 PyOcto 1D 0.99 0.93 0.96 51.07
2000 30 REAL 0D 0.99 0.78 0.87 239.90
2000 100 GaMMA 1D 0.57 0.96 0.71 900.20
2000 100 Genie 0.98 0.94 0.96 1463.43
2000 100 PhaseLink 0.84 0.56 0.67 61.19
2000 100 PyOcto 1D 0.99 0.92 0.95 136.43
2000 100 REAL 0D 0.96 0.79 0.87 551.88
2000 300 Genie 0.95 0.86 0.90 1769.01
2000 300 PhaseLink 0.10 0.14 0.12 143.76
2000 300 PyOcto 1D 0.73 0.91 0.81 1170.82
2000 300 REAL 0D 0.91 0.73 0.81 1985.60
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Table S11. Subduction zone scenario: evaluation of seismic phase associators at pick level

across different event and noise levels. GT: Ground Truth Picks, Pred: Predicted Picks, CA:

Commonly Associated Picks, Missed: Missed Picks, FP: False Picks, WAP: Wrongly Associated

Picks.
Associator Ev. Noise GT Pred CA Missed FP WAP Precision Recall F1
GaMMA 1D 100 30 28.36 26.17 26.11 2.24 0.01 0.04 1.00 0.92 0.96
Genie 100 30 27.82 27.76 27.65 0.17 0.05 0.06 1.00 0.99 1.00
PhaseLink 100 30 28.44 24.56 23.68 4.76 0.22 0.66 0.97 0.84 0.89
PyOcto 1D 100 30 28.16 27.27 27.24 0.93 0.01 0.02 1.00 0.97 0.98
REAL 0D 100 30 27.78 26.78 26.54 1.23 0.07 0.16 0.99 0.96 0.98
GaMMA 1D 100 100 30.14 26.77 26.75 3.39 0.02 0.00 1.00 0.90 0.94
Genie 100 100 29.01 28.91 28.79 0.22 0.10 0.02 1.00 0.99 0.99
PhaseLink 100 100 29.79 25.75 24.58 5.21 0.67 0.51 0.96 0.83 0.89
PyOcto 1D 100 100 29.12 28.25 28.21 0.91 0.02 0.02 1.00 0.97 0.98
REAL 0D 100 100 29.03 28.09 27.86 1.17 0.20 0.02 0.99 0.97 0.98
GaMMA 1D 100 300 29.75 27.53 27.15 2.60 0.16 0.22 0.99 0.92 0.95
Genie 100 300 29.39 29.28 28.99 0.40 0.22 0.07 0.99 0.99 0.99
PhaseLink 100 300 30.17 27.42 24.23 5.94 2.57 0.62 0.89 0.81 0.84
PyOcto 1D 100 300 29.66 28.92 28.78 0.88 0.07 0.07 1.00 0.97 0.98
REAL 0D 100 300 29.02 28.16 27.40 1.62 0.46 0.30 0.98 0.95 0.96
GaMMA 1D 500 30 29.31 26.94 26.76 2.55 0.06 0.12 0.99 0.92 0.95
Genie 500 30 28.45 28.06 27.70 0.75 0.17 0.19 0.99 0.97 0.98
PhaseLink 500 30 29.35 28.40 24.07 5.28 1.02 3.30 0.88 0.83 0.84
PyOcto 1D 500 30 28.64 27.62 27.43 1.20 0.07 0.11 0.99 0.96 0.97
REAL 0D 500 30 28.46 27.38 26.60 1.86 0.23 0.55 0.97 0.94 0.96
GaMMA 1D 500 100 28.86 27.12 26.77 2.09 0.23 0.11 0.99 0.93 0.95
Genie 500 100 27.85 27.33 26.81 1.04 0.39 0.12 0.98 0.96 0.97
PhaseLink 500 100 28.89 28.81 23.08 5.81 3.96 1.76 0.81 0.80 0.80
PyOcto 1D 500 100 28.04 27.02 26.75 1.29 0.18 0.08 0.99 0.96 0.97
REAL 0D 500 100 28.08 27.17 25.97 2.11 0.78 0.43 0.96 0.93 0.94
GaMMA 1D 500 300 31.60 30.83 29.75 1.85 0.87 0.20 0.96 0.94 0.95
Genie 500 300 28.26 28.10 26.75 1.51 1.24 0.11 0.95 0.95 0.95
PhaseLink 500 300 30.51 36.22 21.79 8.72 14.04 0.40 0.61 0.72 0.66
PyOcto 1D 500 300 28.45 27.59 26.92 1.53 0.58 0.09 0.97 0.95 0.96
REAL 0D 500 300 28.43 28.50 25.49 2.94 2.57 0.45 0.89 0.90 0.89
GaMMA 1D 2000 30 30.92 29.94 28.88 2.04 0.33 0.73 0.96 0.94 0.95
Genie 2000 30 28.38 26.79 25.76 2.62 0.44 0.59 0.96 0.91 0.93
PhaseLink 2000 30 29.17 32.04 22.48 6.69 4.95 4.61 0.72 0.78 0.74
PyOcto 1D 2000 30 28.52 27.13 26.56 1.96 0.20 0.37 0.98 0.93 0.95
REAL 0D 2000 30 29.10 28.35 25.39 3.72 0.93 2.04 0.90 0.88 0.88
GaMMA 1D 2000 100 32.25 32.54 30.35 1.90 1.20 1.00 0.93 0.94 0.93
Genie 2000 100 28.49 26.79 24.97 3.52 1.30 0.53 0.93 0.88 0.90
PhaseLink 2000 100 29.78 35.85 20.41 9.37 14.00 1.44 0.58 0.69 0.63
PyOcto 1D 2000 100 28.32 27.01 25.87 2.44 0.73 0.40 0.96 0.91 0.93
REAL 0D 2000 100 29.26 29.60 24.40 4.85 3.22 1.98 0.82 0.84 0.83
Genie 2000 300 28.78 25.07 21.99 6.79 2.68 0.41 0.88 0.76 0.81
PhaseLink 2000 300 0.00 0.00 0.00 0.00 0.00 0.00 nan nan nan
PyOcto 1D 2000 300 28.84 26.59 23.82 5.02 2.32 0.45 0.89 0.82 0.84
REAL 0D 2000 300 30.46 33.26 22.93 7.53 8.58 1.75 0.69 0.76 0.72
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Table S12. Crustal scenario: evaluation of seismic phase associators at the pick level across

different event densities and noise conditions.
Associator Ev. Noise GT Pred CA Missed FP WAP Precision Recall F1
GaMMA 1D 100 30 81.78 67.74 67.69 14.09 0.01 0.04 1.00 0.83 0.91
Genie 100 30 81.78 81.62 81.51 0.27 0.03 0.08 1.00 1.00 1.00
PhaseLink 100 30 80.97 70.52 69.70 11.27 0.13 0.69 0.99 0.86 0.92
PyOcto 1D 100 30 81.78 81.69 81.60 0.18 0.01 0.08 1.00 1.00 1.00
REAL 0D 100 30 81.80 81.93 81.54 0.26 0.11 0.28 1.00 1.00 1.00
GaMMA 1D 100 100 83.47 68.96 68.87 14.61 0.04 0.05 1.00 0.83 0.91
Genie 100 100 83.15 82.94 82.67 0.48 0.11 0.16 1.00 0.99 0.99
PhaseLink 100 100 83.46 77.60 75.83 7.62 0.56 1.21 0.98 0.91 0.94
PyOcto 1D 100 100 83.33 83.30 83.09 0.23 0.10 0.10 1.00 1.00 1.00
REAL 0D 100 100 83.33 83.46 82.56 0.77 0.45 0.45 0.99 0.99 0.99
GaMMA 1D 100 300 81.78 68.81 68.66 13.12 0.10 0.05 1.00 0.84 0.91
Genie 100 300 81.25 81.28 80.81 0.44 0.39 0.08 0.99 0.99 0.99
PhaseLink 100 300 81.20 79.08 77.21 3.99 1.56 0.31 0.98 0.95 0.96
PyOcto 1D 100 300 81.27 81.34 80.86 0.41 0.37 0.11 0.99 0.99 0.99
REAL 0D 100 300 81.25 81.88 80.14 1.11 1.40 0.33 0.98 0.99 0.98
GaMMA 1D 500 30 81.38 68.95 68.79 12.58 0.07 0.09 1.00 0.85 0.92
Genie 500 30 81.18 80.66 80.26 0.92 0.16 0.24 0.99 0.99 0.99
PhaseLink 500 30 81.15 79.85 76.29 4.86 0.91 2.65 0.96 0.94 0.95
PyOcto 1D 500 30 81.26 80.81 80.35 0.91 0.14 0.32 0.99 0.99 0.99
REAL 0D 500 30 81.59 82.05 80.01 1.59 0.68 1.37 0.98 0.98 0.98
GaMMA 1D 500 100 81.90 70.19 69.90 12.00 0.24 0.05 1.00 0.86 0.92
Genie 500 100 81.70 81.33 80.58 1.12 0.60 0.14 0.99 0.99 0.99
PhaseLink 500 100 82.10 82.20 75.35 6.75 3.16 3.69 0.93 0.92 0.92
PyOcto 1D 500 100 81.72 81.71 80.99 0.73 0.53 0.19 0.99 0.99 0.99
REAL 0D 500 100 82.17 83.24 79.45 2.72 2.43 1.35 0.95 0.97 0.96
GaMMA 1D 500 300 82.03 72.53 71.76 10.27 0.70 0.07 0.99 0.88 0.93
Genie 500 300 81.83 82.00 80.06 1.78 1.78 0.17 0.98 0.98 0.98
PhaseLink 500 300 81.89 84.70 70.74 11.15 11.50 2.45 0.84 0.87 0.85
PyOcto 1D 500 300 81.72 81.93 80.18 1.55 1.48 0.27 0.98 0.98 0.98
REAL 0D 500 300 82.02 84.81 76.67 5.35 6.99 1.16 0.90 0.94 0.92
GaMMA 1D 2000 30 81.91 71.86 71.21 10.70 0.33 0.32 0.99 0.87 0.93
Genie 2000 30 82.07 80.11 78.61 3.46 0.70 0.80 0.98 0.96 0.97
PhaseLink 2000 30 82.66 87.21 73.25 9.41 4.51 9.45 0.86 0.89 0.87
PyOcto 1D 2000 30 82.10 81.12 79.58 2.52 0.62 0.92 0.98 0.97 0.97
REAL 0D 2000 30 83.56 85.44 77.77 5.79 2.68 4.99 0.91 0.93 0.92
GaMMA 1D 2000 100 82.41 74.76 73.41 9.01 1.06 0.29 0.98 0.89 0.93
Genie 2000 100 82.40 80.91 77.97 4.44 2.14 0.80 0.96 0.95 0.95
PhaseLink 2000 100 82.83 90.16 67.90 14.93 15.49 6.78 0.77 0.82 0.79
PyOcto 1D 2000 100 82.30 81.88 78.97 3.33 2.00 0.91 0.96 0.96 0.96
REAL 0D 2000 100 83.76 87.35 74.36 9.40 8.66 4.33 0.85 0.89 0.87
Genie 2000 300 82.05 79.62 73.52 8.53 5.37 0.74 0.92 0.89 0.91
PhaseLink 2000 300 84.95 98.24 56.00 28.95 41.26 0.98 0.57 0.66 0.61
PyOcto 1D 2000 300 81.58 81.63 74.69 6.90 5.99 0.95 0.91 0.91 0.91
REAL 0D 2000 300 83.99 91.09 64.99 18.99 22.72 3.37 0.71 0.77 0.74
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