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Abstract Reliable seismicity catalogs are fundamental for seismological analysis. Following phase pick-
ing, phase association groups arrivals into sets with consistent origins (i.e., events), determines event counts,
and identifies outlier picks. To handle the substantial increase in the quantity of seismic phase picks from
improved picking methods and larger deployments, several novel phase associators have recently been pro-
posed. This study presents a detailed benchmark analysis of five seismic phase associators, including classi-
cal andmachine learning-based approaches: PhaseLink, REAL, GaMMA, GENIE, and PyOcto. We use synthetic
datasets mimicking real seismicity characteristics in crustal and subduction zone scenarios. We evaluate per-
formance for different conditions, including low- and high- noise environments, out-of-network events, very
high event rates, and variable station density. The results reveal notable differences in precision, recall, and
computational efficiency. GENIE and PyOcto demonstrate robust performance, with almost perfect perfor-
mance for most scenarios, but under the most challenging conditions with high noise levels and event rates,
performance drops while F1 scores still remain above 0.8. PhaseLink’s performance declines with noise and
event density, particularly in subduction zones, dropping to near zero in themost complex cases. GaMMAout-
performs PhaseLink but struggles with accuracy and scalability in high-noise, high-density scenarios. REAL
performs reasonably but loses recall under extreme conditions. PyOcto and PhaseLink show the quickest
runtimes for smaller-scale datasets, while REAL and GENIE are more than an order of magnitude slower for
these cases. At the highest pick rates, GENIE’s runtimedisadvantagediminishes,matchingPyOcto and scaling
effectively. Our results can guide practitioners compiling seismicity catalogs and developers designing novel
associators.

1 Introduction
High-quality and reliable seismicity catalogs are an es-
sential resource in seismology and fundamental for un-
derstanding earthquake processes. They form the ba-
sis for a wide range of studies in seismology and be-
yond, including travel time tomography (White et al.,
2021), statistical seismology (Hainzl et al., 2019; Xiong
et al., 2023), hazard assessment (Mancini et al., 2022), as
well as research into tectonic processes (Maharaj et al.,
2023; Sippl et al., 2019). Commonly, earthquake detec-
tion is performedwith a two-step approach: phase pick-
ing and phase association. During phase picking, the
task is to identify the onset of seismic phases, usually
P- and S- waves, at individual seismic stations. Once
phase picking is complete, the next fundamental step
is phase association, which groups the seismic phases
that were detected at different stations into common
seismic events. A group of picks belongs to an event
if all of them originate from the same location at the
same time, i.e., a distinct hypocenter. The accuracy
of phase association is essential for determining earth-
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quake location, depth, andmagnitude, andhence forms
the backbone of subsequent seismological analyses. In
addition, phase association allows discarding spurious
phase picks, as these will usually not be consistent
across stations.
In the broader landscape of seismic event detection

and cataloging, integrated full-waveform paradigms
have emerged that combine phase detection and as-
sociation in a single step. Such approaches lever-
age network-level coherence metrics (i.e., measures of
waveform similarity or energy across stations) to de-
tect and locate earthquakes directly, without relying on
individual P- and S-phase picks. For example, Poiata
et al. (2016) introduced an array-based scheme that im-
ages coherent seismic energy across the network, en-
abling simultaneous detection and location of earth-
quakes without intermediate picking. While such joint
detection-association approaches are gaining traction,
the classical modular pipeline remains the norm in op-
erational earthquake monitoring, with phase associa-
tion still underpinning most seismicity catalogs and of-
fering practical advantages in routine monitoring (Ross
et al., 2019). Accordingly, this study focuses on bench-
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marking the performance of phase associators within
a modular pipeline, using synthetic yet realistic condi-
tions to enable fair and controlled comparisons of dif-
ferent algorithms.

Historically, both phase picking and phase associa-
tion were performed manually. However, to keep up
with the rapidly growing data availability, automatic
methods were developed (Allen, 1978). For phase asso-
ciation, early automated approaches were grid-based,
involving the creation of a grid over a region of inter-
est and associating phases based on the best-fitting grid
points, using travel time tables (Johnson et al., 1995;
Ringdal and Kværna, 1989). However, the runtime of
such approaches becomes prohibitive when faced with
a high number of picks. While historically issues were
most commonly encountered with dense seismic activ-
ity such as aftershock sequences, the growing size of
seismic networks and the advent of novel pickingmeth-
ods now routinely leads to vast quantities of picks that
produce challenges for association even during back-
ground seismicity rates. In particular, the advent of
machine learning techniques in phase picking has in-
creased the volume of picks of small earthquakes to
an unprecedented level, posing a new challenge to the
phase association process (Zhu and Beroza, 2018; Ross
et al., 2018; Zhu et al., 2019; Mousavi et al., 2019, 2020;
Yang et al., 2021; Münchmeyer et al., 2022; Woollam
et al., 2022; Zhu et al., 2022b).

Given these developments, the performance of phase
associators has become increasingly important in
the pursuit of building accurate earthquake catalogs
with ever lower magnitudes-of-completeness. Conse-
quently, there are now significant efforts to improve
seismic phase association using a range of modern ap-
proaches. These approaches build on modified tra-
ditional techniques (Zhang et al., 2019; Münchmeyer,
2024), or use machine learning (Zhu et al., 2022a) and
deep learning (Ross et al., 2019; McBrearty and Beroza,
2023) techniques and represent a significant advance-
ment in the field. In addition to their different con-
ceptual approaches, each algorithm’s performance is
dependent on the specific configuration of parameters
used, and different associators may behave differently
under different conditions (e.g., picks, number of sta-
tions, and noise density). Here, we conduct an in-depth
benchmarking study to understand how different phase
associators perform in a range of different scenarios. In
addition, we provide insights into effective parameter
choices for each associator. As establishing a “ground
truth” catalog in a real scenario is nearly impossible, we
use synthetic scenarios for our benchmark. This allows
us to create “ground truth” datasets, with which the per-
formance of each associator can be determined based
on event and pick-level metrics. In addition, synthetics
allow us to evaluate the impact of aspects such as event
density or noise levels. Such a controlled environment
is an effective way to systematically compare the meth-
ods and identify their strengths and limitations.

2 The algorithms

We evaluate five different algorithms for seismic phase
association, with each of them taking labeled arrival
times of P and S phases as input.
PhaseLink (Ross et al., 2019) is a deep learning (DL)

approach for seismic phase association that uses a re-
current neural network with long short-term memory
units to process a sliding window of phase picks. The
input to PhaseLink is a fixed length sequence of picks
frommultiple stations, and the network predicts which
picks belong to the same source. The framework aggre-
gates predictions over time to form clusters, identifying
individual earthquakes. The network is trained using
a supervised learning approach, with the loss function
optimized to minimize the misclassification of picks.
PhaseLink requires training that can use real or syn-
thetic data. The use of synthetic training data is crucial,
as it allows exposing the network to a large range of seis-
micity scenarios. For the training step, providing a 1D
velocity model of the region of interest is necessary.
REAL (Rapid Earthquake Association and Location;

Zhang et al., 2019) is an optimized grid search-based al-
gorithm. It is designed to rapidly and simultaneously as-
sociate seismic phases and locate seismic events. REAL
performs a grid search in three dimensions aroundeach
station, with the earliest P arrival determining poten-
tial event locations. This reduces the search space from
the entire study area to a smaller volume and elimi-
nates the time dimension from the search, as the ap-
proximate origin time for each potential event can be
inferred from the initial pick. The theoretical P and S
travel-time tables are pre-calculated using a given ho-
mogeneous or 1D velocity model. The initial event lo-
cation is determined at the grid point with the most as-
sociated P and S picks. If multiple grid points have the
same maximum number of picks, the grid point with
the smallest travel-time residuals is selected. REAL im-
plements parallelization to reduce runtime.
GaMMA (Gaussian Mixture Model Association; Zhu

et al., 2022a) treats the phase association problem as an
unsupervised clustering problem within a probabilistic
framework. It models each seismic event as a mixture
component within a Gaussian Mixture Model (GMM;
Bishop, 2006). It uses an expectation-maximization al-
gorithm for optimizing the clusters. This iterative pro-
cess can identify optimal phase associations by maxi-
mizing the likelihood of the observed data, considering
both arrival time and amplitude. GaMMa employs DB-
SCAN (Ester et al., 1996) to segment phase picks into
sub-windows prior to running the GMM for associa-
tion. Each cluster can be associated in parallel to maxi-
mize CPU usage. GaMMA identifies “core points” based
on the density of neighboring points to form clusters
around them. This preprocessing step helps to manage
the computational complexity and increase the scalabil-
ity and efficiency by dividing the data into smaller,man-
ageable segments, making the subsequent Expectation-
Maximization algorithm more efficient. GaMMA can
model travel-times with homogeneous and 1D models.
In addition, it can incorporate amplitude decay rela-
tionships. We do not use amplitude information in this
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study for consistency with the other methods.
GENIE (Graph Earthquake Neural Interpretation En-

gine; McBrearty and Beroza, 2023) employs a graph
neural network (GNN) to predict earthquake source lo-
cations and the likelihood of phase associations. GE-
NIE constructs two graphs: one representing the seis-
mic stations (station graph) and another representing
the potential source locations (source graph). The
source graph’s nodes span the source region of interest,
with edges connecting nearby spatial elements. Sim-
ilarly, the station graph links nearby stations. Both
graphs enable transfer and sharing of information be-
tween the connected elements to help the GNN identify
likely source hypocenters and association assignments.
Training GENIE involves generating synthetic data that
covers a wide range of station configurations, source
distributions, and pick sets. Synthetic catalogs are cre-
ated by sampling network realizations, computing ar-
rival times, corrupting data with noise by a certain per-
centage, and adding a percentage of false picks to the
dataset. The generation of training data can make use
of homogeneous or 1D velocitymodels. This diverse ap-
proach to training ensures that the model is exposed to
a wide range of scenarios. GENIE supports both CPU
and GPU processing.
PyOcto (Münchmeyer, 2024) employs a 4D space-

time partitioning strategy inspired by the Oct(o)tree
data structure. This way, PyOcto focuses computa-
tional resources on promising origin regions and re-
duces complexity. To minimize runtime, PyOcto dis-
cards event-free nodes early and uses a priority queue
to scan promising nodes first. Once a node has reached
a critically small size, PyOcto locates and outputs the
event. PyOcto removes picks associated with the event
from the input set to avoid duplicate associations. To
model travel times, PyOcto supports homogeneous and
1D velocity models. PyOcto uses parallelization across
different time blocks, to optimize CPU usage.

3 Benchmarking approach

3.1 Event-station scenarios
We conduct our benchmark study with two typical ex-
amples of seismic network geometry and seismicity
depth range: a crustal seismicity scenario and a sub-
duction zone scenario. Both scenarios are designed to
replicate real-world conditions in terms of station den-
sity and distribution as well as the range of hypocentral
depths. Note that we do not use real seismicity distri-
butions but prefer events that are randomly distributed
in space to test the algorithms’ ability to detect arbitrar-
ily located events (see Section 3.2). The station distri-
butions and 1D velocity models for both scenarios are
based on existing seismic network deployments (Figure
1) and geological settings.
For the crustal seismicity scenario, we use a set of

stations from the Southern California Seismic Network
(California Institute of Technology and United States
Geological Survey Pasadena, 1926) and the 1D velocity
model of Hadley and Kanamori (1977). Seismic events
are randomly generated within the region depicted in

Figure 1 (right) following a uniform distribution and
covering the depth range of 0-30 km.
The subduction zone scenario employs the station

distribution of the IPOC (Integrated Plate Boundary Ob-
servatory Chile; GFZ German Research Centre for Geo-
sciences and Institut des Sciences de l’Univers-Centre
National de la Recherche CNRS-INSU, 2006) CX seismic
network in Northern Chile and the 1D velocity model of
Graeber and Asch (1999). As for the crustal scenario, we
generate seismic events randomly distributed in space
and time in a uniform way, but cover a much larger
range of hypocentral depths, from shallow crustal to
intermediate-depth intraslab earthquakes (0-250 km;
see Figure 1, left).

3.2 Synthetic pick/event generation
We create our synthetic benchmark datasets by par-
tially following the approach outlined byMcBrearty and
Beroza (2023). From randomly generated origin times
and hypocentral locations, we generate labeled P and
S arrival times at the different stations with the respec-
tive 1D velocity models and station distributions. The
dataset construction process comprises the following
steps:

1. Event Location and Timing Selection: Event lo-
cations are randomly generated within the station
network of the scenario being simulated. Origin
times are arbitrarily assignedwithin a 24-hour time
span.

2. ArrivalTimeCalculation: For each event, at all sta-
tions, we compute P- and S-wave arrival times us-
ing the NonLinLoc raytracer (http://alomax.free.fr/
nlloc/) and a 1D velocity model

3. Arrival-Time Data Corruption: To simulate real-
world arrival time heterogeneity due to 3D veloc-
ity structure as well as picking errors, arrival times
are perturbed by adding randomnoise. While pick-
ing errors are often modeled as Gaussian (Diehl
et al., 2009), velocity model uncertainties can lead
to higher-tailed distributions of error, so we per-
turb the arrival time data by uniform randomnoise
proportional to travel time (−1 to 1%of travel time).

4. Application of Distance Threshold: We assign
a randomly determined cutoff distance threshold
(uniformly between 70 km and 150 km for the
crustal scenario and between 160 km and 500 km
for the subduction scenario) to each event. All
arrivals from source-station paths exceeding this
limit are deleted. This can be seen as a rough ap-
proximation of event magnitude.

5. Station Dropout: A percentage of the stations
(20%) are randomly deleted for each event to intro-
duce operational variability.

6. False Pick Integration: The process concludes
with the incorporation of a predefined percent-
age (30%, 100% and 300%) of additional false picks
(or “noise picks”), effectively simulating automatic
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Figure1 Left: Stationconfigurationandsynthetic seismiceventdistributionexample for thesubductionzonescenario. Red
triangles represent the IPOCnetwork’s seismic stations, coloreddots anexample set of 100 synthetic events. The fixed station
layout, combined with variable event densities and noise levels, forms the basis of our associator evaluation. Right: Station
configuration and synthetic seismic event distribution example for the shallow seismicity scenario. We show an example
realization with 500 events.

picker outputs that often contain many picks that
do not belong to actual earthquakes. These false
picks are randomly uniformly distributed over
time, stations, and phase type.

Details of the resulting event and pick distributions
are provided in Tables S1 and S2. The distance thresh-
old ensures the generation of a diverse set of events,
including “large-moveout” events, that are detected
across the majority of the seismic network, as well
as “small-moveout” events, that are detected by a lim-
ited amount of stations (see pick count distributions
in Figure S1). The synthetic seismicity we use is ran-
domly distributed across the regions, different from
real-world patterns where seismicity is concentrated
near active faults, or inside the downgoing slab in sub-
duction zones. However, for purposes of performance
evaluation, the approachof evaluating all possible event
locations, whether they are tectonically likely or not,
has the advantage that it ensures the associators can
also detect events in areas that have not previously had
seismicity.
Although we attempt to design our synthetic scenar-

ios in a realistic way, a number of complications that ex-
ist in real-world applications are still neglected. For in-
stance, a real-world subduction zone dataset will most
likely contain out-of-network events offshore. The level
of arrival time noise we assumemay easily be exceeded
in real applications, andweunrealistically assumed that
a station always has both a P- and S-pick. We thus
perform our synthetic experiments in two main steps.
The main set of experiments is performed with the
above approach for creating synthetic datasets, and per-
formance is evaluated for different amounts of events
within 24 hours as well as different proportions of noise
picks. After this evaluation, we perform a suite of
tests where we introduce additional real-world prob-
lems such as having different proportions of out-of-
network events, higher travel-time noise levels, and in-
creased rates of missed picks. We evaluate the effect on
performance each of these complications has one-by-
one (see Section 4.4). The same synthetic-data gener-
ator, implemented independently of any individual as-
sociator’s training pipeline (PhaseLink, GENIE), is ap-
plied to all algorithms during testing. None of the asso-
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ciators were trained or fine-tuned on these benchmark
datasets, ensuring that every method is evaluated on
previously unseen inputs.

3.3 Performance evaluation approach
To assess the performance of the seismic phase associ-
ators, we employ a set of evaluation metrics at both the
event level and the pick level. This means that we first
check how many events were correctly retrieved, how
manyweremissed and howmany false events were cre-
ated from noise picks. We consider an event correctly
retrieved if the associator yields an event that contains
at least 50% of the picks originally created for the syn-
thetic event. In this way, we ensure that the original set
of picks cannot createmore thanone real event, and the
loss of a fraction of real picks does not affect whether or
not the event is correctly retrieved.
On the pick level, we then evaluate how many picks

are correctly associated to an event (commonly associ-
ated picks), how many are missed (missed picks), how
many are wrongly associated (i.e., picks from one event
that get associated to a different one) and how many
false picks are added to an event. Ground truth picks are
the arrivals assigned to each synthetic event; we gener-
ate one synthetic catalog per experiment and feed it un-
changed to all associators. Predicted picks are the picks
retrieved for this event (may contain correctly associ-
ated, wrongly associated, and false picks).
We employ the following set of metrics:

• Precision: Measures the proportion of true posi-
tives (TP) in the entire output. High precision in-
dicates few false positives (FP).

Precision = TP/(TP + FP ) (1)

On the event level, TP corresponds to correctly
identified events, FP to false or additional events
that were associated from ground truth or noise
picks. For the pick level analysis, TP marks the
amount of picks correctly associated to an event,
whereas FP is the sum of the number of noise picks
added to the event and the number of wrongly as-
sociated picks that stem from other events.

• Recall: Measures the proportion of true positives
compared to all ground truth correct associations.
High recall indicates few false negatives (i.e., most
actual events or picks were detected).

Recall = TP/(TP + FN) (2)

On the event level, TP again corresponds to the cor-
rectly identified events, while FN are the ground
truth events that are missed. At pick level, TP are
the picks correctly associated to an event, and FN
are the ground truth picks from that event that are
missing in the associated event.

• F1 Score: The harmonic mean of precision and re-
call, providing a balance between sensitivity and

accuracy. A high F1 score indicates strong over-
all performance in correctly determineddetections
while minimizing false detections.

F1 = 2 ×
(

Precision × Recall

Precision + Recall

)
(3)

• Runtimes: Runtime is a crucialmetric for practical
implementations. Here, we evaluate the process-
ing speed of each associator. We measure the time
from the initiation of the model to the generation
of its outputs. It is important to note that our mea-
surement does not take into account any prepro-
cessing steps such as the construction of the veloc-
itymodel and travel time tables, or themodel train-
ing for the DL-based associators, because these
are processes usually executed only once within a
given application framework. Our experiments are
conducted using a consistent computational envi-
ronment: all associators are run on systems utiliz-
ing 25 CPU threads, with access to 200 GB of RAM.
For DL-based associators that leverage GPU accel-
eration, such as GENIE and PhaseLink, we use an
NVIDIA A40 GPU for both training and inference.

Finally, for completeness we repeat the entire anal-
ysis without the 50% match threshold, i.e., including
all false-positive events. Resulting pick-level heat maps
(Figures S9 and S10) and extended pick budget bar plots
(Figures S11 and S12) are provided in the Supplement.

3.4 Parameter optimization approach
The performance of each association algorithm is heav-
ily dependent on the choice of tuning parameters. Ex-
cept for the association threshold, which defines the
minimum number of picks needed to define an event,
the different algorithms have very different parameter
sets, a consequence of their quite different approaches.
In order to provide a fair comparison between the dif-
ferent algorithms, we have to optimize the parameter
choices for each of them,which is a time-consuming ac-
tivity. For the sake of comparability and also to mimic
real-world applications, we chose an association thresh-
old of 10 picks for declaring an event (without specifica-
tion how many of them have to be P or S) for all associ-
ators.
For REAL, GaMMA and PyOcto, we then conduct a

large series of runs, changing parameters one by one
and evaluating the change in performance metrics in
response to these changes. While varying parameters
individually is not the optimal approach, conducting
a complete grid search would be computationally pro-
hibitive. Where available, we used published parameter
choices from an earlier associator comparison (Münch-
meyer, 2024) or application studies (Becker et al., 2024)
as an initial parameter guess. An example of optimizing
a single parameter for PyOcto is shown in Figure 2: we
systematically vary the parameter pick match tolerance,
and determine metrics like precision, recall, F1 score
(on event and pick level) as well as runtime for each of
these trial runs. The parameter choice with the overall
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Figure 2 Example of our parameter optimization approach, here for parameter pick match tolerance of PyOcto. The met-
rics event- and pick-level precision, recall and F1 score, as well as runtime and false positive count, are monitored against
a systematic change of this parameter. For the run shown here, the choice marked in orange is evaluated to perform best.
Note that we do not show the entire extent of the utilized search space here, values>2.8 were also tested. The finally chosen
optimum parameters are determined by comparing performance for all nine runs (with 100, 500 and 2000 events as well as
30, 100 and 300% of noise picks) that we evaluate in Section 4.4.

best performance, as indicated by these different met-
rics, is chosen (here highlighted in orange color). We
optimized two separate sets of parameter choices for
the crustal and subduction zone scenario. For each of
these sets, the final parameter choice is a compromise
between the optimizations on all nine different runs (all
combinations of 100, 500 and 2000 events as well as 30,
100 and 300% noise picks). That is, once selected, the
same set of parameters is used for all tests, regardless
of the number of noise picks and event rates.
The neural network based algorithms, PhaseLink and

GENIE, require a training step before application, in
which the majority of parameter optimization occurs.
Because this step is time-consuming, the iterative tun-
ing strategy as used for the traditional associators is
not possible, and only a minimal amount of parameter
tuning was possible for these methods. To create the
training datasets for these algorithmswe used the codes
available with each method, which follow a similar ap-
proach of synthetic pick and event creation as outlined
in Section 3.2. For details of the training process for
PhaseLink andGENIE, please refer toText S2 andFigure
S4 in the SupplementaryMaterial, aswell as the descrip-
tions supplied in the original publications. All our final
parameter choices for each associator and scenario are
listed in Tables S3–S7 in the Supplementary Material.

4 Results
We evaluated the performance of the five seismic phase
associators — PhaseLink, REAL, GaMMA, GENIE, and
PyOcto — in the two different event-station scenarios

introduced in Section 3.1. GaMMA, REAL and PyOcto
offered the possibility of using either a homogeneous
seismic velocity (0D model) or a 1D velocity model for
the association process. We tested the different config-
urations and here only used their best-performing con-
figurations as identified by our analysis (seeText S1, Fig-
ures S2 and S3, and Table S8 in the Supplementary Ma-
terial). For each of the two event-station scenarios, we
performed a total of 9 different runs, which feature dif-
ferent event numbers (100, 500 and 2000 events within
24 hours) as well as different proportions of randomly
distributed “noise picks” (30, 100 and 300% of the true
picks).

4.1 Event-Level Performance Metrics

The event-level results are presented in Figure 3 for the
subduction scenario and Figure 4 for the crustal sce-
nario. The full numerical results are available in Tables
S8 and S9. At low noise levels (30% noise) and small
event counts (100 events), all associators demonstrated
high event-level precision and recall, with relativelymi-
nor differences between different scenarios and asso-
ciators. While GENIE, PyOcto and REAL showed values
above 0.97 for precision, recall and F1 score in both sce-
narios, GaMMA obtained lower scores around 0.9 for
the subduction zone scenario, and PhaseLink scored
around or even below 0.9 for both scenarios. With
higher noise levels and event counts, the performance
of the different associators diverged significantly. This
was especially true for the subduction zone scenario,
where the performance drops for the more difficult
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Figure 3 Event-level performance in the subduction zone scenario. The figure is a 3 × 3 grid. Columns share the subduction
zone scenario event rate (100, 500, 2000 earthquakes; titles above each column). Rows share the evaluation metric—Preci-
sion, Recall, F1-score (labels on the left). Within every small panel three horizontal bar clusters track increasing catalogue
noise (30%, 100%, 300% false picks; annotated on the left axis of each panel). Each cluster contains the five associators:
GaMMA 1D, Genie, PhaseLink, PyOcto 1D, REAL 0D. The numeric value printed on each bar is themeanmetric over the events
recovered in that run. A red “×” replaces a bar where the algorithm could not finish the run (out-of-memory or other error).
Alternative visualization using heatmaps is supplied in Figure S13 in the Supplementary Material.

runs were more pronounced than for the crustal sce-
nario.

Adding more noise picks to the smallest run with
only 100 events had no major impact on performance,
whereas increasing event numbers deteriorated per-
formance values more clearly. Of all associators,
PhaseLink exhibited the most drastic performance
drops with increasing event numbers and noise per-
centages. Inmost crustal scenarios, except for themost
difficult case of 2000 events and 300% noise, PhaseLink

performs reasonably well with metrics largely above
0.8. In contrast, for the subduction zone scenario,
PhaseLink registered a sharp decline from an F1-score
of ≈0.87 in simpler runs down to ≈0.1 in the most chal-
lenging scenarios. There, it already had low precision,
recall and F1 score values below 0.3 for the runwith 500
events and 300% noise as well as for all runs with 2000
events. For 2000 events and more than 100% noise, its
F1 score was nearly zero. Overall, PhaseLink’s preci-
sion results were higher than its recall values. GaMMA
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Figure 4 Event-level performance in the crustal zone scenario. The figure is a 3 × 3 grid. Columns share the crustal scenario
event rate (100, 500, 2000 earthquakes; titles above each column). Rows share the evaluation metric—Precision, Recall, F1-
score (labels on the left). Within every small panel three horizontal bar clusters track increasing catalogue noise (30%, 100%,
300% false picks; annotated on the left axis of each panel). Each cluster contains the five associators: GaMMA 1D, Genie,
PhaseLink, PyOcto 1D, REAL 0D. The numeric value printed on each bar is the mean metric over the events recovered in
that run. A red “×” replaces a bar where the algorithm could not finish the run (out-of-memory or other error). Alternative
visualization using heatmaps is supplied in Figure S14 in the Supplementary Material.

performedmarkedly better than PhaseLink overall, but
also exhibited a performance drop of F1 values to be-
tween 0.5 and 0.55 already in the high-noise case of
500 events for the subduction zone scenario. In the
crustal scenario, it achieved clearly better results than
in the subduction zone scenario, with a clear perfor-
mance drop only for the case with 2000 events. For
the most complex runs (2000 events with 300% noise),
GaMMA did not complete the processing due to mem-
ory allocation issues. The high computational demands

of clustering large volumesof datawith significant noise
led to excessive memory usage for GaMMA and ex-
ceeded the available RAM (200 GB). There is a clear ten-
dency of reduced precision with more stable recall for
GaMMA when moving to the more challenging runs in
the crustal scenario, while no such systematic tendency
could be seen for the subduction zone scenario.

REAL achieved overall good results in the crustal sce-
nario, with metrics above 0.9 everywhere except for
the runs with 2000 events. There, its recall dropped
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Figure 5 Pick-level performance of five associators in the subduction scenario. Columns group the associators (GaMMA
1D, GENIE, PhaseLink, PyOcto 1D, REAL 0D). Rows give the three metrics: Precision, Recall, and F1 score, shown once as row
labels on the left. Within each heat-map the x-axis steps through increasing catalogue noise (30%, 100%, 300% false picks)
and the y-axis through higher pick rates (100, 500, 2000 events). The three rows display, from top to bottom, precision, recall,
and F1-score; warmer colors indicate better performance according to the shared scale bar. Blank cells mark runs that were
not completed. Each panel shows the mean performance derived from events that matched the synthetic ground truth.

more significantly (to values around 0.75) than its pre-
cision (still above 0.9) for the most challenging runs.
This constitutes a significantly better performance than
GaMMA. In the subduction zone scenario, REAL like-
wise only experienced a significant performance drop
for the runs with 2000 events, but here it performed
worse than in the crustal scenario, with the recall drop-
ping to around 0.7 already for low-noise conditions.
Again, REAL’s precision is generally higher than recall,
but both decrease to 0.54 for the most challenging run.
Finally, GENIE and PyOcto achieved the highest scores
throughout the different runs, with only veryminor dif-
ferences between the two algorithms. Their metrics
were above 0.97 for all runs with 100 or 500 events, in
both scenarios. For the runs with 2000 events, preci-
sion and recall stayed above 0.9 except for the very last
run with 300% noise. There, they both dropped just un-
der 0.8 for precision and recall in the subduction sce-
nario, whereas GENIE obtained a higher precision than
PyOcto (0.95 vs. 0.73) at similar recall (0.86 vs. 0.91) in
the crustal scenario.

4.2 Pick-Level Performance Metrics
Due to the previously used definition of an event be-
ing correctly identified if it contained at least 50% of
the original (ground truth) picks, event-level metrics

did not fully indicate which associator had a tendency
to miss picks or to incorporate “noise picks” into cor-
rectly retrieved events. Such information became ap-
parent when analyzing the performance on the pick
level. Here, we perform this pick-level analysis. Picks
were classified as correctly associated (CA), wrongly as-
sociated (WAP) or false as described in Section 3.3 and
precision, recall and F1 scores were calculated simi-
larly to the event-level metrics. While the presented
differences in pick-level performance did not have di-
rect consequences on event retrieval (only correctly
retrieved events were evaluated in Section 4.1), miss-
ing picks and especially the incorporation of erroneous
picks could have had a large impact on the quality of
the final seismicity catalog, leading to wrong and more
uncertain hypocentral locations and magnitudes if no
additional post-processing was applied. It should be
noted that these pick-level results were derived only
from the events that were successfully retrieved, i.e.,
that exceeded the threshold of 50% matching picks to
the ground truth event. This criterion ensured that
only events with a significant overlap between the pre-
dicted dataset and the ground truth synthetic dataset
were considered. This implies that the set of events con-
sidered differed between the different associators, and
it also means that additional false events that may have
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Figure 6 Pick-level performance of five associators in the crustal scenario. Columns group the associators (GaMMA 1D,
GENIE, PhaseLink, PyOcto 1D, REAL 0D). Rows give the three metrics: Precision, Recall, and F1 score, shown once as row
labels on the left. Within each heat-map the x-axis steps through increasing catalogue noise (30%, 100%, 300% false picks)
and the y-axis through higher pick rates (100, 500, 2000 events). The three rows display, from top to bottom, precision, recall,
and F1-score; warmer colors indicate better performance according to the shared scale bar. Blank cells mark runs that were
not completed. Each panel shows the mean performance derived from events that matched the synthetic ground truth.

been created from the remainder of ground truth picks,
noise picks or a mixture of the two, did not impact the
pick-level metrics. Hence, these pick-level metrics did
not take into account event-level precision, which de-
creased proportional to the extent that false eventswere
created, and which could be highly variable between
different algorithms, as shown in Figures 3 and 4.

Heat maps in Figures 5 and 6 show the mean values
of precision, recall, and F1 score at pick level. Fig-
ures S7 and S8 show the mean values for the pick-level
results per event (ground truth picks, predicted picks,
commonly associated picks, missed picks, false picks,
and wrongly associated picks) across the different as-
sociators and runs. All values from these figures are
also provided numerically in Tables S11 and S12 in the
SupplementaryMaterials. The observed general perfor-
mance trends are largely similar to the event level ones.
At low noise levels and smaller event counts, all asso-
ciators demonstrated high pick-level accuracy, which
deteriorated with increasing event numbers and noise
picks. GENIE and PyOcto again showed the highest ac-
curacy, with performance metrics above 0.9 in nearly
all cases, and retained values above 0.8 even under the
most adverse conditions. REAL nearly matched their
performance in the smaller-scale runs, but performed
worse in the runs with 2000 events, where it obtained

values around 0.7 for the most challenging run with
2000 events and 300% noise. GaMMA featured high pre-
cision, but recall did not exceed 0.92 even for the small-
est and simplest runs, and it failed to finish the hardest
case due to memory issues. Moreover, low event-level
precision forGaMMA, especially in the subduction zone
scenario, implies that it createdmany secondary events
with falsely associated picks. Lastly, PhaseLink had the
weakest overall results, with performance deteriorating
(values below 0.8) already at the intermediate-difficulty
runs, and nearly zero performance for the hardest runs.

The detailed pick statistics (Figures S7 and S8) can be
read as a six-subplot pick budget for every run. Sub-
plot (e) lists the ground truth picks available for each
event, while subplot (a) lists the predicted picks re-
turned by the associator. Their intersection is plotted
in subplot (d) as common picks—the part of the cat-
alog that is matched correctly. Picks present in the
ground truth but absent from the prediction appear in
subplot (b) as missed picks and represent omission er-
rors. Picks present in the prediction but absent from
the ground truth are divided between two commission-
error classes: false picks created from noise (subplot
c) and wrongly associated picks that originate from a
different event (subplot f). Together, the six subplots
expose whether performance losses under increasing
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catalog noise and event rate originate primarily from
dropping real information (subplot b) or from inject-
ing spurious information (subplots c and f). Subplot
(a) shows that most associators tended to miss an aver-
age of one or two picks per event even for the easiest
runs, whereas the incorporation of false or wrongly as-
sociated picks is virtually zero there (subplots c and f).
As the runs becamemore demanding, more picks were
missed, but this was largely compensated by also in-
corporating more false or wrongly associated picks, so
that the average total number of picks per event did not
change significantly. PhaseLink started to miss large
amounts of picks already in the intermediate difficulty
scenarios and at the same time incorporatedmany false
or wrongly associated picks. For the hardest test case,
PhaseLink did not retrieve any correct events in the
subduction scenario, which is why missed, false, and
wrongly associated picks for PhaseLink were zero for
this case. For the other associators, the tendency to
miss or wrongly incorporate picks was less strong than
for PhaseLink. GaMMAmissed a substantial amount of
picks (an average of 14 per event in the crustal scenario)
in the easier runs, and this proportion of missed picks
stayed relatively stable across the different runs. REAL’s
performancewas close to the level of GENIE andPyOcto
throughout most of the runs but deteriorated faster for
the highest event rates, where it missed more picks and
incorporated more noise or wrongly associated picks
than these algorithms.
A complementary “all-events” assessment retaining

every prediction, including pure false positive events,
is shown in Figs. S9 and S10. As expected, the inclu-
sion of these extra events depresses overall precision
(and thus F1), while recall is affected to a lesser extent,
because most true events are still recovered. However,
the qualitative behaviour visible in the matched-event
analysis persists: algorithms that already tended to tol-
erate more noise or cross-associated picks now mani-
fest that tendency through a larger population of spu-
rious events, whereas methods that were more conser-
vative at the pick level continue to return cleaner cat-
alogs. In other words, the shape of the performance
curves remains the same, only their absolute scale shifts
downward once false positives are counted. Detailed
pick budgets for the matched-event view—already dis-
cussed above in Figures S7 and S8 are complemented by
full-catalog budgets in Figures S11 and S12, where the
same six-panel breakdown is applied after all predicted
events (including false positives) have been retained.

4.3 Processing runtimes

The last performancemetric we evaluated is processing
runtime, as introduced in Section 3.3. Figure 7 shows
summaries of runtimes for all different associators and
evaluated runs (values are also listed in Tables S9 and
S10 in the Supplementary Material), which were rep-
resented by the total number of picks (ground truth
plus noise). Although the crustal scenario featured
a larger amount of stations (Figure 1) and thus more
picks by a factor of 3–4, runtimes were generally slower
for the subduction scenario. This was likely a conse-

quence of events being distributed over a larger spa-
tial region, as well as extending tomuch deeper depths.
This increased the search space for potential sources
and may also necessitate more complex travel time cal-
culations. Processing times generally increased with
scenario size, but the different associators showed very
different scaling behavior. While PyOcto, PhaseLink
and partially also GaMMA finished the smaller scenar-
ios in less than or around 10 seconds, REAL and es-
pecially GENIE were slower by an order of magnitude
or more. For higher pick rates, it was apparent that
the neural network-based associators (PhaseLink and
GENIE) had better scalability than the other methods,
in that their runtimes grew less strongly with an in-
creasing number of picks. PyOcto, REAL and GaMMA
had more significant processing time growth with total
pick numbers, with GaMMA’s curve being the steepest.
However, since GENIE was quite slow for small scenar-
ios, this flatter curve onlymeant that its processing time
is similar to PyOcto and somewhat faster than REAL
for the largest scenarios we evaluated. PhaseLink, on
the other hand, clearly processed large-scale problems
fastest, but due to its near-zero performance for such
cases (Section 4.1) it is still not an effective choice for
processing such datasets. One could also observe that
for GENIE and PhaseLink, which are based on neural
networks, the amount of noise picks did not influence
the total processing time significantly, whereas it played
a major role for the other, more classical associators.

4.4 Further tests

In this section we address several real-world data com-
plexities not included in our main synthetic experi-
ments from Section 4.1. First, the signal detection time
error was less than ±1% of the predicted travel time,
thus the results did not address the effects of increasing
pick errors. Second, out-of-network events are a com-
mon occurrence in most monitoring environments, es-
pecially in subduction zones wheremost of the plate in-
terface as well as the often seismically active outer rise
are located offshore (Stern, 2002). Third, each station’s
associations always included both the P arrival and S
arrival. Fourth, we did not characterize small magni-
tude event performance as the synthetic eventswere de-
tected on most of the monitoring network. All of these
conditions are typically not present in real-world appli-
cations; instead, travel time noise levels may be higher,
and most events will be of small magnitude and hence
only observed on a small fraction of the network. Thus,
we also evaluated the deterioration in accuracy that oc-
curs when these complications are increased to more
challenging real-world levels. We conducted these ad-
ditional tests on the intermediate subduction zone sce-
nario with 500 events and 100%noise picks. In a first set
of runs, we systematically increased travel time noise
levels (see Figure 8), then moved on to introduce dif-
ferent proportions of out-of-network events to the west
of the station network (see Figure 9), and finally re-
moved a higher proportion of P- or S-phases (see Fig-
ure 10), which emulates the creation of smaller mag-
nitude events. The evaluation of these additional com-
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Figure 7 Left: Logarithmic scale comparison of processing duration against the total number of picks for various seismic
phase associators for the crustal seismicity scenario. Right: Logarithmic scale comparison of processing duration against
the total number of picks for various seismic phase associators for the subduction scenario. Note that GaMMA 1D did not
complete processing for the most complex case in both scenarios due to memory allocation issues, and thus its runtime is
not plotted for those cases.

plications complements the main analysis presented in
Sections 4.1 through 4.3.

4.4.1 Travel time noise

To test travel time noise effects on association, we con-
ducted three additional runs with noise added from
random uniform distributions of ±1–5%, ±5–10% and
±10–15% of travel time. Results from these runs, in
addition to the one with the original ±0–1% noise,
are shown in Figure 8. REAL, GaMMA and PyOcto
have tolerance-type parameters (REAL: nrt; GaMMA:
max_sigma11; PyOcto: pick_match_tolerance) that put an
upper bound on what misfit between predicted and ob-
served arrival times was permissible. In a first series of
runs,wekept the toleranceparametersfixedat the same
values as determined in our previous optimizations. We
then re-optimized these single parameters for each of
these associators and runs, which in some cases yielded
significantly better results (see hatched and filled bars
in Figure 8). The neural network based associators,
PhaseLink and GENIE, were kept with their originally
chosen parameters, as these methods appeared less
sensitive to travel time noise levels. However, if these
models were re-trained for the higher expected noise
levels this would likely increase performance further.
We observed a general performance decay of all as-

sociators with increasing travel time noise level, with a
clearer decrease of recall values compared to precision.
PhaseLink appeared to be least affected by increasing
travel time noise levels, but since its performance was
already relatively low for the lownoise levels of the orig-
inal application, it was still not among the best per-
forming algorithms for the highest noise levels. Py-
Octo andGaMMA showed a large dependence on the re-
optimization, with the sometimes very low event recall
levels of the original tolerance parameter choices (be-
low 0.25 for the high-noise case) significantly improving
to around 0.6 (GaMMA) or 0.85 (PyOcto) with new,more
adequate choices of tolerance parameters. For REAL,
in contrast, re-optimizing the tolerance parameter only

brought a subtle performance increase even with high
noise, as it already performed quite well (recall above
0.75) with the original setting. While increasing the tol-
erance parameter led to better metrics for GaMMA and
PyOcto, it also caused a notable increase in false and
wrongly associated picks that were incorporated into
the retrieved events. GENIEmaintained>0.75 F1 scores
for both event-level and pick-level metrics even at the
highest travel time noise levels, despite not being re-
optimized for these higher noise level cases.
These results underscore the importance of parame-

ter optimization, and illustrate the inherent tradeoff be-
tween robustness against travel time noise and the in-
corporation of noise picks that REAL, GaMMA and Py-
Octo exhibited. The two associators using a neural net-
work approach, PhaseLink and GENIE, are more flex-
ible with respect to travel time noise and largely did
not need to be re-optimized once they were properly
trained.

4.4.2 Out-of-network events

The correct identification and accurate location of out-
of-network events represents a major challenge in seis-
mology (Williamson et al., 2023). We thus conducted
three additional runs where we added an additional
150, 300 and 450 out-of-network events to the subduc-
tion zone scenario run with 500 events and 100% noise
picks. These events were randomly placed up to 200
km west of the network and at depths of 0–40 km. We
did not perform any additional parameter optimization
for these runs, but used the previously determined opti-
mal parameters. In Figure 9, we show the performance
for the in-network events with bar charts in the left
panel, and the retrieval of out-of-network events (only
for the case with 450 such events) in the map plots on
the right. Pick association performance of in-network
events was only slightly degraded between the “Orig-
inal” (no out-of-network events) and the “High” (450
out-of-network events) runs. For precision, PhaseLink
experienced the largest drop (12.99%), while the re-
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Figure8 Event-level (upper row), pick-level (middle row)andother (lower row)metrics for runswith systematically changed
levels of travel time noise. The original configuration corresponds to the run with 500 events and 100% noise picks of the
subduction zone scenario. To simulate low,moderate andhighnoise conditions,±1–5%,±5–10%and±10–15%of the travel
time were added as noise to the picks. Note that for REAL, GaMMA and PyOcto, two different runs are shown, one with the
original parameter optimization (hatched bars) and one with their tolerance parameters re-optimized for each noise level
(solid bars).

maining associators saw only modest declines (all un-
der about 4%). For recall, PhaseLink again fell the most
(3.65%), with the other algorithms losing no more than
roughly 2.5%. Finally, in F1 score, PhaseLink’s per-
formance decreased by 8.49%, whereas all other meth-
ods dropped by less than about 3%. However, the algo-
rithms differedmarkedly in howwell they retrieved out-
of-network events. In all cases, the event retrieval rate
declined with distance from the network, but the na-
ture of this decline was different among all associators.
In our original parameter optimization, out-of-network
events had not been expected, so that the permissible
search area for all algorithms was set to 71◦W (Note: as
REAL does not incorporate this parameter, it was not af-
fected). When keeping this choice, PyOcto and GENIE
performed very well for closeby out-of-network events,
but then showed a sharp decline in retrieval rate in the
close vicinity of this boundary. This means that events

only slightly outside this search space limit would have
been missed, highlighting the importance of setting
the appropriate range for a given monitoring scenario.
For GaMMA and PhaseLink, a substantial amount of
closeby out-of-network events was missed, but a small
proportion of events beyond the search area limit were
retrieved aswell. ForREAL, the search space is not user-
configured. Our results show that it had a high event
retrieval rate that declined with distance from the net-
work. At distances that roughly correspond to the loca-
tion of the seismically active outer rise in a subduction
zone, REAL still retrieved ≈80% of the events.
When re-configuring GaMMA and PyOcto to include

all out-of-network events in the search space, PyOcto’s
performance surpassed that of REAL, although it also
started to miss events towards the western edge of the
event cloud. GaMMA only retrieved a significant pro-
portion of events west of the network center (71◦ W),
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Figure 9 Test results for including 150, 300 and 450 out-of-network events placed up to 200 km west of the network, at
depths between 0 and 40 km. The left panel shows performance metrics for the in-network events for the different runs, on
the right map view plots for the run with 450 out-of-network events are shown that indicate the performance of the differ-
ent associators for the single events that are colored by pick-level F1 score. The upper row contains runs with a yellow line
that shows the western edge of the search area in those runs where it falls within the out-of-network events. The lower row
contains the runs with extended longitude, which include all out-of-network events.

while very few events were found at the northern (19◦S)
and southern (24◦S) ends of the out-of-network event
cloud. For the deep learning-based associators, GENIE
and PhaseLink were re-trained specifically for this ex-
tended scenario. In particular, GENIE was re-trained
using the latest public version of the model, which in-
cludes improved travel time computation. The updated
GENIE model not only maintained high performance
for in-network events but also achieved strong pick-
level recall and F1 scores for out-of-network events,
evenexceeding theoriginalmodel’s performanceunder
more complex conditions with added out-of-network
events. While we retained the original model version
for consistency across all associators in the main anal-
ysis, these results indicate that GENIE’s performance
has further improved in recent versions available on
GitHub, highlighting the continuous development of as-
sociators. PhaseLink, on the other hand, showed a
slight decrease in performance after retraining. This
may be due to the larger spatial extent introduced in
the out-of-network runs: although the model was re-
trained with the same number of epochs and synthetic
samples as in the original setup, the expanded search
space likely requires a larger or more diverse training
dataset to maintain performance.

4.4.3 Removal of P- or S-phases

In a last additional test, we removed different amounts
(20, 40 and 60%) of each event’s picks, randomly be-

tween stations and P or S phases. This was meant to
investigate the associators’ performance in case many
stations only had one pick, and not both paired P and S
picks. At the same time, this run modified the original
distribution of pick numbers (Figure S1) in which only
a relatively small proportion of events had pick num-
bers close to the association threshold of 10, creating a
more realistic configuration in which most events em-
ulate small magnitude events and only slightly exceed
the association threshold.
Results from this test are shown in Figure 10. The av-

erage number of ground truth picks per event, shown
in the lower left panel, demonstrated the decrease of
total picks for the different runs, where the last run of
60% removed picks only had about 15 picks per event
on average, which is close to the association threshold
of 10 picks. The scores for event precision and recall
show that event precision actually increased with pick
removal for most associators, most clearly for GaMMA
and PhaseLink. At the same time, event recall deteri-
orated for all associators. As in most other runs, GE-
NIE and PyOcto showed the best overall performance,
with scores >0.8 throughout all runs, and only minor
differences between them. Here, PyOcto was slightly
better for the run with the highest pick removal rate,
whereas GENIE had minimally higher scores for the
runs with fewer picks removed. REAL showed effec-
tive results, but its performancewas systematically infe-
rior to GENIE and PyOcto by about 0.1 in precision and
recall. While PhaseLink performed poorly throughout
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Figure 10 Results of the random pick removal test. Starting from the subduction zone scenario with 500 events and 100%
noise picks, we remove 20, 40 and 60% of picks (randomly P or S) to simulate more sparsely detected events. Results are
provided in the same form as in previous figures.

all runs, GaMMA’s recall also decreased significantly (to
only about 0.3) for the highest rate of pick removal. For
this run, the average event only comprised 15 picks, and
as GaMMAmissed more than 4 picks per event on aver-
age, this led to many events moving below the associa-
tion threshold and thus not being detected.

5 Discussion

5.1 Associator configuration or training
As briefly outlined in Section 3.4, each of the used as-
sociators requires the tuning of a number of parame-
ters. Parameter choices are specific to the setting, to
conditions such as station distribution or the amount
and quality of input picks. This means that in all cases,
a certain amount of tuning to the setting at hand is
required, and none of the algorithms can be general-
ized to perform well ‘out-of-the-box’. In real-world use
cases, ground truth catalogs in the formof verifiedpicks
and events may not exist, so users must rely on expe-
rience and conducting and analyzing test runs to con-
figure parameters. The amount of effort and expertise

that is required to properly configure and apply the dif-
ferent algorithms also differs widely. In this Section, we
discuss some of the tradeoffs that are inherent to the pa-
rameter optimization and comment on the practical use
of the different algorithms. We acknowledge that any
synthetic-data protocol can, at least in principle, favor
certain algorithmic features. What guards us against
that here is both the breadth of our generator and the di-
versity of methods we tested. All five associators, rang-
ing fromgrid-search (REAL) andGaussian-mixture clus-
tering (GaMMA), through recurrent DL sequence mod-
els (PhaseLink) and graph-based deep learning (GE-
NIE), to purely back-projection (PyOcto), saw identical
event locations, station-dropout patterns, velocitymod-
els (0D vs. 1D), noise levels, and distance thresholds.
Despite this uniform test bed, two fundamentally dif-
ferent schemes, GENIE’s GNN and PyOcto’s 4D octree
search, both sustain near-perfect F1 scores across all
test cases, while the other methods showmore variable
performance. That consistency across two very distinct
algorithms suggests that any residual bias in our bench-
mark is likely small rather than fatal to the comparison.

15 SEISMICA | volume 4.2 | 2025



SEISMICA | RESEARCH ARTICLE | Benchmarking seismic phase associators

For the backprojection-based associators (REAL, Py-
Octo) aswell as GaMMA, a tolerance-type parameter de-
fines the allowed arrival time misfit for picks. This pa-
rameter has to be adapted to the expected travel time
noise level (see Section 4.4.1) due to pick uncertainties
or the deviation of the used velocity model from reality,
and a suboptimal choice can have severe consequences
for associator performance (e.g., Figure 8). A too high
value will lead to the incorporation of noise picks and
thus decreased precision, whereas a too small valuewill
lead to many true picks being missed (lower pick-level
and event-level recall). While such a tolerance-type pa-
rameter also exists implicitly in the training process
of the DL algorithms and the level of travel time noise
added to training picks, its role in defining the qual-
ity of achievable phase associations is less prominent.
Secondly, a choice of grid density or refinement level
is required, which leads to a second substantial trade-
off. A very fine parameterization will typically lead to
improved performance, though it can severely increase
runtimes, while a too coarse parameterization will lead
to quick runtimes but inferior results.
While the previous parameter tradeoffs have to be ad-

dressed when configuring PyOcto, REAL or GaMMA,
these algorithms nevertheless feature a relatively lim-
ited set of parameters that need tuning, which means
that finding a suitable (while maybe not optimal) con-
figuration is not very time-intensive. Training the neu-
ral networks for PhaseLink and GENIE needs a higher
amount of effort and expertise, and it could take a sub-
stantial amount of time to find a well-working setup for
new users. In particular, the choice of the parameters
used for the generated synthetic picks in training (e.g.,
proportion of noise picks, event density, levels of travel
time noise, etc.) are important, yetmay be hard to tune.
The choice of the level of noise and event rates during
training the DL associators implicitly affects the pre-
cision and recall tradeoffs, however directly assessing
this tradeoff is difficult as it requires multiple rounds of
training. For GENIE, it is required to set a few scale-
dependent parameters such as the maximum moveout
distance of sources, and the label kernel widths. The
level of travel time noise and event rates can also be
chosen to roughly reflect realistic conditions. In case of
a real-world application, it is important to use the real
data characteristics to guide the choice of training data
parameters, but this processmaynecessitate some trial-
and-error until a working configuration is found.
The advantage offered by the DL algorithms is flex-

ibility, which is illustrated in the test runs with dif-
ferent noise levels (Figure 8). Once properly trained,
PhaseLink and GENIE generally do not require param-
eter adaptation to perform well in a wide range of set-
tings, while REAL, GaMMA or PyOcto have to be ad-
justed in case different conditions are encountered.
Thus, the higher amount of initial investment in train-
ing the network can result in increased flexibility. For
GENIE, since it relies on graph neural networks, this
flexibility also extends to handling significantly differ-
ent station configurations, e.g., if a seismic network is
heavily modified over time by adding or removing sta-
tions, robustness can be maintained without requiring

re-training. For example, GENIE performs well when
trained on a dense network of 91 stations and then ap-
plied to amuch smaller subnetwork of 21 stations, while
PhaseLink has to be re-trained for such an application
(see Text S3 and Figures S5 and S6 in the Supplementary
Material). Supplementary tests that vary station density
(Text S3 and Fig. S6) reinforce this contrast. With ex-
actly the same hyper-parameter set, GENIE maintains
F1 scores above 0.9 as the California network is thinned
from 91 to 21 stations, whereas PhaseLink’s F1 drops
from ≈0.9 to ≈0.4 unless the model is retrained on the
sparse geometry. This robustness stems from GENIE’s
graph-based architecture, which generalizes across net-
works of different aperture and density without param-
eter retuning. In practice, that translates to lowermain-
tenance overhead in deployments where stations are
frequently added, removed, or temporarily out of ser-
vice. By contrast, PhaseLink and to a lesser extent, the
classical back-projection methods, benefit from dedi-
cated retraining or re-optimization whenever network
geometry changes markedly.
Training GENIE and PhaseLink is a one-off but non-

trivial step: for each scenario we generated ≈1 mil-
lion synthetic samples (Section 3.2; Text S2) and op-
timized the networks over many epochs on a modern
GPU. Although this requires several GPU-hours, subse-
quent inference is lightweight. Practitioners without
dedicated GPUs can still deploy these methods by start-
ing from publicly available pretrainedweights, or by re-
training with much smaller synthetic datasets (50–100
k samples); our pilot runs retained ≥90% of the full-
training accuracy while cutting compute cost by an or-
der of magnitude.

5.2 Event duplicates andmultiplets

An issue we did not analyze in detail is the possible cre-
ation of duplicate or multiplet events by phase associa-
tors. As none of the associators allows a single pick to
be used by more than one event, our event definition of
≥50% of ground truth picks ensures that only one out-
put event per ground truth event is analyzed. Whether
additional false events with smaller amounts of ground
truth picks, possiblymixedwith noise picks, are created
wasnot evaluated independently. However, this effect is
encoded in the statistics for event-level precision, pick-
level recall as well as missed picks (Figures 3, 4, 5, 6, S7
and S8).
In the subduction zone scenario, both GaMMA and

PhaseLink have decreased event-level precision even
for the simplest runs, which does not occur in the
crustal scenario. In both cases, both algorithms also
show lower values for pick-level recall, which is due
to missed picks. This likely implies that while picks
are simply missed in the crustal scenario, they are at
least sometimes combined to secondary events in the
subduction case (thus the lower event-level precision).
This may be due to the larger spatial search space in
this scenario, which allows more possibilities for a sec-
ondary event to achieve a consistent source location
with several picks “by chance”. Interestingly, decreas-
ing the number of constituent picks per event (Sec-
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tion 4.3 and Figure 10) increases the event-level preci-
sion of GaMMA and PhaseLink substantially. We inter-
pret that this observation implies that if a smaller to-
tal number of picks are available, producing a false sec-
ondary event with more than 10 arrivals is less likely.

5.3 Runtime trends and applicability
The runtime trends observed across the different asso-
ciators (Section 4.3) show significant differences in scal-
ability and computational efficiency. The DL-based as-
sociators GENIE and PhaseLink here demonstrate su-
perior scalability compared to more traditional meth-
ods, but in the case of GENIE this is coupled with much
slower runtimes especially in smaller scenarios. Run-
times of PhaseLink and GENIE mostly scale with the
number of identified events and are largely indepen-
dent of the number of noise picks, whereas an increase
of the total number of picks drastically increases run-
times of REAL, GaMMA and PyOcto.
Comparing directly between the best-performing al-

gorithms PyOcto and GENIE, PyOcto is substantially
faster (factor of 100 or more) for the smaller-scale ap-
plications we tested, while for the largest runs that en-
compass >100k picks, runtimes are roughly similar be-
tween these two algorithms. While the largest scenario
we tested, which contains 2000 events within 24 hours
on a network of ∼50 stations, is already quite extreme
in terms of event rate (likely corresponding to the af-
tershock series of a large earthquake), many current (or
future) seismic networks can include 100s or even 1000s
of stations. In such cases, an algorithm such as GE-
NIEmay be beneficial, and the advantage in runtime for
such large datasets as well as its flexibility towards net-
work geometry changes over time may easily outweigh
the larger effort in initially training themodel. For seis-
mic networks of more limited scale, i.e., many regional
and local as well as temporary deployments of ∼dozens
of stations, PyOcto is potentially the most appropriate
choice of associator, as it achieves similar performance
as GENIE, ismuch faster, and requires relatively limited
parameter configuration before application.

6 Conclusions
We evaluated five phase association algorithms with
scenarios of synthetic picks and events that were de-
signed to approximate real-world conditions. We find
that GENIE and PyOcto show the overall best perfor-
mance across all tested scenarios and runs. These two
algorithms are the most recently published algorithms,
and are also based on very different techniques: one
uses neural networks, while the other uses an efficient
back-projection based search scheme. Our results indi-
cate distinct advantages and tradeoffs of each algorithm
anddonot allow a decision ofwhich fundamental phase
association approach (classical or DL) is superior.
While GaMMA and especially PhaseLink showed

significant problems in more challenging conditions,
REAL exhibited robust performance overall, but has
slow runtimes due to its grid search-like approach. Py-
Octo and GENIE performed best, with only small differ-

ences between the two algorithms except for runtimes.
There, PyOcto is substantially faster (factor of ∼100)
for smaller-scale problems, whereas GENIE catches up
for larger problems due to better scalability. For the
largest problemswe tested, their runtimeswere compa-
rable. However, greater differences between the two al-
gorithms may appear for larger seismic network appli-
cations, and are also indicated by the need for different
levels of re-tuning based on observed seismicity charac-
teristics and noise levels.
Taking into account additional considerations such as

parameter tradeoffs and ease of configuration, we con-
clude that PyOcto is well suited for most phase asso-
ciation problems today, unless they feature very high
seismicity rates coupled with more than hundreds or
thousands of seismic stations. In this latter case, the
better runtime scaling as well as the flexibility towards
network geometry changes can be significant assets for
GENIE. Such applications may become more common-
place in the future, as instrumentation is ever increas-
ing globally.
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Data and code availability

No actual data was used in this article, only syn-
thetic experiments were conducted, which can be
repeated based on the information given in the pa-
per. The five tested phase association algorithms,
PhaseLink (https://github.com/interseismic/PhaseLink),
REAL (https://github.com/Dal-mzhang/REAL),
GaMMA (https://github.com/AI4EPS/GaMMA), GENIE
(https://github.com/imcbrearty/GENIE) and PyOcto
(https://github.com/yetinam/pyocto), are all freely
available for download under the provided links, and
installation instruction as well as documentations
are provided. The optimal sets of tuning parameters
we derived are given in the Supplementary Material
(Tables S3–S7).
The utilized raytracer is contained in the NonLin-

Loc software package (http://alomax.free.fr/nlloc/), the
1D velocitymodels can be found in the respective publi-
cations (Graeber andAsch, 1999; Hadley andKanamori,
1977). For our different station configuration scenar-
ios, we used real station locations from the networks
CX in Chile (GFZ German Research Centre for Geo-
sciences and Institut des Sciences de l’Univers-Centre
National de la Recherche CNRS-INSU, 2006), and net-
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works CE (California Geological Survey, 1972), CI (Cali-
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(https://www.fdsn.org/networks/detail/ZY_1990/) in Cali-
fornia.
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