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Abstract Training deep-learning picking models with several published data sets can be easily done
through the Python toolbox SeisBench. Most of the data sets contain earthquakes recorded at local, regional
and teleseismic distances, with only limited data in the low magnitude, close distance region. Applying current
published PhaseNet models to induced seismicity data leads to only a few events being detected and trained
PhaseNet models are not able to outperform well-established workflows in seismology. Here we present a
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new seismological data set and trained PhaseNet models for picking induced seismicity with deep-learning

(piSDL). PhaseNet was trained with 171,182 three component waveforms from 40,576 events. Noise samples
were added in the training data set to reduce the number of false picks. In this study, we noticed that a good
earthquake training data set and noise samples from the analysed area are both important to detect more
seismic events with a newly trained PhaseNet model. We validated our new PhaseNet models at a geother-
mal site in Rittershoffen (France). The models trained with the new data set and noise samples clearly out-
perform PhaseNet’s original published model and traditional methods in seismology by detecting up to 62%
more events compared to a seismicity catalogue published by an agency.

1 Introduction

Detecting earthquakes and determining seismic phase
arrivals are among the most important processing steps
in seismology. For example, precise onset times of dif-
ferent seismic phases are essential for accurate source
locations and travel time tomography. Since manual
seismic phase picking is time-intensive, and the num-
ber of seismological stations worldwide continues to
grow almost exponentially, automated earthquake de-
tection and phase picking algorithms have been devel-
oped over the last decades (e.g. Allen, 1982; Baer and
Kradolfer, 1987; Diehl et al., 2009; Goforth and Her-
rin, 1981; Kiiperkoch et al., 2010; Leonard and Kennett,
1999; Sleeman and van Eck, 1999). In addition, due to
the increase in induced seismicity caused by the devel-
opment of geothermal plants, automatic algorithms are
also needed to accurately pick the phase arrivals.

In recent years, deep-learning pickers, such as Gener-
alized phase detection (GPD, Ross et al., 2018), PhaseNet
(Zhu and Beroza, 2018), EQTransformer (Mousavi et al.,
2020) or PhaseNet-TF (Xi et al., 2024) have been de-
veloped. Instead of calculating explicit features from
three component seismic waveforms, deep-learning al-
gorithms learn from large training data sets to implic-
itly determine these features from millions of differ-
ent seismic waveforms and labeled phase onsets. As
shown, for example, by Mousavi et al. (2020) or Miinch-
meyer et al. (2022), deep-learning pickers outperform
traditional automated phase picking algorithms. They
can detect both P and S arrivals in one processing step,
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and approach the accuracy of manual phase picking. In
recent years, many data sets for different regions have
been published for training such deep-learning pickers
(e.g. STEAD (Mousavi et al., 2019), INSTANCE (Miche-
lini etal., 2021), TXED (Chen et al., 2024), CREW (Suarez
and Beroza, 2024)). Most of the published data sets
contain earthquakes recorded at local and regional dis-
tances. Among these published data sets, several pick-
ing models were trained to test which of the above pick-
ers performs best (Miinchmeyer et al., 2022) and to ap-
ply these pickers to different regions, such as China
(Zhu et al., 2023) or to ocean bottom seismometers
(Bornstein et al., 2024; Niksejel and Zhang, 2024). How-
ever, Chai et al. (2020) and Jiang et al. (2021) noticed
that both the original published models of PhaseNet and
EQTransformer do not perform well when they are ap-
plied directly to different geographical regions. Fur-
thermore, the models might fail when applied to data
sets with small distances between source and receiver
(i.e. 10-20 km) and low signal-to-noise ratio (SNR) events
(Dai et al., 2023), as they have not been trained on this
type of data. These type of events are, for example, typ-
ical for induced seismicity.

This study presents a new data set and trained
PhaseNet models for picking induced seismicity with
deep-learning (piSDL). In the following, the new data set
is presented to train PhaseNet using earthquake wave-
forms with low SNR, small distances between source
and seismometer, and multiple events within a time
window. Most of the recorded waveforms in the data set
are from induced seismic events. We trained PhaseNet
from scratch with the presented new data set and
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also applied transfer learning by fine tuning previously
trained and published models. After presenting details
of the used data, we show how we trained PhaseNet
with our data set. To artificially increase the size of
the data set, we developed two new augmentation meth-
ods, which we included into the Python framework Seis-
Bench (Woollam et al., 2022) (see Data and Code Avail-
ability). Furthermore, we show how the number of
noise waveforms affects the picking performance of
trained PhaseNet models and how the number of false
picks can be mitigated by this approach. In the last part
of this study, different PhaseNet models are applied to
continuous data recorded at a geothermal field in Rit-
tershoffen, France (Baujard et al., 2017; Maurer et al.,
2020), to evaluate the performance of the new PhaseNet
models.

2 DataSet

To train PhaseNet, we gathered three-component seis-
mic waveforms from several earthquake catalogues,
including both induced seismicity events and natural
low-magnitude events (M; < 2). A total of 321,946
waveform samples were collected from various agen-
cies and locations. However, after initial training of
the PhaseNet model and testing it with our dataset
(see Methods), the model’s performance was unsatisfac-
tory. Following several iterations of training and test-
ing, we removed all waveform samples with only a sin-
gle phase arrival in a time window (Suarez and Beroza,
2024) (i.e. each seismic event in the presented data set
is labeled by a P- and S-arrival). Additionally, all sam-
ples that are likely mislabelled by analysts, such as ex-
tremely weak earthquake signals or earthquakes that
are only visible when taking information from neigh-
bouring stations, were excluded (Fig. 1), since our tem-
porary trained PhaseNet model was not able to detect
any phase arrival. After these preprocessing steps, the
final data set consists of 171,182 waveforms from 40,576
different seismic events that have been recorded at 455
seismological stations. Figure 2 summarises the work-
flow for how we derived the final data set, including
initial training of PhaseNet models. In addition to the
recorded earthquake waveforms, we added noise wave-
form samples to the data set. Details of how we selected
the noise samples are described in Methods. The data
were recorded with sampling rates between 100 and
300 Hz. One part of the data set includes three compo-
nent waveforms with multiple events within a time win-
dow (Fig. 3). The earthquake magnitudes range from
-1 to 4.5, but no distinction was made between differ-
ent magnitude types across the datasets from various
regions and agencies. Figure 4 illustrates the distribu-
tion of earthquake magnitudes (a), SNR (b), epicentral
distance (c), and the relationship between SNR and epi-
central distance (d) in our dataset compared to the Stan-
ford Earthquake Dataset (STEAD, Mousavi et al., 2019).
Following Chen et al. (2024), the SNR was estimated us-
ing the formula:

SNR = 20 - log;, % , (1)

where S and N are the root-mean-square of the de-
meaned signal and noise window, respectively. The sig-
nal is determined from 1 s after the S-arrival and noise
from a 1 s window before the P-arrival (Chen et al.,
2024). For the visualisation in Fig. 4, the largest value
of the SNR from each of the three components (Z, N,
E) was chosen. Negative SNR values result from phase
onsets which are, for example, in the coda of a previ-
ous event. Compared to STEAD, our dataset for induced
seismicity contains significantly more events with low
SNR and small source-station distances (Fig. 4b). Our
dataset includes induced seismicity events caused by
hydraulic fracturing-based fluid injection operations in
the Dawson-Septimus area, Canada (Roth et al., 2020);
coal mine flooding in the Ruhr area, Germany (Flood-
risk, Rische et al., 2022); and geothermal operations in
Insheim (Germany, Kiiperkoch et al., 2010), Rittershof-
fen (France, Maurer et al., 2020), St. Gallen (Switzer-
land, Diehl et al., 2017), Soultz-sous-Foréts (France, e.g.
Genter et al., 2010; Schill et al., 2017), and Vendenheim
(France, Schmittbuhl et al., 2021). The Rittershoffen
dataset includes waveforms with multiple phase onsets
within a single trace (Fig. 3). Additionally, natural low-
frequency earthquakes from the Eifel region (Germany,
e.g., Hensch et al., 2019; Koushesh and Ritter, 2024; Rit-
ter etal., 2024) were included, as this catalogue provides
seismic picks with low SNR events. All available events
between 2009 and 2023 with M, < 2 from the Swiss Seis-
mological Service (Swiss Seismological Service (SED)
At ETH Zurich, 1983) were also included, as this cata-
logue features high-quality, manually picked phase on-
sets. Table 1 summarises the different data sets and Fig-
ure S1 shows maps with source locations and station dis-
tributions.

3 Methods

3.1 Model training

To train a deep-learning phase-picking model for in-
duced seismicity, we used the implementation of
PhaseNet (Zhu and Beroza, 2018) in SeisBench (Wool-
lam etal., 2022). As shown by Miinchmeyer et al. (2022),
PhaseNet is one of the best-performing deep-learning
phase-picking approaches and has 30% fewer training
parameters (i.e. 268,499) than EQTransformer (Mousavi
etal., 2020). PhaseNetis a modified U-Net (Ronneberger
etal., 2015) consisting of a down-sampling branch using
1D convolutions and an up-sampling branch employing
1D deconvolutions. PhaseNet is a sequence to sequence
model. The input is an unfiltered, min-max normalised
30 s three-component seismogram with a sampling rate
of 100 Hz (i.e. data with different sampling rates are re-
sampled in SeisBench), so the input layer has a dimen-
sion of 3 x 3001 samples. The output layer has the same
shape as the input layer and represents three proba-
bility distributions for P wave, S wave and noise (i.e.
neither P nor S). Since the manually picked phase ar-
rivals are included in the data set, the probability distri-
butions are automatically determined during the train-
ing process and act as the ground truth for the output
layer. The output probability distributions for P and S
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Data set Mag. of Agency Picking method Num. of events Num. of waveforms
completeness
Dawson-Septimusarea 1.1 RUB automatic & manual 7777 55415
Floodrisk -0.1 RUB automatic & manual 2303 8926
Insheim 0.3 KIT and BGR automatic & manual 805 2012
Rittershoffen 0.4 ES Géothermie  automatic & manual 7201 24152
St. Gallen 0.3 SED manual 350 2219
Soultz-sous-Foréts 0.1 Unknown manual 6035 7851
Vendenheim 11 BCSF manual 190 985
Eifel 0.0 KIT and LED manual 1046 5020
SED 0.9 SED manual 14869 64602
Induced data set 0.8 40576 171182

Table1 Furtherinformation about all gathered data sets. Automatic picks have been double checked by analysts. Figure
S1 shows maps with earthquake locations and station distributions for each data set. Abbreviations for agencies: RUB: Ruhr-
University Bochum; KIT: Karlsruhe Institute of Technology; BGR: Federal Institute for Geosciences and Natural Resources;
SED: Swiss Seismological Service; LED: Landeserdbebendienst Baden-Wirttemberg, BCSF: Le Bureau Central Sismologique
Francais.
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Figure 1 Examples of removed waveform samples from the data set, comparing the ground truth probabilistic function
for P- and S-arrivals with the predicted values. From top to bottom in each subfigure: normalised, unfiltered vertical (2)
and horizontal (N, E) components with manually picked P- and S-arrivals, ground truth probabilistic functions for P and S,
and predicted probabilistic functions by our initially trained PhaseNet model. These events were removed as the trained
PhaseNet model failed to detect P- or S-arrivals.

arrivals is a Gaussian distribution with a standard de- quency) and with a maximum of one at the labeled ar-
viation of 0.1 s (i.e. 10 samples at 100 Hz sampling fre- rival time (Zhu and Beroza, 2018). During the training of
3
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(321 946 waveforms) arrival (either P or S) 171 182 waveforms)

Train Preliminary

PhaseNet PhaseNet
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transfer learning (TF
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Cutting out noise
samples from
continuous data in
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Figure 2 Workflow how the final induced seismicity
dataset was built through various pre-processing steps and
testing of fully trained PhaseNet models. After optimising
the data set, a preliminary PhaseNet model was trained and
false event detections were removed by visual inspection.
Using phase arrivals from this preliminary catalogue was
needed to cut out noise samples from continuous data in
Rittershoffen.

the neural network, the cross-entropy loss between the
ground truth and the predicted probability distributions
is calculated. The data were augmented by randomly
shifting events within the trace and rotating the hori-
zontal components of the three-component input seis-
mogram by an arbitrary angle. Two training strategies
were tested:

1. Training from scratch: Models were trained from
randomly initialised weights. The training dataset
was artificially increased by duplicating metadata
entries and applying data augmentation, exposing
the model to a greater variety of data.

2. Transfer Learning: Training continued from pre-
trained models (e.g., Chai et al., 2020; Born-
stein et al., 2024; Zhu et al., 2024). Pre-trained
weights from the original PhaseNet model (Zhu
and Beroza, 2018) and a model trained on STEAD
(Mousavi et al., 2019; Miinchmeyer et al., 2022)
were used. Transfer learning requires smaller
problem-specific datasets since the pre-trained
model has already learned general features from
a large-scale dataset (Pouyanfar et al., 2018). For
these cases, no artificial data augmentation was
applied. We chose these pre-trained models be-
cause the original PhaseNet model is widely used to
create new earthquake catalogues (e.g. Chai et al.,
2020; Jiang et al., 2021; Becker et al., 2024; Castillo
et al., 2024), was also successfully applied to cases
of induced seismicity (Wong et al., 2021; Lim et al.,
2024), and STEAD contains a high-quality global
earthquake dataset from regional seismic events.
Note that the input data of the original published
PhaseNet model is standardised by its mean and
standard deviation instead of using min-max nor-
malisation as described above.

The models were trained with a batch size of 256, a
learning rate of 0.001, and up to 250 epochs on an
NVIDIA A100-40 GPU with 40 GB of memory. The Adam
optimiser (Kingma and Ba, 2014) was used for optimisa-
tion. The training data set was split into 70% for train-
ing, 20% for validation, and 10% for testing (each single
data set in Tab. 1 was split by the given ratio). During

4

the training, the validation loss was monitored and if
the validation loss did not change over 15 consecutive
epochs, training was stopped (early stopping). To en-
sure that the best model was saved, we only saved the
model if the validation loss continued to decrease. Af-
ter the training was completed, the model was evaluated
with the 10% test data set.

3.2 Noise samples

As described by Jiang et al. (2021), PhaseNet mod-
els trained without noise samples can produce numer-
ous false picks. To address the false picks, we added
noise samples from Rittershoffen and STEAD to our
dataset and trained multiple models with varying num-
bers of noise samples (Fig. 5). To obtain noise sam-
ples from continuous data recorded at Rittershoffen, we
first built a seismicity catalogue for January 2024 using
one catalogue generated with SeisComp (Helmholtz-
Centre Potsdam - GFZ German Research Centre for Geo-
sciences and gempa GmbH, 2008) and another derived
from a preliminary PhaseNet model for induced seis-
micity (details about building a catalogue with PhaseNet
are given in Building an induced seismicity catalogue).
The preliminary PhaseNet model was only trained with
our data set for induced seismicity (Fig. 2), and there-
fore the derived catalogue contains many false detec-
tions. After manually inspecting the catalogue and re-
moving false detections, 30 s three-component noise
waveforms were randomly extracted from all stations
at the Rittershoffen site (Fig. 2). After gathering noise
waveform samples, we then trained 13 models with the
induced data set and different numbers of noise sam-
ples ranging from 0 to 60,000. Half of the noise samples
were from STEAD and the other half from Rittershof-
fen. To overcome small perturbations of a single model,
we trained in total 130 models with different noise sam-
ples and each model was tested on six hours of continu-
ous data from Rittershoffen, where all events were well-
documented.

3.3 Model evaluation

Each model was evaluated on the 10% test dataset. Pre-
cision, recall, and the harmonic mean (F1-score) were
calculated using

.. TP
i P= 2
Precision: P TP+ FP’ (2)
TP
Recall: R= ———— 3
ecall: B=rp T N )
P-R
F1- Fl=2.—" 4
score PIR’ (4)

where T P represents the true positives, F'P are the false
positives, and F'N denotes false negatives. A pick is
counted as a true positive if the probability distribu-
tion exceeds a certain decision threshold (pick thresh-
old in Fig. 7) within £0.25 s of the true phase arrival.
The selection uncertainty of +0.25 s was chosen in or-
der to have a strict evaluation criterion for the test data
set. A false positive is a predicted phase arrival that
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Figure3 Example ofaninputwaveform sample containing multiple events within a time window, recorded at a station near
Rittershoffen (France). From top to bottom: unfiltered vertical component (Z), first horizontal (N), and second horizontal
(E) component with manually picked P- and S-arrivals, ground truth probabilistic functions for P and S, and the predicted

probabilistic functions by the trained PhaseNet model.

does not match any true arrival within a larger window
(typically +2 s) around the true phase arrival, i.e. the
predicted pick uncertainty is > 0.25 s. False negatives
are the number of true picks without a peak above the
pick threshold within the large window of the predicted
output (e.g. Myklebust and Kohler, 2024). Models were
tested across various pick thresholds to identify optimal
performance on the test dataset and to compare model
performance.

3.4 Building an induced seismicity catalogue

Once we found models that perform well on our test
data set, we applied these models to one month of
continuous data from Rittershoffen. These models are
trained with our new data set for induced seismicity and
three different noise data sets (Tab. 2). Obtaining the
picks is done by the PhaseNet implementation in Seis-
Bench (Woollam et al., 2022) by dividing the continuous
data stream into overlapping 30 s windows. For each
window the output probabilities of P, S and noise are
predicted by the PhaseNet model and they are merged
to produce a continuous probability stream for the en-
tire day by selecting the maximum value within overlap-
ping sections. We used a constant picking threshold for
P and S of 0.2, as well as the default overlapping of 1500
samples between neighbouring windows. As we trained
three different models from scratch for induced seis-
micity with different numbers of noise samples (Tab. 2),

5

we were interested whether a semblance-based ensem-
bler (Yuan et al., 2023) is able to reduce the number of
false picks, when applying our trained models. As de-
scribed by Yuan et al. (2023), the output probability dis-
tribution is given by

O(ti) = W(t;)CO(t:)" (5)
where W (¢;) is a weighting function, defined as

and C°(t;) denotes the original semblance for either P
or S, which is defined as

2
s (S Pbi)

M (S (Pba)’)
The predicted probability distributions of each model
m are denoted by Pb,,,, where ¢; represents the i™ time
sample, J; is the time window length in seconds (here
0.5s), M is the total number of models used for predic-
tions, and the exponent v in Equation 5 balances noise
suppression and signal coherence, typically set to 2. Af-
ter picking the seismic phases, a seismic phase associ-
ator (PyOcto, Miinchmeyer, 2024) is used to identify all
seismic events. The associated seismic events were re-
located using NLLoc (Lomax et al., 2001, 2009). The ve-
locity model which is necessary for the association and

relocation and parameters for PyOcto are given in Tab. 3
and Tab. 4, respectively.

() (7)
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Figure 4 Magnitude frequency distribution of the induced data set and STEAD (a), SNR histogram for both data sets (b),
epicentral distance distribution (c), and scatter plot of SNR versus epicentral distance (d). Note that the induced data set
includes more events with low SNR and shorter source-station distances.
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Model name | Rittershoffen | STEAD
PNpiSDLL | 15000 | 10000
PNpiSDL2 | 20000 | 5000
PNpiSDL3 | 20000 | 15000

Table 2 Number of noise samples for different models
trained with the induced data set. The noise samples are
either from Rittershoffen or from STEAD.

depth (km) | vp (km/s) | vg (km/s)
0.0 1.85 0.86
0.8 2.87 1.34
1.6 5.80 331
2.6 5.82 3.32
3.6 5.85 3.34
4.6 5.87 3.35
5.6 5.90 3.37
6.6 5.92 3.38
7.6 5.95 3.40

Table3 Velocity model (Cuenotetal.,2008), which is used
for the association with PyOcto (Miinchmeyer, 2024) and
the relocation of seismic events with NLLoc (Lomax et al.,
2001, 2009). Note the velocity model was derived for the
region of Soultz-sous-Foréts, which is close to the analysed
site in Rittershoffen.

4 Results

4.1 Noise sample tests

After training an initial PhaseNet model with all avail-
able induced data, we observed poor performance of
the model, when applied to continuous seismic data
from Rittershoffen (Fig. 6b). In addition, the original
PhaseNet model, published by Zhu and Beroza (2018) (in
the following PN original), performed much better than
our model (Fig. 6a) but missed some events (see Appli-
cation to continuous data). Figure 6 shows the detected
picks of PN original (a) and our trained model for in-
duced seismicity without (b) and with (c) noise samples,
respectively, by analysing half an hour of continuous
data from Rittershoffen. PN original detected 118 P and
97 S arrivals for all twelve stations analysed, while the
induced seismicity model trained without noise sam-
ples detected 524 P and 478 S arrivals. Many of these
picked phase onsets are false picks, since the time win-
dow contains two events with a total of 14 P and 14
S arrivals. After training PhaseNet with our induced
seismicity data set and noise samples, the model de-
tected only 33 P and 36 S arrivals. Both piSDL mod-
els (Fig. 6a & b) picked all of the ground truth phase
arrivals; however, the original PhaseNet model only
picked seven P butall 14 Sarrivals. The reduced number
of picks when training with noise samples could imply
that adding noise samples from the analysed stations in
Rittershoffen enables PhaseNet to learn characteristics
from noise as well as from earthquake waveforms, im-
proving its ability to distinguish between both. How-
ever, when training PhaseNet with an earthquake data
set and noise samples the number of picks is reduced
the more noise samples are added to the data set.

To investigate if there is an optimum size for the noise

data set, we gathered up to 60,000 noise samples from
STEAD and Rittershoffen and trained 13 models with the
induced data set and different numbers of noise sam-
ples, i.e. the first model was trained with zero noise sam-
ples, a second with 5000 and the 13™ model with 60,000
noise samples. Since each model works slightly differ-
ently, we trained ten models for each single noise data
set. This results in a total number of 130 models. Each
model was then tested on six hours of continuous data
from Rittershoffen. We manually picked 42 P-picks and
49 S-picks in these six hours, which are part of associ-
ated events. However, it is possible that low magnitude
events are only visible at single stations that are not in-
cluded in the seismic catalogue. Figure 5 summarises
the noise tests of all trained models and shows the aver-
age number of P and S picks in relation to the number of
noise samples and the percentage of detected picks that
match known picks from the catalogue. However, the
number of matching picks never reached 100%. Picks
are missed either because of too noisy conditions or
due to the windowing to predict the probability distri-
butions for 30 s windows (i.e. overlapping of 1500 sam-
ples for neighbouring windows). This inconsistency has
already been pointed out by Park et al. (2024).

However, by adding 5 - 15% of noise samples to the
training data set, the number of false picks can be re-
duced. Although some picks may be missed at individ-
ual stations, seismic phase associators are still able to
associate the corresponding events.

25000

100.0

r97.5
20000 A
r95.0
r92.5
15000 A
r90.0

10000 A r87.5

Number of picks

r 85.0

Correct picks wrt to catalogue (%)

5000 = P picks (average)
S picks (average)
= P picks in catalogue (%)
= S picks in catalogue (%) r80.0
0 5 10 15 20 25 30

Noise samples (%) w.r.t. size of earthquake data set

F82.5

0

Figure 5 Finding the optimal number of noise samples
to reduce the number of false picks when applying trained
PhaseNet models to six hours of continuous data from Rit-
tershoffen. The six hours contain 42 P- and 49 S-picks which
are part of associated events. The number of noise samples
are given in percent with respect to the size of waveformsin
the training data set (i.e. 171,182 waveforms). In total 130
PhaseNet models were trained with different numbers of
noise samples. The blue and orange curves are the average
number of P- and S-picks over all trained models and the
black and green curves represent the average of detected
picks within the six hours of continuous data.

4.2 Model performance

To evaluate the model performance we tested each
model on the 10% test data set and determined preci-
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Parameter Value | Description

zlim [0,30] | Depth limitsin km

n_picks 10 Minimum required number of picks per event

n_p_picks 3 Minimum required number of P picks per events

n_s_picks 4 Minimum required number of S picks per events

n_p_and_s_picks | 3 Minimum required number of stations that have both P and S picks

time_before 10 Overlap between consecutive time slices (should match travel time for seismic waves through
the network)

Table 4 Settings for PyOcto (Miinchmeyer, 2024) to associate events from all available picks. The default values are used
for the parameters not mentioned.
a) Original b)

piSDL without noise c) piSDL with noise
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Figure 6 Comparison of picking performance on 30 min of continuous data from Rittershoffen. (a) The original published
model by Zhu and Beroza (2018), (b) our model only trained with induced seismicity data and (c) our model trained with
20 000 noise samples from Rittershoffen and 15,000 from STEAD (Mousavi et al., 2019) and the induced seismicity data set.
The original model detected 118 P and 97 S arrivals, the model without noise 524 P and 478 S arrivals and the model trained
with noise samples detected 33 P and 36 S picks. Blue and orange vertical lines represent P and S picks, respectively. Two
events are reported by the agency in the given time window. After phase association, the original PhaseNet model (a) detects
a single event, piSDL without noise (b) detects twelve events and piSDL with noise (c) is able to detect only the two events.

sion, recall, and Fl-score. We tested each model with
20 equally distributed pick thresholds from the range
[1073,1]. An optimal pick threshold can be derived from
the precision-recall curve by finding a precision-recall
value pair thatis closest to the point (1, 1), since a model
with a precision and recall of 1 would represent a per-
fect model. However, there is a trade-off between pre-
cision and recall. A higher pick threshold reduces the
number of false positives, i.e. an increase in precision,
but also increases the number of false negatives, which
leadsto alower recall. Figure 7 illustrates the precision-
recall curve and the precision, recall, and F1 score as
a function of the pick threshold for different PhaseNet
models tested for P and S phases. The PN original
(Fig. 7c, d) and the PhaseNet model trained on STEAD
(Fig. 7g, h; PN STEAD) show similar performance when
applied to the test data set. The optimum P and S thresh-
olds determined are 0.04 and 0.02 for PN original and 0
for PN STEAD, i.e. PN STEAD does not work successfully
on our test data set. Also the Fl-score for the P phase
in both models is below 0.8 for pick thresholds in the
range 0.2 to 0.6. For the S phases, the F1 score is slightly
higher, but overall both models perform poorly for the
induced seismicity data. Therefore, retraining of both

models with the induced seismicity data set or training
a new model from scratch is necessary. Figure 7a and b
demonstrates the performance of a model trained from
scratch, which is very similar with the performance of
the transfer-learned STEAD model (Fig. 7i, j; TF STEAD).
Both models show F1-scores of above 0.95 for Pand Sup
to pick thresholds of about 0.6. Also the optimal thresh-
olds for P and S derived from the precision-recall curves
are > 0.2. However, PN original still performs poorly
even after applying transfer learning using the induced
data set (Fig. 7e, f).

Figure 8 shows some successful predictions from the
test data set using PhaseNet trained with the induced
data set (in the following PN piSDL). The SNR is be-
tween —8.2 dB and 24.8 dB. The examples also demon-
strate that the new model is able to pick multiple phases,
i.e. two P and S arrivals, in a single time frame (Fig. 8e).
The peaks of the predicted probabilities align with the
manually labelled phases; however, the maximum high
of one for the Gaussian distribution is not reached for
most examples. Figure 9 shows some failed cases. The
noise is different from the examples in Fig. 8 and most
likely the PhaseNet model has learnt from the noise
data set to predict these types of phase arrivals as noise.
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However, for very low pick thresholds (i.e. pick thresh-
old < 0.05), the phase arrivals in Fig. 9a, b, and d could
be predicted. Only the events in Fig. 9c are too noisy.
However, the second event in Fig. 9a is successfully pre-
dicted by the model.

4.3 Application to continuous data

As shown in Figure 6, the trained model can easily be
applied to continuous recorded data using SeisBench
(Woollam et al., 2022). To test our new and estab-
lished PhaseNet models (models in Tab. 5), we anal-
ysed one month of continuous data from twelve sta-
tions close to Rittershoffen (France). Further, we as-
sociated all predicted seismic phases to derive a seis-
micity catalogue with PyOcto and relocated the associ-
ated events with NLLoc. Each catalogue was build us-
ing the same thresholds for P and S (0.2) and 50% over-
lapping, i.e. 1500 samples. The number of picked P
and S arrivals and detected events for each model are
shown in Table 5. In Figure 10 we compare the differ-
ent derived catalogues against each other and Figure
S5 shows the earthquake locations and stations. For
example, applying PN original to the continuous data
leads to 20 associated events in January 2024; however,
the transfer-learned original PhaseNet model (TF origi-
nal) detected 31 events. Both catalogues have 19 events
in common, meaning that the catalogue derived from
the original model found one event that was not de-
tected by the transfer-learned model and the catalogue
derived from the TF original contains twelve events
that have not been detected using the PN original. To
find common events between different catalogues, we
first compared the origin times. Since we only have a
very limited number of events, we then compared the
predicted picks and waveforms for each event and sta-
tion manually. If both the origin time and the picks
at the stations match, the events from different cata-
logues were counted as common events. Most events
have been detected using the transfer-learned STEAD
model (TF STEAD) and PN piSDL1 (both 39 events). Fur-
ther, we compare three different models (PN piSDL1-
3) trained with our induced seismicity data set and dif-
ferent numbers of noise samples. Table 2 shows the
different numbers of noise samples for each trained
model with the induced data set. Both transfer-learned
models (TF original and TF STEAD) have been trained
with 20,000 noise samples from Rittershoffen and 25,000
randomly selected noise samples from STEAD. All cat-
alogues are also compared with the automatically de-
rived catalogue from SeisComp (24 events), one cata-
logue that contains all 32 induced seismic events at the
site in Rittershoffen in January 2024 (ML + manually (in-
duced) in Fig. 10), and one catalogue that contains all
events (37) that have been labelled as induced as well
as natural events (ML + manually (all) in Fig. 10). The
last two catalogues have been derived using PhaseNet
and a manual inspection afterwards of the detected
events. To test whether the noise samples affect the
number of associated events, we trained a model with-
out event data from Rittershoffen (PN piSDL (no Ritt.)
in Fig. 10). However, using this model results in only
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22 events, and the model misses many small events that
were successfully associated by PN piSDL3, for exam-
ple. Furthermore, this model has only 16 events in
common with PN original. Combining our three differ-
ent models trained from scratch (i.e. PN piSDL1-3) us-
ing a semblance-based ensembler results in 31 detec-
tions. In comparison to TF STEAD, both catalogues have
29 events in common; however, the number of picks
is reduced by more than 50% (Tab. 5). When compar-
ing the catalogues from PN piSDL3 and SeisComp, one
event was not detected by our new PhaseNet model.
After manual analysis of all events in both catalogues
(i.e. PN piSDL3 and SeisComp), we noticed an overlap-
ping event. This means a second event starts in the coda
of a previous event (Fig. 11). The first event was success-
fully detected by the associator; however, the second
event in Figure 11a has not been associated, although
all required phases have been picked correctly by our
model. We also tested a second phase association al-
gorithm (GaMMA, Zhu et al., 2022) which also failed.
However, both events have not been detected when ap-
plying the original model (Fig. 11b), since the original
model misses several phases and also labeled, for ex-
ample, at station KUHL an S arrival as a P wave. Fig-
ure 11c and d demonstrates the differences in picking
noisy phase arrivals between PN piSDL3 and PN origi-
nal. The original PhaseNet model (Fig. 11d) is able to
detect most of the S-phases; however, it does not pick
the noisy P-phases. On the contrary, model PN piSDL3
(Fig. 11c) also picks these noisy P-arrivals. More com-
parisons between picking performances of PN piSDL3
and PN original are given the the supplementary mate-
rial (Figs. S6 - S9).

Model name P-picks | S-picks | Events
PN original 127,761 105,496 20
PN STEAD 9,567 17,508 6
TF original 97,373 83,178 31
TF STEAD 149,394 120,031 39
PN piSDL1 127,113 126,459 39
PN piSDL2 163,150 94,049 35
PN piSDL3 118,226 89,068 37
PN piSDL3 (no Ritt.) 87,849 55,252 22
Semblance 71,872 55,266 31

Table 5 Number of predicted P and S picks and associ-
ated events for different models. Note PN piSDL1-3 have
been trained with varying numbers of noise samples from
Rittershoffen and STEAD. The model PN piSDL3 (no Ritt.)
was trained without event data from Rittershoffen. The sup-
plementary material shows the number of picked phases at
each station for model PN piSDL1.

5 Discussion

This study introduces an approach to seismic phase
picking for induced seismicity using deep learning, fo-
cusing on optimising PhaseNet. The results underline
the importance of new tailored data sets for induced
seismicity and the inclusion of noise samples during
the training process to mitigate the number of false
picks and false detections after phase association. Fur-
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Figure 7 Evaluation of different PhaseNet models on the 10% test data set. Recall-precision curve (left column) and pre-
cision, recall, and F1-score against different pick thresholds (right column) for P and S wave. The optimal pick threshold is
determined from each precision-recall curve by finding the point on that curve that is closest to the point (1, 1). This point
would represent the perfect model. Our model trained from scratch on the induced data set (a, b) and the transfer-learned
STEAD model (i, j) perform best. Both pre-trained models (original (c, d) and STEAD (g, h)) do not perform well. However, the
original model is slightly better than STEAD, although the original model was only trained on data from southern California
seismic network.
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Figure 8 Examples of waveforms from the test data set and successful predictions by the piSDL model for different noise
conditions, i.e. different SNR. The upper subfiguresin each plot are the three-component waveforms and the lower subfigures
are the ground truth probability distributions for P and S and the predicted one. The blue and orange vertical lines are the
manually labeled P and S phase arrivals, respectively. The SNR in (e) is determined from the second event.
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Figure 10 Comparison of different event catalogues
against each other. The diagonal represents the number of
associated events in January 2024 for each single model.
Other values denote the number of common events be-
tween different catalogues. We compared origin times and
associated waveforms to find common events between the
different catalogues. Note PN piSDL1-3, TF original, and
TF STEAD have been trained with varying numbers of noise
samples from Rittershoffen and STEAD (Details about the
number of noise samples are given in the text).
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ther, applying different PhaseNet models to continu-
ous data shows that the new models are able to detect
more events at a geothermal site close to Rittershoffen
(France).

The induced data set was designed to address specific
challenges, including low SNR, small source-receiver
distances, and complex waveforms with multiple events
in a single time window. Figure 4 highlights the dis-
tinct characteristics of the induced data set compared
to STEAD, showcasing its higher proportion of low-SNR
events. This data set enhances the model’s capabil-
ity to identify phase arrivals under challenging condi-
tions. The removal of mislabeled waveforms (Fig. 1)
and the addition of noise samples further refined the
training process, ensuring more reliable model predic-
tions and mitigating the number of false picks. Our
proposed data set contains induced as well as natural
low magnitude earthquakes. Excluding these natural
low magnitude earthquakes when training a PhaseNet
model does not change the model performance, since
the earthquakes waveforms of induced and natural ones
are indistinguishable (e.g. Dahm et al., 2015; Schoenball
et al., 2015). However, we have not yet tested the new
PhaseNet model trained with our derived induced data
set only on natural earthquakes to evaluate whether the
new presented PhaseNet model is able to detect more
low magnitude events than existing models.

Adding noise samples from both STEAD and Ritter-
shoffen was pivotal in reducing false picks, as illustrated
in Figure 5. Reducing the number of false picks is one
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Figure 11 Two events within a few seconds at the Rittershoffen site and predicted picks by PN piSDL3 (a) and PN original
(b). In (c) and (d) a third event is shown for which PN piSDL3 predicted several noisy picks and PN original only P and S arrivals
at station BETS and S phases at RITT, SCHW and FOR. The waveforms are unfiltered and only the vertical component is shown.
Since the original PhaseNet model predicted incorrect phase onsets (b), the associated event is also incorrect. Vertical red

lines show the origin time of each seismic event. More events are shown in the supplementary material (Fig. S6 - S9).

of the most important tasks to avoid false detections af-
ter phase association, since the tested phase associa-
tion algorithms do not take the waveform shape into ac-
count. Models trained without noise data showed sig-
nificantly higher numbers of P and S picks (Fig. 6b).
Conversely, adding 10-15% noise samples optimised the
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model’s ability to differentiate between noise and seis-
mic phases (i.e. P and S arrivals). In this study, we
used noise samples from STEAD as well as Rittershof-
fen, since our new trained PhaseNet models are applied
at the geothermal site in Rittershoffen. Thus, the model
learns features from typical noise samples from Rit-
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tershoffen as well as general features from worldwide
recorded noise samples. However, we have not tested
whether a PhaseNet model trained using only noise
samples from STEAD performs differently than when
only noise samples from Rittershoffen are used. To
build a noise data set, we previously compiled an earth-
quake catalogue in Rittershoffen, using a PhaseNet
model that was trained without noise samples. After-
wards, we selected random 30 s time windows from the
continuous data where no seismic event was known in
this 30 s. This selected window was then added to the
noise data set. Since training of PhaseNet requires a
large number of waveform samples, and therefore man-
ual inspection of the noise samples is not possible, the
proposed method does not ensure that the randomly
selected noise samples do not contain low magnitude
earthquakes or earthquakes that were only visible at a
single station and are not part of the previously derived
seismicity catalogue.

The performance metrics, including precision, re-
call, and Fl-score (Fig. 7), reveal that models trained
on the induced data set achieved superior results com-
pared to pre-existing models. Notably, the transfer-
learned STEAD model and the PN piSDL models
(PhaseNet models trained from scratch with the in-
duced seismicity data set) consistently outperformed
the original published PhaseNet model. The transfer-
learned original model performs worse on the test
data set in comparison to the transfer-learned STEAD
model (Fig. 7). The different performances are caused
by the different training data sets of both models.
PhaseNet STEAD was trained with approximately 1
million earthquake waveforms from ~ 450,000 earth-
quakes, recorded at 2613 worldwide deployed seismo-
logical stations (Mousavi et al., 2019) and approximately
200,000 noise samples from these stations. The original
published PhaseNet model, however, was trained with
779,514 earthquake waveforms from 889 stations of the
southern California seismic network and 234,117 differ-
ent events in that region (Zhu and Beroza, 2018). No
noise samples were added during training of the orig-
inal model. This means the STEAD model has learned
more features from a higher variability of data. Never-
theless, the original model predicts more picks on con-
tinuous data than the model trained on STEAD, which
results in more event detections.

The application of the trained models to continu-
ous seismic data from Rittershoffen (Fig. 6¢) validated
their practical utility. Table 5 shows the number of
associated events and picks for each model. The use
of a semblance-based ensembler reduced the number
of P and S picks while maintaining a high number
of detected events. The transfer-learned STEAD and
PN piSDL models outperformed PN original in detect-
ing induced seismic events. Furthermore, as demon-
strated in Figure 11a and b, PN original predicts at sta-
tion KUHL an incoming S wave as a P wave. As demon-
strated in Figure 4, the induced data set is built to have
more events with low SNR. Figure 11c and d clearly
show how PN piSDL3 picks noisy P-arrivals, while PN
original only successfully detects most of the S-arrivals.
Figures S6 - S9 also highlight that the newly trained
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PhaseNet models picks more noisy P-arrivals. However,
as shown in Figures 1 and 9, PN piSDL3 might fail in
some examples. Since manual seismic phase picking
allows the integration of information from neighbour-
ing stations, analysts might see small wiggles and in the
waveforms and and pick these wiggles as seismic phase
arrivals. PhaseNet only uses information from the in-
put three-component waveform and has no spatial in-
formation from neighbouring stations. For these cases,
seismic phase picking approaches such as Phase Neural
Operator (PhaseNo Sun et al., 2023) will probably help
to detect even more noisy phase arrivals.

Retraining PhaseNet models with our proposed in-
duced seismicity data set does result in a much higher
detection rate. As already hypothesised by Bornstein
et al. (2024), PhaseNet does not have such a high im-
pact on transfer learning due to the low number of
training parameters. Comparing the models trained
from scratch and the transfer-learned models, all mod-
els perform very similarly but the number of picks dif-
fers. It is noteworthy that the models trained with
more noise samples have fewer picks, i.e. fewer false
picks. However, variability in the number of associated
events across models indicates potential areas for fur-
ther refinement, such as more careful selection crite-
ria for the noise data set. Further improvements in the
workflow for building seismic catalogues might also re-
duce the number of false detections: our workflow did
not exclude events with source locations outside of the
analysed network, and challenges in associating over-
lapping seismic events (Fig. 11) still remain. In addi-
tion, the performance of the model during an earth-
quake sequence in Rittershoffen was not tested in this
study and needs to be verified in the future. Applying
a model trained from scratch without earthquake wave-
forms from Rittershoffen results in a similar number of
detections as for the original model, even though the
model was trained with noise samples from the site.
Both derived catalogues contain all large events; how-
ever, low magnitude events are missed by both models.
These findings coincide with the results by Chai et al.
(2020) and Jiang et al. (2021) that PhaseNet models do
not generalise well and transfer learning with small data
sets for the region of interest is a mandatory task to de-
tect all earthquakes.

6 Conclusions

The induced data set is a new data set specifically de-
signed to address low SNR events and small source-
receiver distances to train the deep neural network
PhaseNet to pick arrivals of P and S waves. The data
set mostly contains induced seismicity events from
geothermal sites, waste water disposal, and coal mine
flooding, as well as natural low magnitude events from
the Swiss Seismological Service and the Eifel region
in Germany. PhaseNet models trained on this spe-
cific data set demonstrated significant performance ad-
vantages over models trained on general-purpose data
sets such as STEAD or PhaseNet’s original published
model. Including noise samples during model training
mitigates the number of false picks and enhances the
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model’s ability to differentiate between noise and seis-
mic signals. The PhaseNet models trained and transfer-
learned with the induced data set achieved higher pre-
cision and recall rates compared to pre-existing mod-
els, showcasing the effectiveness of specialized training
strategies. However, challenges remain, particularly in
detecting and associating overlapping seismic events,
which highlights the need for more robust phase asso-
ciation algorithms. The results underscore the impor-
tance of specific designed training data sets to train or
fine tune existing PhaseNet models for different tasks,
and training PhaseNet with noise samples is the most
important step to reduce the number of false picks.
However, some challenges still remain when training
and applying PhaseNet models: conducting broader hy-
perparameter searches (Park and Shelly, 2024) could
yield even more robust models. Adding an antialias-
ing layer (Park et al., 2024) might help to avoid miss-
ing picks, because of the overlapping of neighbour-
ing windows when working with continuous data. Ex-
ploring novel loss functions such as focal or dice loss
(Park and Beroza, 2025) might help to overcome the se-
lection of the pick threshold for practitioners to pick
P and S waves. Furthermore, since induced seismic
events mostly have low magnitudes, the earthquake
waveforms are only visible at stations which are close
the hypocentre. At other stations, the recorded earth-
quake waveforms might be noisy. Adding spatial infor-
mation to seismic phase picking approaches, as done by
Sun etal. (2023), might help to pick more events in noisy
environments.
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