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Abstract This study presents an updated version of TISER-GCN, a graph neural network (GCN) designed
to predict maximum intensity measurements (IMs) from 10-second seismic waveforms starting at the earth-
quake origin time, without prior knowledge of location, distance, and magnitude. The improved model was
applied to nearly 600 seismic stations from the INSTANCE benchmark dataset, significantly expanding the
original TISER-GCN setup, which was limited to 39 stations in a smaller area of central Italy. Input data consist
of three-component waveforms selected to ensure high quality and minimize saturation. Results show that
masking stationswhere the P-wave arrives within the first 10 seconds , combinedwith the integration of addi-
tional information, reduces themean squared error (MSE) by up to 6% for peak ground acceleration (PGA) and
5.5% for peak ground velocity (PGV), compared to the unmasked baseline. Moreover, the proposed approach
yields near-zero median residuals across all IMs, mitigating the systematic underestimation observed when
using a groundmotionmodel specifically developed for Italy. These findings indicate that themodel provides
accurate predictions of ground motions, comparable to those obtained with the original TISER-GCN, which,
however, requires a fixed seismic network geometry.

1 Introduction

The rapid and accurate assessment of earthquake-
generated ground shaking can significantly improve
emergency response times and public awareness, mit-
igating the impact of seismic events. As a core topic in
seismology and earthquake engineering, it focuses on
estimating the intensity or time series of shaking at a
target location. Ground-motion prediction techniques
are essential for seismic hazard assessment, earlywarn-
ing, and post-event damage evaluation.
In recent years, artificial intelligence (AI) approaches

have shown significant potential in enhancing early
warning systems by improving the speed and accu-
racy of ground motion predictions. Böse et al. (2012)
applied artificial neural networks (ANNs) to estimate
key seismic parameters, including peak ground veloc-
ity (PGV), epicentral distance, and earthquake mag-
nitude using the acceleration, velocity, and displace-
ment waveforms. In a complementary approach, Hsu
et al. (2013) utilized support vector regression (SVR)
to predict peak ground acceleration (PGA) by extract-
ing six critical features from the initial P-wave’s verti-
cal component, such as peak acceleration, peak veloc-
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ity, peak displacement, effective predominant period,
cumulative absolute velocity, and the integral of the
square velocity. Gandomi et al. (2011) used a hybrid
method coupling genetic programming and orthogonal
least squares to model ground motion prediction from
source parameters, paving the way for more sophisti-
cated approaches like those explored by Derras et al.
(2014), who integratedANNs for enhanced ground shak-
ing predictions. Hu et al. (2023) employed Random For-
est, which uses an ensemble of decision trees, to predict
ground-motion intensity by analyzing the initial P-wave
data, taking advantage of the model’s ability to handle
noisy data and avoid overfitting. Iaccarino et al. (2024)
usedGradient Boosting Regressor (GBR) to predict PGA,
andhypocentral distance starting fromP-wave features.
In particular, Machine Learning (ML) has been ap-

plied to the prediction of the final ground-motion in-
tensity at a target site using the first few seconds of
its observations (e.g., Spallarossa et al., 2019). Otake
et al. (2020) used a deep learning model based on sur-
rounding stations to improve real-time intensity pre-
diction. Jozinović et al. (2020, 2022) and Zhang et al.
(2022) applied Convolutional Neural Networks (CNNs)
for the rapid prediction of earthquake ground shak-
ing intensity using only the first few seconds of raw
waveform data. Fornasari et al. (2022) combined CNNs
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with Voronoi tessellation to reconstruct ground shak-
ing fields. CNNs are well-known for their ability to ex-
tract meaningful patterns directly from raw data, with-
out relying on handcrafted features. This makes them
particularly effective for processing seismicwaveforms,
which are often complex and noisy. CNNs can learn
time-frequency features linked to shaking intensity, en-
abling fast and accurate predictions of ground-motion
parameters, even without prior knowledge of source
location or magnitude. Münchmeyer et al. (2021) de-
veloped a transformer-based earthquake alert model, a
multi-station approach that predicts final PGA values at
multiple target stations using initial raw records at mul-
tiple input stations. Wang et al. (2022, 2023) demon-
strated the power of Long Short-Term Memory (LSTM)
networks, to improve the prediction process by cap-
turing both short-term changes and longer-term trends
in the seismic data, ensuring that the model continu-
ously refines its predictions asmore data becomes avail-
able. Graph Convolutional Networks (GCNs) have re-
cently emerged as a powerful tool formodeling spatially
distributed systems, including seismic networks. Un-
like traditional machine learning models that treat in-
put stations independently, GCNs leverage the spatial
relationships between stations by representing them as
nodes in a graph, where edges encode physical proxim-
ity or other meaningful connections. This structure al-
lows the model to integrate information across neigh-
boring stations, enabling more spatially coherent and
accurate predictions. Moreover, GCNs are inherently
robust to missing data and can generalize across vary-
ing station geometries, making them highly suitable for
real-time applications such as earthquake early warn-
ing and rapid response systems. In the context of earth-
quake ground motion prediction, Bloemheuvel et al.
(2023) demonstrated that GCNs can outperformconven-
tional methods in both speed and accuracy, by using
early waveform data to estimate shaking even at sta-
tions where the peak ground motion has not yet been
recorded. In this context, we start from the work by
Bloemheuvel et al. (2023) as a departure point and il-
lustrate how to go beyond the limitation of a fixed set
of seismic stations that needs to be defined at training
time, using an updated GCN model for our task. Our
implementation uses a dynamic masking mechanism,
first introduced by Yang et al. (2019) in the context of
image recognition with incomplete inputs. Instead of
propagating all node attributes, the Masked GCN selec-
tively propagates only a subset, controlled by an event-
based mask assigned to each node. A binary mask ten-
sor dynamically determines which stations contribute
to the prediction, based on whether the P-wave arrives
within a 10-second window from the first triggered sta-
tion. This selective inclusion ensures that only early,
informative waveform data are used, thereby reducing
noise and improving prediction accuracy. The masking
mechanism also allows the model to adapt to changes
in network geometry—stations can be added, removed,
or deactivated without retraining—thus overcoming the
fixed-graph limitations of standard GCNs and enhanc-
ing the model’s robustness and scalability for earth-
quake early warning applications. A more detailed ex-

planation of themasking strategy is provided in Section
3.2.
Our work articulates along the following main steps:

1. We build the dataset using a multi-step, pre-
processing approach suitable for real-time appli-
cations to identify high-quality waveforms and im-
prove the predictive performance of the model.

2. We present a novel architecture utilizing convolu-
tional and graph convolutional layers to perform
multivariate regression on time series originating
from graph-structured data.

3. We evaluate our updated model thoroughly on the
pre-processed dataset featuring 565 stations, evi-
dencing the generality and potential of the pro-
posed GCN-based architecture in this task. We dis-
cuss our results in detail and perform a Masked
GCN to prioritize stations where the P wave arrives
within the first 10 seconds.

4. We systematically evaluate the capabilities of our
model through comprehensive experiments, incor-
porating additional information (e.g., station dis-
tances to a reference station) into the final fully
connected layer of our proposed workflow.

5. Finally, we compare our results with predictions
generated using the Ground Motion Model (GMM)
by Bindi et al. (2011), calibrated for Italy, which re-
quires an earthquake location andmagnitude as in-
put.

2 Data
The input data consist of three-component earthquake
waveform traces recorded in Italy by the Italian Na-
tional Seismic Network (Michelini et al., 2016;Margher-
iti et al., 2021). The target data comprise intensity
measures (IMs) associated with each recording: peak
ground acceleration (PGA), peak ground velocity (PGV),
and spectral acceleration (SA) at periods of 0.3, 1, and 3
seconds: SA(0.3), SA(1.0), and SA(3.0). In our approach,
the waveform inputs serve as the foundational data for
the GCN model, designed to capture complex spatial
and temporal patterns within seismic signals. Through
this model, we aim to provide accurate predictions of
groundmotion intensities at stations (locations) further
away from the epicentre of the earthquake.
The waveform data were downloaded from the IN-

STANCEdataset (Michelini et al., 2021) and include both
HN* and HL* (acceleration) and HH* and EH* (ve-
locity) channels, where * ∈ [E,N,Z]. All the waveform
traces have a length of 120 s, are sampled at 100 Hz, and
are provided in ground motion physical units after de-
convolution of the instrument transfer functions. We
selected earthquakes in the same area of central Italy
(bounded by latitude [42°, 43.75°] and longitude [12.3°,
14°]) used by Jozinović et al. (2020, 2022); Bloemheuvel
et al. (2023). The earthquakes occurred between Jan-
uary 2005 and January 2020. Using these criteria, 975
earthquakes with magnitude M ≥ 3 and depth < 30 km
have been used (Figs 1, 2).
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Figure 1 Spatial distribution of (a) the 565 stations (yellow triangles) together with (b) the 975 earthquakes (red dots) used
in this study. We have selected earthquakes with magnitude M ≥ 3 and depth < 30 km occurred in the study area bounded
by latitude [42°, 43.75°] and longitude [12.3°, 14°] between January 2005 and January 2020.
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Figure 2 Distribution of earthquake (a) magnitudes, (b) depths and (c) years for the selected events.

2.1 Quality Control and Filtering

To ensure the selection of high-quality waveform
records, we applied a set of selection criteria to the
metadata provided in INSTANCE, focusing on both ac-
celerometric and velocimetric data characteristics:

• For acceleration data: we retained only traces with
PGA values exceeding 10−3ms−2. This threshold
filters out records with extremely low accelera-
tions, minimizing noise-dominated traces.

• For velocimetric Data Acquired by broadband
sensors with 24-bit Data Loggers: we included
only traces that featured maximum values within
±7,000,000, 17% below full scale, to reduce the risk
of clipping and account for possible amplification
or preprocessing issues. Additionally, traces with
derived acceleration exceeding 100 cms−2 were ex-

cluded tofilter out implausible or distorted records.
These conservative thresholds enhance data relia-
bility and improve model stability by limiting the
influence of noisy inputs.

• For co-located accelerometric and velocimetric
data, and for lower values of ground motions se-
lected as explained in the previous steps, we in-
cluded only the velocimetric data. Co-located in-
struments allowedus to do a further layer of quality
control - excluding large outliers, whichwe defined
as data where the PGA ratio between the accelero-
metric and velocimetric data fell outside the range
[0.5,2].

• For data from non-co-located Instruments: to
determine which non-colocated instrument data
should be prioritized, weused theBindi et al. (2011)
GMM, comparing observed PGA values against

3 SEISMICA | volume 4.2 | 2025



SEISMICA | RESEARCH ARTICLE | Masked graph neural network for rapid groundmotion prediction in Italy

predictions. We calculated the difference (i.e.
log10

P GAobs
P GApred ) and selected the instrument data

with the observed value closest to this prediction.
Specifically, given that Bindi’s standard deviation
is approximately 0.35 log10 PGA, we excluded data
for which

∣∣∣log10
P GAobs

P GApred

∣∣∣ > 0.7, as they were likely
inconsistent or of lower quality. This filtering ap-
proach enhanced the dataset’s reliability and align-
ment with expected ground motion.

Following the above-mentioned criteria, a subset of
565 stations has been selected (Fig 1). The dominant
portion of the data (∼ 99%) has been acquired by the
Italian National Seismic Network (IV code) and by the
MedNet (MN code), both operated by INGV (Miche-
lini et al., 2016; Danecek et al., 2021). The remaining
records included in the dataset come from the Emersito
Seismic Network (XO code), which was deployed in Am-
atrice and surrounding areas (Central Italy) to conduct
field surveys shortly after the mainshock event on Au-
gust 24th, 2016 (Mw 6.0).

2.2 Preparation for Model Training
The data preparation and processing for the training
phase followed the criteria outlined in Jozinović et al.
(2020, 2022). Based on their findings, a 10-s window of-
fers a good trade-off between prediction accuracy and
timeliness, which we also adopted. Specifically, to align
waveforms, all records were trimmed to a 10-s window
starting from a reference time defined as 1 s before
the P-wave arrival at the first recording station for each
earthquake. Velocity traces were then differentiated to
obtain acceleration.
Since recordings are not available across the entire

national network for each earthquake, waveform data
were entirely missing for many stations. These wave-
forms were filled with zeros following the approach
of Jozinović et al. (2020, 2022). This solution required
overcoming technical challenges to adapt to a sparse
graph with null values for numerous stations, marking
a substantial advancement over the previous work by
Bloemheuvel et al. (2023), which was limited to a fixed
network of only 39 stations. When the waveforms (i.e.
the model input) for a station were missing, the miss-
ing intensity measures (i.e. the model output) were es-
timated using theUSGS ShakeMap softwarewith the lat-
est configuration for Italy (Michelini et al., 2020) to en-
sure complete output data (target variables), following
Jozinović et al. (2020, 2022). Although using ShakeMap
estimates introduces additional assumptions into the
model, we consider it themost effective method to han-
dle missing data, allowing the model to generate ap-
proximations for a site even in the absence of input
data—an important feature, for instance, in EEW appli-
cations. As a result, the target values are composed of
11% observed data and 89% ShakeMap-calculated data
(a consequence of INSTANCE having 21 3-C waveforms
per earthquake on average, most of them from stations
closest to the epicenter). ShakeMap is a widely used
software system that generates interpolated groundmo-
tion values by combining recorded data and/or macro-

seismic information, GMM-based estimates, and seis-
mological parameters such as event location, magni-
tude, and finite-fault models (when available). As such,
it may introduce systematic biases—particularly in ar-
eas with sparse station coverage, near-fault regions, or
complex site conditions. These biases can propagate
into the model during training, potentially affecting its
ability to generalize topurely observational data. Never-
theless, the results presented in Section 4 — and in par-
ticular in Section 4.2 — confirm that using ShakeMap-
derived data as targets for the majority of the training
set does not negatively affect the performance of the
proposed model.
Following Jozinović et al. (2020), the waveform data

are normalized by the input maximum (i.e. the largest
amplitude observed across all stations within the time
window), and this maximum is saved as the normaliza-
tion valuewhich is later inserted into the final fully con-
nected layer of our proposed Masked GCNmodel.

3 Method and Training

3.1 Model Proposed
The Masked GCN model used here is a neural network
architecture that combines CNNs and GCNs to capture
both spatial and temporal information. Specifically de-
signed for seismic signal analysis across a network of
stations, the model predicts earthquake IMs (PGA, PGV,
SA(0.3), SA(1.0) and SA(3.0)) at recording stations using
multistation waveforms.
The architecture is based on Bloemheuvel et al.

(2023), with severalmodifications, themost relevant be-
ing the introduction of a deeper network (i.e., an in-
creased number of layers) and the implementation of
the dynamic masking mechanismwithin the GCN com-
ponent (Fig 3). Specifically, the model uses three pri-
mary components: convolutional layers, graph convo-
lutional layers, and fully connected (FC) layers. The
convolutional layers, designed to process 1D wave in-
put data, consist of three layers with increasing output
channels (32, 64, and 128). Each convolutional layer
uses a kernel size of (1, 125) and a stride of (1, 2) to
extract temporal features, followed by a ReLU activa-
tion function. The output from the convolutional lay-
ers is then reshaped for subsequent graph processing.
The graph convolutional layers leverage spatial relation-
ships across stations, with the first GCN layer project-
ing the input features into a 64-dimensional space, with
the second layer further refining the learned represen-
tation.
In particular, spatial information is provided to the

model through an adjacency matrix, which represents
a graph structure based on interstation distances. The
adjacency matrix was computed following the method-
ology described in Bloemheuvel et al. (2023). All pair-
wise geodesic distances between stations are computed,
then normalized and inverted so that closer station
pairs receive higher edge weights. To control graph
sparsity, a threshold of 0.3 is applied to remove weak
(i.e., distant) connections. This means that all edges
with a weight below this threshold are set to zero in
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Figure 3 The architecture of the proposedmodel for IM prediction. Boxes shaded grey represent inputs, shaded light blue
represent convolutional layers, shaded blue represent operators, shaded green represent graph convolutional layers and
shaded violet represent fully connected layers.

the adjacency matrix, directly affecting the final graph
topology. The resulting adjacency matrix is fixed for
our network configuration, ensuring a consistent spa-
tial structure while allowing event-specific features to
vary at the node level, as explained in detail in Section
3.2. The output of the GCN layers is passed through
a “tanh” activation function to introduce non-linearity
and bound the valueswithin [-1,1]. After theGCN layers,
the network output is flattened and combined with ad-
ditional information—including the maximum ampli-
tude value—in a fully connected layer. We show that
adding this knowledge in the neural network improves
the results (see Section 4.1), consistent with the find-
ings of Jozinović et al. (2022). In this work, we consider
themaximumamplitude value from the vertical compo-
nent waveforms recorded across all stations within the
timewindow. Inparallel, we verified that similar results
were obtained when using the maximum amplitude
across all three components (vertical, north–south, and
east–west), which is the solution to be adopted in the op-
erational phase. Finally, the last fully connected layer
produces arrays of size (565,5), where 565 is the num-
ber of stations, and 5 is the number of predicted IMs
per station (PGA, PGV, SA(0.3), SA(1.0) and SA(3.0)). The

base-10 logarithm has been applied to all the IMs (i.e.
log10 IM ).

The dataset comprises 975 seismic events, each
recorded across up to 565 stations (but 21 stations on
average), resulting in a total of 35,078 waveform in-
stances. The data were randomly split into a training
set (80%) and a test set (20%). Model training was con-
ducted using a 5-fold cross-validation approach, where
1/5 of the training setwas used for validation in rotation.
The model was trained for 100 epochs. ReduceLROn-
Plateau learning rate scheduler, starting at 0.0001, was
employed to dynamically adjust the learning rate during
training. The reduction is applied by a factor of 0.5 if the
validation loss does not improve for three consecutive
epochs. The mean squared error (MSE) loss function
was used formodel optimization, with the RMSProp op-
timizer. To mitigate overfitting, an additional dropout
layer with a rate of 0.4 was applied before concatenat-
ing the maximum amplitude. Training was performed
on an NVIDIA RTX 4090 GPU, utilizing approximately
9.2 GB of memory, and required a total of 1 hour and
12 minutes to complete across all 5 folds. In an oper-
ational setting, during testing, the model predicts each
feature in 1 second, leading to a total of 5 seconds for all
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5 features across 195 traces, excluding dataset loading
time. Additionally, in a real-time deployment, the sys-
tem would need to integrate a model such as PhaseNet
(Zhu and Beroza, 2019) or STA/LTA method for detect-
ing the first P-wave arrival. Then, our pipeline incurs a
cost of 1.06 seconds for data preprocessing and 0.7 sec-
onds for the prediction for a single event, resulting in
a total computation time of approximately 1.76 seconds
per event.

3.2 Mask Method

The Masked GCN model utilizes a dynamic masking
mechanism to determine which stations contribute to
the model’s predictions, enabling flexible input data
configurations and enhancing real-time adaptability for
seismicmonitoring. Themask is implemented as a ten-
sor, where each value indicates whether the input data
from a given station should be included (1) or excluded
(0) (Yang et al., 2019). This mask is applied to the wave-
form data prior to their input into the model and dur-
ing loss computation. This mask is designed to include
only waveforms where the P-wave arrives within the
first 10 seconds starting from the P arrival at the first
recording station. During the training phase, we used
the manually picked P-wave arrival times from the IN-
STANCE metadata for each station. This approach min-
imizes the inclusion of noisy or irrelevant signals, al-
lowing the model to focus on meaningful seismic data.
Conversely, in the testing phase, we computed the travel
times assuming a P-wave velocity of 6.5 kms−1 based on
the P arrival at the closest station provided in the IN-
STANCEmetadata for each earthquake. Amore detailed
explanation of the mask’s functionality is provided in
Figure S1. By restricting the input to this 10-second
window, the mask increases the likelihood of capturing
the P-wave arrival, and often both the P- and S-waves
of the stations close to the hypocenter, at each station
within this timeframe. This targeted selection strategy
not only enhances the quality of input data by priori-
tizing critical early-wave information but also optimizes
the model’s responsiveness in real-time scenarios. In
practical terms, this procedure would be based on the
station with the first trigger which should be a good ap-
proximation of the station closest to the epicenter (and
the epicenter itself in the regionswithmoderate-to-high
network density), especially for earthquakes with M≥ 3
(used in this study).
The masking process is dynamic and operator-

adjustable, allowing the system to adapt to network
changes, suchas the additionor deactivationof stations.
If a station goes offline or becomes unreliable, its mask
value can be set to [0], effectively excluding it from the
model’s predictions without requiring structural mod-
ifications or retraining. This flexible masking strategy
overcomes a common limitation of graph convolutional
networks, which typically struggle to handle changes in
node structures. By selectively masking inactive nodes,
the model maintains a consistent graph structure, en-
suring seamless adaptation to variations in the opera-
tional network while preserving the reliability and rele-
vance of its predictions.

4 Results

4.1 Evaluating the Impact of Additional
Knowledge

In the first part of this study, we explored the additional
knowledge needed to make reliable predictions of the
maximum values of the IMs. To assess the effectiveness
of our model, we compared the training performed us-
ing the (i) coordinates of thefirst station that records the
P wave, (ii) maximum amplitude information and (iii)
interstation distances (i.e., the distance matrix) as ad-
ditional metadata inserted into the last fully connected
layer. These three options were added in varying com-
binations to create eight different configurations, allow-
ing us to evaluate the individual and combined impact
of each metadata type on model performance. More
specifically, in the first configuration, neither the coor-
dinates of the first P-wave station nor the interstation
distances were incorporated, while the normalized am-
plitude value was included. In the second configura-
tion, all three additional features were included. In the
third configuration, all metadata except the normalized
amplitude value were integrated. The same approach
was applied to the remaining configurations, ensuring
a full exploration of all eight possible combinations. A
complete representation of the eight configurations and
the results of all the experiments is shown in Table S1.
For each experiment, the Masked GCN model results

from all five-fold cross-validation test sets are averaged.
The best results were achieved when all information,
except the coordinates of the first P-wave station, was
included (i.e., Experiment 6 for SA(0.3) and SA(1.0)) or
whenonly themaximumamplitude informationwas in-
tegrated in the model (i.e., Experiment 1 for PGA, PGV
and SA(3.0)). The mean squared errors (MSE) were:
0.188 for PGA, 0.199 for PGV, 0.181 for SA(0.3), 0.229 for
SA(1.0) and 0.267 for SA(3.0). Remarkably, when the
third feature is also added, model performance deteri-
orates (Table S1) compared to that observed in Experi-
ments 1 and 6. This result might originate from the re-
dundancy of information inserted in themodel. That is,
the knowledge conveyed by the coordinates of the first
station that records the Pwave is likely captured already
by the adjacency matrix and the interstation distances.
Finally, we evaluated the performance of the model’s
best configuration with and without applying the afore-
mentioned mask, which focuses on stations where the
P-wave arrives within the first 10 seconds. The results
indicate that the MSE of the Masked GCNmodel for the
5 IMs is lower than that of the model without the mask
(i.e., 0.203 for PGA, 0.210 for PGV, 0.194 for SA(0.3), 0.243
for SA(1.0) and 0.278 for SA(3.0)). This outcome is ex-
pected, as the selection of good quality data recorded
near the epicenter improves the accuracy of our predic-
tions. It is worthwhile to stress here that the method-
ology does not avail of any explicit hypocenter location
andmagnitude input information. Overall, Experiment
1was found to be themost effective configuration for all
five IMs and was adopted for our model. Furthermore,
we conducted an additional experiment using PhaseNet
as the pretrained encoder, selected for its greater ca-
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Figure 4 Observed versus predicted scatterplot of the testing dataset for: (a) PGA, (b) PGV, (c) SA(0.3), (d) SA(1.0) and (e)
SA(3.0). Scatter points are both color- and size-coded, with black indicating low-density areas and yellow representing high-
density areas. The colorbar shows the total number of data points in each area.
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pacity and training on the STEAD dataset via SeisBench.
Initializing the encoder with these weights improved
performance by reducing MSE by 2.7% for PGA, 5.5%
for PGV, and 4.1% for SA(0.3) compared with Experi-
ment 1, and lowered GPUmemory usage from 9.2 GB to
2.58 GB. We will further investigate this approach and
evaluate alternative pretrained temporal encoders and
techniques in future work.

4.2 Model performance
Considering the results of the Masked GCN model on
each individual earthquake and each IM metric, Fig-
ure 4 displays scatter density plots comparing predicted
versus target values of the test set. The analysis also in-
cludes ShakeMapestimates. InFigure 4 thex-axis repre-
sents the target values in on a base-10 logarithmic scale,
while the y-axis shows the predicted values, also on a
base-10 logarithmic scale and in the same units. A red
dashed line indicates the ideal prediction line, where
the predicted values match the target values. The scat-
ter points are coded by color and size to represent data
density, with smaller dots indicating low-density areas
and larger dots highlightinghigh-density areas. The col-
orbar, ranging from dark to light colors, represents the
number of data points. The points cluster around the
ideal prediction line, indicating a general agreement be-
tween predicted and target values. However, the pres-
ence of a few outlier events in the test set can be at-
tributed to the unbalanced dataset, which contains lim-
ited training examples for larger magnitudes, making
it challenging for the model to generalize effectively at
higher magnitudes. Furthermore, rather poor predic-
tive performance is also observed in a few borderline
earthquake cases located in areas with a sparse distri-
bution of stations (e.g., offshore or near the coast). As a
result, these events are characterized by only a limited
number of stations providing earthquake P-wave sig-
nals (or even S-wave signals for the nearest ones) within
the 10-second window.

4.3 Examples of event data prediction
The panels in Figures 5, 6 and 7 display six sample
events from the test set, presenting a comparison of
real and predicted PGA values both spatially and as a
function of distance. The maps and scatter plots in Fig-
ures 5, 6 and 7 clearly illustrate the performance of the
predictive model, while the summary table provides a
quantitative evaluation of the model’s accuracy. Specif-
ically, the top row illustrates the spatial distribution of
observed PGA (left), predicted PGA (center), and their
differences (right). The maps highlight the station lo-
cations, with color gradients representing the magni-
tude of the values: from purple (low) to yellow (high)
for observed and predicted values, and from light blue
(underpredictions) to orange (overpredictions) for the
differences. The epicenter is marked by a black star. At
the bottom, the left scatter plot shows observed (light
blue) and predicted (orange) PGA values as a function of
epicentral distance. The center scatter plot illustrates
the residuals (observed - predicted) against epicentral
distance, with dashed lines indicating the median, the

first and the third quartile residuals, respectively. The
table (bottom right) summarizes key metrics, including
the range of observed and predicted PGA values, the
mean absolute error (MAE) and themean squared error
(MSE).
The six events shown include the 26 August 2016 M

4.8, the 15 September 2016 M 3.7, the 26 October 2016
M 3.1, the 14 December 2016 M 3.8, the 6 April 2009 M
6.1 and the 13 June 2013M 3.8. They have been selected
because they are representative of the overall results.
The relatively low MAE and MSE values for the first
four earthquakes (Figs 5 and 6) demonstrate a strong
agreement betweenobserved andpredicted values, rep-
resenting the accuracy achieved in 96.4% of the cases
within the test set. In contrast, the last two earthquakes
are representative of the remaining 3.6% (the outliers)
of the testing events, where predictive performance is
significantly reduced. This lower accuracy can be pri-
marily attributed to: (i) the limited availability of earth-
quakewaveform data for largermagnitudes (Fig 7a) and
(ii) poor station coverage—especially the uneven dis-
tribution in different directions surrounding the epi-
center—which leads to incomplete or unbalancedwave-
form data and, consequently, to inaccurate ground mo-
tion predictions, potentially confusing the model dur-
ing inference (Fig 7b).

4.4 Benchmarking the Model Against Base-
lines

To evaluate the performance of the Masked GCNmodel
against a baseline case, we compared our test set re-
sults with predictions obtained using the GMMby Bindi
et al. (2011), calibrated specifically for Italy. For this
comparison, we excluded the ShakeMap predictions
used when no observed data are available (as it relies
on the Bindi et al. (2011) GMM itself). For the GMM
predictions, we used the INSTANCE metadata (Miche-
lini et al., 2021) and we applied the necessary correc-
tions based on the EC8 site classes of the stations. No
between-event correction (Atik et al., 2010), however,
has been applied when predicting the ground motion
using the GMM by Bindi et al. (2011). The residuals
between the base-10 logarithms of observed and pre-
dicted values (i.e. log10

IMobs
IMpred ) have been calculated

together with their mean, median and standard devi-
ation (SD) for the results obtained with (i) the Masked
GCNmodel and (ii) theGMMbyBindi et al. (2011) (Table
S2 and Fig 8). Large residual values [log10

IMobs

IMpred
> |1|]

were removed resulting in 94.21% of the data retained
for the GCN predictions and 97.56% for the GMM esti-
mates. Our analysis shows that the median values of
log10

IMobs

IMpred
, which reflect model bias, are significantly

reduced in theMaskedGCNmodel, particularly for PGV,
SA(0.3) and SA(1.0). In terms of standard deviation, the
values are similar across both models and are consis-
tent with those reported by Bindi et al. (2011), who ob-
served a standard deviation between 0.34 and 0.38 for
log10

IMobs

IMpred
.
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Figure 5 Our model results for (a) the 26 August 2016 M 4.8 and (b) the 15 September 2016 M 3.7. The top row presents
spatial distributions of observed PGA (left), predicted PGA (center), and their differences (right) across the stations, with color
gradients representing the respective values. The bottom row includes scatter plots of PGA values as a function of epicentral
distance: observed vs. predicted values (left) and their differences (right). Key performance metrics, such as MAE, MSE, and
the range of observed and predicted PGA values, are summarized in the accompanying table (bottom right).
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Figure 6 Our model results for (a) the 26 October 2016 M 3.1 and (b) the 14 December 2016 M 3.8. Refer to the caption of
Figure 5 for further details.
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Figure 7 Our model results for (a) the 6 April 2009 M 6.1 and (b) the 13 June 2013 M 3.8. Refer to the caption of Figure 5 for
further details.
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(a) Data: ML  Nobs: 5288
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(b) Data: GMM  Nobs: 5476

Figure8 Boxplots for the residuals [log10
IMobs

IMpred
] of the test set (195events): (a)maskedGCNmodel results for theobserved

IMs and (b) GMM results.

We also compared our work with the models pro-
posed by Jozinović et al. (2020) and Bloemheuvel et al.
(2023) (Table S3). These baselinemodels were not given
the exact same input data as our proposed Masked
TISER-GCN; instead, they were provided with different
time series per station for different earthquakes in the
same area. Overall, when evaluating the individual per-
formance of the models, our Masked TISER-GCN per-
forms comparably to the baselines. In terms of MSE,
our model shows an improvement of 6% on PGA, 5.5%
on PGV, and 5% on SA(0.3) compared to the TISER-GCN
model proposed by Bloemheuvel et al. (2023). When
compared to the CNNmodel from Jozinović et al. (2020),
the improvement is even more pronounced, achieving
17% on PGA, 31% on PGV, and 33% on SA(0.3).

4.5 Effect of Window length onModel Perfor-
mance

Sections 4.1, 4.2, 4.3 and 4.4 present results based on a
10-second input window length. In the final part of this
study, we investigated how our model performs when
thewindow length is reduced, as shorterwindows could
lead to earlier predictions—a critical aspect for inte-
grating this methodology into EEW systems. However,
using a smaller input window introduces greater chal-
lenges, as fewer stationswill have received sufficient in-
formation to predict IMs at more distant locations. To
mitigate this, we allowed data from as many stations as
possible to be considered. Specifically, we included all
stations that recorded the earthquake within 5 seconds,
regardless of their distance from the first recording sta-
tion. Our findings indicate that the inputwindowcanbe
reduced by half while still keeping comparable perfor-
mance (Fig 9). Specifically, For PGA and PGV, the MSE
of the residuals between the base-10 logarithms of ob-
served and predicted values [log10

IMobs

IMpred
] is 0.205. For

SA(0.3), the MSE increased to 0.198, while for SA(1.0)
and SA(3.0), the misfit increased slightly to 0.236 and
0.269, respectively. Overall, these results emphasize the

effectiveness of the GCN layers and our implementa-
tion. Given that GCN layers are designed to facilitate
node feature sharing during the convolution process,
they enable the transfer of a substantial amount of in-
formation between nodes, even when the input is re-
ducedbyhalf, supporting the feasibility of our approach
for real-time applications such as EEW.

5 Discussion

In this study, we demonstrated that our Masked GCN
model can accurately predict earthquake IMs at record-
ing stations using only waveforms captured within a 10-
second timewindowstarting from the earthquake’s first
P-wave arrival times. This approach enables accurate
prediction of IMs at distant stations, even before they
record the earthquake signal or its maximum values,
based solely on the initial recordings at stations near the
epicenter. To achieve this, we used 3C station waveform
data and the spatial pattern of the waveforms across the
recording network, without requiring any prior knowl-
edge of the earthquake’s location ormagnitude. Our ap-
proach is conceptually similar to GMMs, but instead of
relying on earthquake source (location and magnitude)
and site parameters, it uses direct groundmotion obser-
vations from the station network, specifically the wave-
form ground motion patterns.
The target outputs—PGA, PGV and SA at 0.3, 1, and

3-second periods—are predicted as a regression prob-
lem for all 565 stations using the Masked GCN model.
This marks a significant advancement over the original
TISER-GCN (Bloemheuvel et al., 2023), which was con-
strained by a fixed network geometry with only 39 sta-
tions. The model generally performs consistently well
across all IM types. As expected, its performance im-
proveswhen additional knowledge is integrated into the
model and when stations receiving the P-wave within
the first 10 seconds are prioritized.
Due to the Gutenberg-Richter magnitude distribu-
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Figure 9 MSEat 10s and 5s inputwindow lengths for each IM. Ourmodel achieves approximately the sameMSE values even
with half the input, demonstrating the effectiveness of GCNs in processing spatial information.

tion, our dataset is significantly imbalanced, with a
much higher frequency of smaller-magnitude events
compared to larger ones. This imbalance presents chal-
lenges in predicting the IMs for larger events, as il-
lustrated in Figure 7a. One potential solution involves
applying data augmentation techniques, such as those
proposedbyTang et al. (2021), by introducing additional
training data for larger magnitudes through random
transformations of existing events. Alternatively, syn-
thetic seismograms could be generated for hypothetical
larger events at the same stations. Another approach
to address limited data is transfer learning (Tan et al.,
2018), where a pre-trained model from a larger dataset
is fine-tuned on a smaller, domain-specific dataset. As
shown by (Jozinović et al., 2022), a pre-trained network
designed for other seismological applications can be ef-
fectively adapted for tasks such as IMprediction ormag-
nitude estimation. Similarly, the network developed in
this study could be utilized as a pre-trained model for
IM prediction in other regions.
To validate the methodology, we used processed

waveforms with preliminary data cleaning to exclude
stations affected by missing or erroneous data due to
equipment failures or transmission issues. Follow-
ing Jozinović et al. (2020), missing data were replaced
with zeros, and ShakeMap-predicted target values were
adopted to ensure the availability of target data during
training. Despite these limitations, the Masked GCN
model demonstrated robust accuracy in predicting IMs,
suggesting its ability to learn meaningful spatial rela-
tionships between stations, conditioned on the input
data. This implies that the model can exploit the spatial
configuration of the seismic network and adapt its pre-
dictions based on the available waveform signals, even
if it does not explicitly model the physical process of
seismic wave propagation.

To evaluate the predictive performance of theMasked
GCN model, we compared it against GMMs proposed
by Bindi et al. (2011), which are employed in ShakeMap
configurations for Italy (Michelini et al., 2020). As
shown in Figure 8, the Masked GCN model outper-
forms the GMMs in terms of IM residuals. This is likely
due to (i) the independence of the Masked GCN model
from earthquake magnitude uncertainties (eliminating
the need for between-event correction terms), (ii) the
relatively uniform source-receiver geometry and wave
paths within the study area, and (iii) the model’s ability
to capture and adjust for local site effects.
Notably, the earthquakes in our dataset are spatially

concentrated, reducing variability at individual stations
caused by differing wave paths. This likely contributed
to the strong performance of our model. Neverthe-
less, we are confident that by incorporating a larger
dataset with a broader spatial distribution of epicen-
ters, the Masked GCN model can learn site- and path-
specific characteristics for each station and zone, pro-
vided there is sufficient station coverage in these areas.
Future studies will address these aspects by expanding
the geographic scope and dataset size. In this context, a
more accurate selection of P-wave velocity could benec-
essary to refine the travel-time estimates, considering a
larger area thatmay require the adoptionof different ve-
locity models, depending on the depth and specific ge-
ology.
Our results (Figs 4, 5 and 6) confirm that the proposed

methodology can predict ground motion effectively.
Combined with the translational invariance properties
of neural networks, this suggests that the approach
could be implemented in real-time systems. In such a
setup, continuously streamed data could be used to pre-
dict IMs while leveraging the dynamic masking mecha-
nism to flexibly select which stations contribute to the
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model’s predictions, allowing for adaptable input con-
figurations.

6 Conclusions
A Masked GCN model was employed to predict IMs, in-
cluding PGA, PGV, and SA at 0.3 s, 1 s, and 3 s, usingmul-
tistation 3Cwaveformswithin a 10-second timewindow
starting at the first P-wave arrival. The dataset consists
of waveforms recorded by 565 stations from 975 earth-
quakes ( M ≥ 3.0, depth < 30 km) in central Italy.
The IM predictions were achieved without prior

knowledge of earthquake location, distance, and mag-
nitude. The model performance improved when addi-
tional information—such as the coordinates of the first-
arrival station and the maximum amplitude value—was
incorporated. To optimize the performance further, a
dynamic masking mechanism was introduced to man-
age which stations contributed to the predictions, en-
abling flexible input configurations.
Our findings show consistent model performance

across all IM types. A comparison between the Masked
GCN model and the Bindi et al. (2011) GMM, calibrated
for earthquakes in Italy, revealed that the Masked GCN
exhibited no prediction bias while maintaining a simi-
lar residual variance.
Model performance degraded only in two scenarios:

(i) for large-magnitude events due to the limited num-
ber of such earthquakes available for training, and (ii)
in regionswith sparse station coverage (e.g., offshore or
near the coast). Ourmodel achieves comparable perfor-
mancewhile using only half of the input window length
(5 s).
Overall, the results suggest that the proposed ap-

proach could be integrated into EEW systems, leverag-
ing the Masked GCNmodel’s ability to prioritize critical
early-wave information through dynamic masking. Al-
though this work focused on a geographically concen-
trated dataset, the methodology could be extended to
larger areas with more widespread seismicity, provided
sufficient training data is available. Overall, we showed
that the proposed Masked GCN could achieve ground
motion predictions as reliably as those in Bloemheuvel
et al. (2023) without being restricted to a fixed station
geometry.
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