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The Supplement includes some sections providing additional information on clustering, key formu-10

las to calculate the fault strength decrease by using diffusivity value, threeMovies to support seismicity11

patterns and visualize the clusters’ orientations, and eight additional Figures providing support to the12

main text.13

1 Clustering Method14

Among the variousmethods recently employed in seismology for the spatio-temporal clustering of seis-15

mic events, the literature includes DBSCAN (Ester et al., 1996) and HDBSCAN (Campello et al., 2013,16

2015). DBSCAN and HDBSCAN have different clustering approaches, parameter sensitivity, handling of17

cluster shape and noise, and output management. Regarding the different approaches to the problem,18

DBSCAN operates a flat clustering and finds clusters simply based on density, labelling points as core,19

border or noise while HDBSCAN builds a hierarchy of clusters and extracts the most stable ones.20

In HDBSCAN, the number of critical input parameters is reduced and robustness improved by re-21

moving the need for the radius parameter. The DBSCAN algorithm has certain shortcomings, one of22

which is that it cannot determine two fundamental parameters (the neighborhood of a point and the23

minimum number of points) by itself, and the other is that it takes a long time to traverse all points24

when the dataset is large (Ma et al., 2023). The radius parameter in DBSCAN defines the maximum25

distance between two points for them to be considered neighbors. It is a crucial parameter for deter-26

mining the density of a neighborhood and is used to classify points as core, border, or noise points.27

Choosing an appropriate radius is critical, as a value that is too small can classify too many points as28

noise, while a value that is too large can merge distinct clusters. The comparison between DBSCAN29
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andHDBSCAN reveals strengths and limitations and the choice between them depends critically on the30

specific application requirements and data characteristics.31

DBSCAN and modified versions of it can offer advantages such as specificity and precision. This32

makes DBSCAN particularly suitable for limited blind searches and scenarios where falsely identifying33

non-existent clusters would bemore problematic thanmissing some true clusters (de Berg et al., 2017).34

HDBSCAN’s superior sensitivity of up to 82% compared to DBSCAN’s 50–62% (Hunt and Reffert, 2021)35

makes it the stronger choice. Its ability to handle varying density environments and detect clusters36

across all density ranges particularly benefits analyses of heterogeneous datasets as in our case. We also37

preferred HDBSCAN because its parameter setup was described as easier and more intuitive, though38

careful parameter selection remained necessary to balance sensitivity against false positive rates (Hunt39

and Reffert, 2021).40

Using silhouette score for tuningmakes HDBSCANmore automated but adds complexity: instead of41

one parameter (minimum cluster size), a range and an evaluation metric has to be managed. We used42

the silhouette score to find the optimal number of clusters (higher silhouette score usually indicates43

better clustering). The Silhouette Coefficient is calculated using themean intra-cluster distance (a) and44

the mean nearest-cluster distance (b) for each sample. It is defined as:45

s =
b− a

max(a, b)
(1)46

where:47

• a is the average distance between a sample and all other points in the same cluster (intra-cluster48

distance).49

• b is the average distance between a sample and the points in the nearest cluster that the sample is50

not a part of.51

Note that the Silhouette Coefficient is only defined if the number of labels satisfies:52

2 ≤ nlabels ≤ nsamples − 1 (2)53

In the Figure S4, we show theminimumcluster size versus the silhouette score for the timewindows54

specified in Table 1. For finding the optimum number of clusters, we iterate the calculation of the55

silhouette score from 40 to 800 events with a step of 20.56

2 Pore Fluid Pressure Diffusion Formulas57

This subsection outlines themethod proposed byMalagnini et al. (2010, 2012) to estimate the reduction58

in fault strength following a mainshock. The approach combines pore fluid pressure diffusion with59
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fault mechanical parameters to quantify how elevated fluid pressures progressively weaken the fault60

zone, promoting slip and cluster migration. The key components are described in Table S1.61

Table S1 Model variables and their units

Symbol Description Units

Pf Pore fluid pressure Pa
P0 Pressure at origin Pa
P1 Initial pressure away from origin Pa
D Hydraulic diffusivity m2/s
x Distance from origin m
t Time since mainshock s
z Depth m
λf Pore fluid pressure coefficient –
ρr Rock density kg/m3

ρw Fluid density kg/m3

g Acceleration due to gravity m/s2
θ Angle between fault and σ1 rad
µs Static friction coefficient –
σn Normal stress on fault Pa
τy Shear stress (fault strength) Pa
zgt Gradient transition depth m

For a distance x from the origin and time t, the pore fluid pressure Pf (x, t) is given by:62

Pf (x, t) =


(P0 − P1) erfc

(
x

2
√
Dt

)
+ P1, steady-state,

(P0 − P1)

2
erfc

(
x

2
√
Dt

)
+ P1, non-steady-state,

(3)63

where:64

P0 = λfρrgz, P1 = ρwgz, (4)65

in which erfc(y) = 1-erf(y) is the complementary error function, erf(y) is the error function, andD is the66

hydraulic diffusivity.67

2.1 Gradient Transition Depth68

This subsection quantifies the depth at which the pressure gradient changes significantly, marking the69

transition between fluid-dominated and lithostatic regimes. The formula links pore pressure to rock70

density and depth, providing insight into howfluid pressuremodifies effective stress conditions. Below,71

λ expresses the ratio of pore pressure to lithostatic pressure, and zgt estimates the depthwhere this ratio72

alters stress balance.73

λ =
Pf

ρrgz
, zgt =

ρrz(1− λ)

ρr − ρw
. (5)74
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2.2 Fault Stress Components75

This subsection calculates the normal stress acting on faults of different types (normal, thrust, strike-76

slip) as a function of depth, fault orientation, and density contrast. These stresses are critical for eval-77

uating fault strength reduction under elevated pore pressure. Finally, shear stress (fault strength) ex-78

presses how frictional resistance scales with normal stress, which is reduced when pore pressure in-79

creases.80

Normal fault:

σn =
g z (ρr − ρw) sin θ

µs cos θ + sin θ
. (6)81

Thrust fault:

σn =
g z (ρr − ρw) cos θ

cos θ − µs sin θ
. (7)82

Strike-slip fault:

σn =
g z (ρr − ρw) sin(2θ)

µs cos(2θ) + sin(2θ)
. (8)83

The shear stress (fault strength) is:84

τy = µsσn. (9)85

3 Movies86

Movies are uploaded as external mp4 files. M1 and M2 illustrate the evolution of seismicity in the CSZ87

following the two mainshocks in 2009 and 2016, respectively. Movie M3 provides insight into the orien-88

tation of seismic clusters along the defined planes.89

Movie M1 – Temporal evolution of seismicity in the Campotosto Seismic Zone (CSZ) following the90

2009 L’Aquila Earthquake (MW 6.3, April 6, 2009). The animation consists of two synchronized panels:91

Top Panel: Map view displaying the spatial distribution of seismic events across the CSZ. Bottom Panel:92

Longitude–Depth cross-section illustrating the vertical distribution of events along the east-west axis.93

Seismic events are represented as colored dots, with color encoding the time of occurrence relative to94

the mainshock, enabling visualization of the temporal migration of seismicity.95

Movie M2 – Temporal evolution of seismicity in the Campotosto Seismic Zone (CSZ) following the96

2016 Amatrice Earthquake (MW 6.1, August 24, 2016). The animation consists of two synchronized pan-97

els: Top Panel: Map view displaying the spatial distribution of seismic events across the CSZ. Bottom98

Panel: Longitude–Depth cross-section illustrating the vertical distribution of events along the east-west99

axis. Seismic events are represented as coloreddots, with color encoding the timeof occurrence relative100

to the mainshock, enabling visualization of the temporal migration of seismicity.101
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Movie M3 – Horizontal rotation in the seismogenic volume containing clustered events. The ani-102

mation presents a horizontal rotation of the 3D volume encompassing seismic clusters, which are ge-103

ometrically approximated by planar surfaces as shown in Figure 6. The rotation provides a dynamic104

perspective on the spatial relationships and orientations of the clusters, enhancing the visualization of105

their structural configuration within the crust.106

4 Figures107

Figure S1 presents the frequency–magnitude distribution of events from the three high-resolution cat-108

alogs used. Figure S2 highlights variations in strike angles derived from focal mechanism solutions.109

Figure S3 shows changes in seismicity rates in the CSZ, both south and north of the mainshock areas.110

Figure S4 displays the silhouette score versus the number of clusters. Figure S5 is about unclustered111

seismicity within selected time windows. Figure S6 represents an example of PCA analysis to deter-112

mine the best orientation of the cluster’s plane. Figure S7 reveals short-term variations in themigration113

behavior of small clusters during the period (2010–2016). Figure S8 reports seismic front diffusivity for114

clusters in Figure S7.115

Figure S1 Magnitude–Frequency distributions from high-resolution seismic catalogs. This figure compares
the magnitude–frequency distributions derived from three distinct high-resolution earthquake catalogs: (Val-
oroso et al., 2013; Sugan et al., 2023; Waldhauser et al., 2021). The distributions highlight similarities and dif-
ferences in completeness magnitude and event density across the datasets, reflecting variations in temporal
coverage, detection thresholds, and cataloging methodologies.
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Figure S2 Seismicity and focal mechanism analysis in the CSZ (2009–2017) (a). Map view of seismicity in the
Campotosto area during the 2009–2017 time window. Colored dots correspond to earthquake events from the
three high-resolution catalogs listed in Table 1. (b) Strike angles of focal mechanisms for events with magni-
tude M > 3, compiled from Brennan Brunsvik et al. (2021); Locchi et al. (2024). (c) Zoomed-in view of panel (b),
emphasizing the rotation in strike angles observed in the northwestern sector. Red lines indicate the surface
trace of major SW-dipping normal faults, as mapped by Faure Walker et al. (2021), and serve as structural ref-
erences.
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Figure S3 Seismicity rate variations in the Campotosto Seismic Zone (CSZ) across key changing point dates
(0–20 km Depth Range). Seismicity rate changes are computed on a 0.3 km grid as the logarithmic ratio of event
counts in two 2.5-month windows: before (B) and after (A) each reference date. Six reference dates were se-
lected to capture major seismic transitions associated with: (a) the Mw 6.3 L’Aquila mainshock, (b) the Cittareale
seismic sequence, (c) the Mw 6.1 Amatrice mainshocks, (d) the Mw 6.5 Norcia mainshock, (e) the activation of
four Mw > 5 events within a single day, and (f) the subsequent seismic quiescence in 2017. Black stars mark
events with Mw > 5.0. Red lines indicate the surface trace of SW-dipping normal faults (Faure Walker et al.,
2021). The outline of the Campotosto water reservoir is also shown for spatial reference.
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Figure S4 Minimum cluster size versus silhouette score and number of clusters for the time windows speci-
fied in Table 1.

Figure S5 Residual seismicity retained after HDBSCAN cluster extraction. This figure displays the residual
background seismicity in the CSZ following the removal of clustered events using the HDBSCAN algorithm. The
analysis spans the same time intervals as those presented in Figure 4. The remaining events represent diffuse
seismicity not associated with high-density clusters, offering insight into the spatial and temporal distribution
of background activity.
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Figure S6 PCA analysis for cluster A1 to determine the plane orientation. The variance distribution along the
two principal in-plane directions: approximately 72% of events align with PC1 and 28% with PC2. The third
component (PC3), representing the out-of-plane direction, exhibits minimal variance.
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Cluster PC1 (%) PC2 (%) PC3 (%) PC1_angle (°)
A0 50.70 36.20 13.10 99.62
A1 71.99 26.21 1.81 -35.54
A2 71.68 17.85 10.47 -33.51
C0 77.45 20.43 2.12 7.47
C1 63.39 29.81 6.80 -3.80
C2 68.21 27.28 4.51 -144.04
C3 69.25 23.67 7.08 132.66
C4 45.62 35.82 18.56 -15.45
C5 45.16 36.36 18.49 65.77
C6 65.08 29.67 5.24 -17.14
C7 59.26 28.84 11.90 132.52
C8 63.90 18.88 17.21 -63.25
C9 79.99 13.83 6.19 -22.00
E0 79.18 14.92 5.90 -5.61
E1 55.89 39.04 5.08 7.37
E2 71.32 23.56 5.12 1.65
E3 58.21 34.23 7.56 23.37
G0 68.23 17.28 14.48 10.08
G1 89.11 8.91 1.98 -20.94
G2 89.45 8.16 2.39 -21.53
G3 59.31 31.24 9.45 65.00

Table S2 Principal component percentages and PC1 orientation angle relative to North for each cluster.
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Figure S7 Seismicity front migration for clusters C3, C5, C7, and C8. Panels (a)–(d) illustrate the temporal
evolution of the seismicity front for clusters C3, C5, C7, and C8, respectively. The red dotted lines represent
the 90th percentile of the 3D radial distance from the initial event in each cluster, serving as a proxy for the
migration velocity of seismic activity. Insets provide zoomed-in views of selected time intervals to highlight
short-term fluctuations and variations in migration dynamics.
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Figure S8 Diffusivity estimates for low-event-count seismic clusters This figure presents diffusivity values (D)
for selected clusters characterized by a relatively small number of events, as listed in Table 1. The calculated
diffusivity is generally below 1 m2/s, consistent with slow migration patterns and limited spatial expansion of
seismicity within these clusters.
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