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Text S1. Rate-and-state friction governing equations

QDYN implements adaptive time-stepping to balance the computation time between the
coseismic and interseismic periods. Friction evolution on the fault follows the classical form of
rate-and-state which considers that the fault is always slipping with the shear stress (t) equal
to the fault strength (Dieterich, 1979; Ruina, 1983; Marone, 1998):

t=uo (S1)

where ¢ is the effective normal stress and u the friction coefficient. The latter depends on the

slip rate (V) and a state variable (8)

v V.0
u(®,V) = o + a ln(—)+bln( ) (52)
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where y, is the reference coefficient of friction at reference slip rate V, and D, the characteristic
distance over which the evolution towards a new steady state takes place. The material
parameters a and b quantify the contribution of slip rate ¥V and of state 6 to the friction,
respectively. Velocity-strengthening materials are characterized by a>b. Velocity weakening
materials display a<b and are conditionally stable: they produce stable sliding if they occupy
a fault length smaller than a so-called limiting value of the nucleation length (L) and stick-

slip behavior otherwise (Eq. 4, Rubin and Ampuero, 2005):
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where G is the shear modulus.

The state 6 evolution is described by the ageing law (Dieterich, 1979; Ruina, 1983):

The minimum length scale that needs to be resolved by the numerical grid is the process, or

cohesive, zone length (Ly):
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Lb must be at least three time larger than the element size. Accordingly, we set L,/Ax ~9 and
Lo/Aw ~5.

The emergence of full and partial ruptures on a fault is controlled by the ratio of its
shortest length (W) to the nucleation length L. (Rubin & Ampuero, 2005; Eq. 4). Seismic events
emerge when W > L. Complex slip patterns, involving full and partial ruptures, can emerge if
W is sufficiently large (Barbot, 2019; Cattania, 2019; Cattania and Segall, 2019; Heimisson,
2020). Studies have shown that the minimum W/ L. ratio where this occurs depends on the
model dimensionality and asperity shape. 1D faults generate complex seismic sequences with
W/ L. > 10 (Cattania, 2019), whereas in 2D fault planes with circular asperities partial ruptures
are able to occur with W/ L. = 10.2 (Cattania and Segall, 2019). Therefore, by setting W/ L-
= 20.7 we ensure that, under spatially homogenous loading rate conditions, the fault generates
only full ruptures, so we can isolate the effect of the variable slip rates driving the complexity
of the seismic sequence (for details of frictional parameters, fault geometry and resolution,
see Table S1).

Table S1: Model set-up describing material and frictional properties, fault geometry and resolution.
VW= velocity weakening region, VS= velocity-strengthening region; *following Lapusta et al. (2000) and

accounting for the dip angle (60.4°, see Text S2).

Symbol Description (units) Value
Material properties
G Shear modulus (Pa) 3e10
A Elastic modulus (Pa) 3e10
c Shear wave velocity (m/s) 3000
Frictional properties
VES Reference friction coefficient 0.6
a Direct-effect parameter 0.007
b Evolution effect parameter 0.014 (VW) /0.0042 (VS)
Dc Characteristic slip distance (m) 10e-3
o Initial effective normal stress (Pa) 43.5e6*
Lb Process zone width (m) 492.6
G.Dc
b.o
L Limiting nucleation length value (m) 627.2
H=) -
n\b—a P
Geometry
Lf Fault segment length (km) 7




Wi Fault segment width (km) 17
L Velocity-weakening length (km) 6.4
w Velocity-weakening width (km) 13
AX Along-strike element size (m) 54.7
Aw Along-dip element size (m) 98.8
N Number of individual fault elements 22016
Nx Number of fault elements along strike 128
Nw Number of fault elements across strike

172
Ratio Lu/Ax | Ratio for mesh resolution
(Lo/Aw) %)
Z_corner Depth of fault bottom (km b.m.s.l.) -15

Text S2: Dip correction for normal stress

Lapusta et al. (2000) proposes that the variation of effective normal stress with depth for a

strike-slip fault is as following: effective normal stress is equal to the lithostatic pressure minus the

hydrostatic pore pressure at shallow depth (up to 2.6 km), with a transition to lithostatatic pore

pressure gradient with a 50 MPa offset at depth (z):

50 MPa

g, = min {2.8 +18 2/km

(S6)
We account for the dip angle of the normal fault (o) in our simulation:

(S7)

0 = a; * sin (@)

Table S2: values of preferred slip rate (ordered from NW to SE) calculated from field-throw rate

measurements with corresponding references (Faure Walker et al., 2019).

# Throw | Preferred value | Minimum Maximum value | Reference Distance
measurement | of slip rate | value of | of slip rate along
(mml/yr) slip  rate | (mml/yr) rectified
(mmlyr) trace (km)
1 0.48 0.3 0.78 (Roberts and | 0.55
Michetti, 2004)
2 0.25 0.16 04 (Faure Walker | 1.87
et al., 2009)
3 0.75 0.48 1.18 (Faure Walker | 3.18
et al., 2009)




4 0.64 0.4 1.02 (Roberts and | 3.62
Michetti, 2004)

5 0.63 0.4 1 (Faure Walker | 3.89
etal., 2012)

6 0.62 0.39 0.99 (Cowie et al., | 3.89
2017)

7 0.41 0.26 0.55 (Papanikolaou | 4.45
et al., 2005)

Table S3: Variations of rate-and-state friction parameters a and b to perform sensitivity analysis

a b a/b a-b
0.007 0.016 0.44 -0.009
0.001 0.004 0.25 -0.003
0.001 0.006 0.17 -0.005
0.001 0.008 0.13 -0.007
0.001 0.01 0.1 -0.009

Text S3: Seismic hazard calculations

We used the ground motion prediction equations (GMPEs) calibrated to the Italy region by Bindi
et al. (2011). These GMPEs solve for the geometric mean of the horizontal and vertical components of
peak ground acceleration (PGA) generated by an event of magnitude M at a site with a specified Joyner-
Boore distance (Rj, defined as the shortest distance from the site to the surface projection of the fault)
(Fig. S1).
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Figure S1: schematic diagram showing field-based (black) and rectified (magenta) fault surface trace,
horizontal projection of fault surface (grey) and the Joyner-Boore distance (Rjp, dashed black line) to

the chosen site (red marker) used for the hazard estimations.

The probability of exceedance (PoE) for a single event at a given intensity measure level —in this

case, horizontal PGA- is derived from the complement of the cumulative distribution function (CDF):

POEevent(IML) =1- Fevent(logIOIML) (88)



where Feventis the CDF of the log-normal distribution for the event ground motion model:

l ~Heven
Fevent (10g10IML) = ¢ (P20mbesent) - (5)

where ¢ is the standard normal CDF, p,,.,: the mean ground motion log,,Y predicted for the event

and o the standard deviation of the logarithmic ground motion.

The annual probability of exceedance for an event is the product of the event-level PoE and the
annual rate of occurrence of the event 1,,,.,,;:
Annual PoE,,.,; (IML) = Annual POE,,cn; (IML) Agpen: (S10)

W here A, is calculated as the inverse of the catalog length T ,.404 (i.€. duration of the seismic

catalog for the current model in years):

1

(S11)

/Ievent = T
catalog

The total PoE for a model is computed using the complement product approach across the total n
events in the simulation

POEmodel(IML) =1- Zn(l - POEevent(IML)) (812)

Equivalently, the annual PoE for a model at a given IML PoE,,,,,.;(IML) is aggregated using the
complement product approach for the annual PoE of individual events:

Annual PoE,,,40;(IML) = 1 =3, (1 — Annual PoE,,.,,(IML)) (S13)
This workflow has been implemented step-by-step into a Jupyter Notebook. A step-by-step workflow

of the computation of hazard curves from the synthetic seismic catalogs can be found in
(Rodriguez Piceda, 2025)
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Figure S2: Top subpanels: Long-term slip rate profiles along the fault for each of the models based on
7 estimations derived from field throw measurements along the Parasano-Pescina fault shown as blue
markers (Faure Walker et al., 2021 and references therein). In all the models the long-term slip rate it
tapered to 0.001 mm/yr at the borders. Bottom subpanels: Evolution of the slip rate along a horizontal
profile taken at the middle of the fault between 20,000 and 40,000 years for loading-rate profiles: (a)
“triangular max” uses the maximum value of slip rate (measurement #3); (b) “left triangular’ uses
measurement #1 with a linear interpolation, (c) “right triangular” uses measurement #7 with a linear
interpolation; (d) “triangular mean” uses the mean slip rate value centered in middle of the fault with a
linear interpolation; (e) “triangular min” uses the minimum slip rate value (measurement #2) centered in
middle of the fault with a linear interpolation; ); (f) “box car mean” uses only the average value of slip
rate; (f) “box car min” uses only the minimum value of slip rate (measurement #2); ; (g) semiellipse
mean” uses the mean value of slip rate (measurement #2) with a semielliptical interpolation; (h)
“semiellipse min” uses the min value of slip rate (measurement #2) with a semielliptical interpolation.
Magenta stars show the nucleation location. Note that, due to QDYN's adaptive time-stepping, in the

co-seismic period timesteps are smaller than in the inter-seismic period.
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Figure S3: (a) Magnitude-frequency distribution shown as kernel-density functions for model
with a=0.007 and b=0.016 (a/b=0.44); (b) Coefficient of variation (CV, red dots) and histogram
of recurrence time (T:, grey bars) for each simulation. For descriptions of the slip rate profiles,

see Fig. 3 in the main text.
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Figure S4: (a) Magnitude-frequency distribution shown as kernel-density functions for model
with a=0.001 and b=0.004 (a/b=0.25); (b) Coefficient of variation (CV, red dots) and histogram
of recurrence time (T:, grey bars) for each simulation. For descriptions of the slip rate profiles,

see Fig. 3 in the main text.
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Figure S5: (a) Magnitude-frequency distribution shown as kernel-density functions for model

with a=0.001 and b=0.006 (a/b=0.17); (b) Coefficient of variation (CV, red dots) and histogram

of recurrence time (T:, grey bars) for each simulation. For descriptions of the slip rate profiles,

see Fig. 3 in the main text.
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Figure S6: (a) Magnitude-frequency distribution shown as kernel-density functions for model
with a=0.001 and b=0.008 (a/b=0.125); (b) Coefficient of variation (CV, red dots) and
histogram of recurrence time (T:, grey bars) for each simulation. For descriptions of the slip

rate profiles, see Fig. 3 in the main text.
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Figure S7: (a) Magnitude-frequency distribution shown as kernel-density functions for model
with a=0.001 and b=0.01 (a/b=0.1); (b) Coefficient of variation (CV, red dots) and histogram
of recurrence time (T:, grey bars) for each simulation. For descriptions of the slip rate profiles,

see Fig. 3 in the main text.
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