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Abstract The detection andmonitoring of low-magnitude earthquakes are crucial for situational aware-
ness and riskassessment. Weemploy twoadvancedmethodologies for seismicarrival timepicking, detection,
and localizationofmicroseismicity in theBasilicata region (southern Italy). Bothapproaches rely ondeepneu-
ral networks for detecting and picking P- and S-wave arrivals. This region exhibits complex seismicity due to
tectonic setting, reservoir impoundment, and hydrocarbon extraction, as it hosts Europe’s largest onshore oil
field and a dammed water reservoir. We compare our results with a reference catalog based on the classi-
cal short-time average over long-time average (STA/LTA) method and analyst reviews. Themachine-learning-
based catalogs identify approximately twice as many earthquakes as the reference bulletin, with recall rates
(indicating the proportion of retrieved events also present in the reference catalog) of 93% and 77%, respec-
tively. Our findings demonstrate that deep learning significantly improves themagnitude detection threshold
while ensuring high reliability. A significant advantage is the fully automated and rapid workflow, which pro-
duces a homogeneous catalog and can be integrated into near-real-time seismicmonitoring. These tools thus
provide valuable advancements in earthquake detection and sequence analysis.

1 Introduction
Monitoring microseismicity is necessary for under-
standing and mitigating seismic hazard, particularly in
regions that host hydrocarbon extraction, geothermal
energy production, and othermining operations. High-
resolution seismic monitoring allows the detection of
small earthquakes that can provide valuable insights
into the evolution of subsurface processes, fault me-
chanics, and thepotential for larger seismic events (e.g.,
Fonzetti et al., 2024). While effective, traditional meth-
ods of seismic phase detection and event location are
often challenged by the low signal-to-noise ratio (SNR)
inherent to records of low-magnitude earthquakes.
Recent advances in deep learning have significantly

expanded the range of tools available for seismic mon-
itoring. For instance, EQTransformer employs an
attention-based multitask architecture for joint phase
picking and event detection, leading to substantial im-
provements in catalog completeness (Mousavi et al.,
2020). Similarly, QuakeFlow integrates PhaseNet and
GaMMA into a scalable, cloud-based workflow for ef-
ficient earthquake cataloging (Zhu et al., 2022a; Zhu
and Beroza, 2019; Zhu et al., 2022b). The development
of frameworks such as SeisBench further supports the
standardization and benchmarking of machine learn-
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ing models, including PhaseNet and EQTransformer
(Woollam et al., 2022).
In addition to event detection and picking, Bayesian

deep learning approaches have been proposed for es-
timating earthquake source parameters and their un-
certainties from single-station recordings (Mousavi and
Beroza, 2020). A recent review by Mousavi and Beroza
(2023a) underscores the wide applicability of machine
learning across the entire seismic workflow—from de-
tection and picking to event clustering, focal mech-
anism analysis, and ground-motion prediction—while
highlighting the importance of open data and standard-
ized evaluation practices.
Among these tools, PhaseNet (Zhu and Beroza, 2019)

is a neural network architecture standing out for its re-
liability in automatically detecting and picking seismic
first arrivals in continuous waveform data, making it
an invaluable tool for seismic monitoring for seismic
monitoring. Integrating advanced neural network algo-
rithms and robust location techniques represents a sig-
nificant step forward in seismic monitoring.
The Val d’Agri area in Southern Italy hosts industrial

activities related to oil extraction and wastewater rein-
jection in the largest European onshore reservoir, that is
located in a tectonically active extensional regime (e.g.,
Cello et al., 2003) where an artificial water reservoir is
also in operation (e.g. Valoroso et al., 2023). To ensure
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public safety and sustain industrial operations (Braun
et al., 2020), the Val d’Agri region is subject to con-
tinuous seismic and geodetic monitoring. Since 2019
the CMS (Centro di Monitoraggio delle attività di Sotto-
suolo)—part of the INGV(IstitutoNazionale diGeofisica
e Vulcanologia) — has the duty of operational seismic
monitoring. Currently, routine monitoring operations
require a manual check of results of the SeisComP
software (Seiscomp, https://www.seiscomp.de/, last ac-
cessed on July 10, 2024), daily performed by operators
(Morelli et al., 2025). The picking method employed by
the software is based on implementing the STA/LTA ra-
tio, which compares the energy changes in a short time
window (STA) to those in a long time window (LTA). A
potential seismic event is detected when the ratio of
STA to LTA exceeds a predefined threshold (Allen, 1978).
This is perhaps the most robust and commonly used
method for the detection (and time-picking) of seismic
arrivals in groundmotionwaveforms— its performance
has been compared with that of other techniques (e.g.,
Vaezi and van der Baan, 2015).
Here we describe two methods based on deep learn-

ing (PhaseNet and Qseek, Zhu and Beroza, 2019; Isken
et al., 2025) for arrival-time picking to study micro-
seismicity in the Basilicata region in Southern Italy.
Qseek (Isken et al., 2025) is a data-driven method that
combines phase arrival annotations from pre-trained
neural networks with waveform stacking and an adap-
tive octree search algorithm to detect and locate earth-
quakes automatically. We compare the performance of
two neural network-based workflows against the refer-
ence catalog obtained using a conventional STA/LTA al-
gorithm revised by the CMS-INGV operators. The op-
erators manually check every detection and repick the
phase arrivals when necessary. This study will assess
the effectiveness of machine learning in detecting and
locating microseismic events, highlighting its potential
for improving seismic hazard assessment and risk miti-
gation in regions with widespread seismicity and indus-
trial activities.

2 Data
The reference data consists of continuous veloc-
ity records from 56 stations belonging to vari-
ous networks (GE, IV, IX, TP, VA, VD) covering
an area of approximately 6500 km2. Some sta-
tions are part of the INGV National Network (IV,
https://doi.org/10.13127/sd/x0fxnh7qfy), GEOFON Seis-
mic Network (GE, https://doi.org/10.14470/TR560404),
CNR-IMAA High Agri Valley geophysical Obser-
vatory (VD, https://doi.org/10.7914/SN/VD, Stabile
et al., 2020), ISNet - Irpinia Seismic Network (IX,
https://www.fdsn.org/networks/detail/IX/ ). While other
networks have been installed by private companies:
VA (ENI SpA, 2001, https://doi.org/10.7914/SN/VA),
and TP (TOTAL E&P Italia Spa, 2018, https:
//www.fdsn.org/networks/detail/TP/).
For each station, for each component (one vertical

and two horizontal), we select one of the channels HH,
EH or CH (sampling rates 100 to 250 Hz), in this priori-
tizing order, depending on availability. We analyse data

from January 2021 to October 2023 (33months). We em-
ploy the earthquake bulletin from CMS monitoring op-
erations as a reference catalog. It has been obtained us-
ing the STA/LTAalgorithm,with detections revised daily
by operators. It contains 5,030 earthquakes in the se-
lected period, with a local magnitude range from -1.1 to
3.8.

3 Methods

PRNworkflow

We refer to the first of the two workflows as PRN after
the names of the software here employed (PhaseNet,
Real, NonLinLoc: Zhu and Beroza, 2019; Zhang et al.,
2019; Lomax et al., 2000). In this workflow, we apply a
bandpassfilter between1and45Hz to the seismograms.
This frequency range is chosen to maximize signal re-
tentionwhile enhancing the recall rate of seismic phase
detection, particularly for micro-earthquakes, which
radiate significant energy at high frequencies. The
upper bound is constrained by the Nyquist frequency
(given the 100 Hz sampling rate required b PhaseNet),
while the lower bound helps suppress low-frequency
noise. This choice also reflects common practice in
similar studies (e.g., Mousavi et al., 2020; Wickham-
Piotrowski et al., 2023), supporting its general applica-
bility and reproducibility.
We use the PhaseNet original model and set the

PhaseNet pick score (a pseudo-probability) threshold
to 0.3 for the P and S phase arrivals to filter out low-
confidence picks. This value was chosen based on em-
pirical tests on our dataset and is consistentwith thresh-
olds adopted in previous studies using PhaseNet (e.g.,
Zhu and Beroza, 2019). This threshold offers a good
balance between minimizing false picks and retaining
valid arrivals, especially in low-SNR conditions. Al-
though a PhaseNet variant trained on the Italian IN-
STANCE dataset (Michelini et al., 2021) exists, a recent
comparative study in the Central Apennines (Cianetti
et al., 2025) showed only marginal improvements over
the original model. Given the similar tectonic context
and waveform characteristics, we expect comparable
performance in our study area and therefore opted for
the original model. We apply the phase association al-
gorithm REAL (Rapid Earthquake Association and Lo-
cation; Zhang et al., 2019), with the requirement of a
minimum of 7 phase arrivals per earthquake (at least
4 P phases, 3 S phases, and three stations with both P
and S phases). We chose this threshold because it is
a good compromise between reducing false positives
and detecting small earthquakes. Furthermore, we ap-
ply a slightly more restrictive threshold compared to
the CMS catalog, which uses a minimum number of 5.
Since PhaseNet is more sensitive than STA/LTA method
and generally provides a higher number of picks for the
same event, we opted for a higher threshold to ensure
robustness and reduce the inclusion of low-quality de-
tections.
We set themaximum allowed residual for the prelim-

inary locations computed by REAL to 2 seconds in or-
der to include a larger number of candidate events dur-
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ing the initial phase association step. This approach is
particularly useful when working with low-magnitude
events, where stricter residual thresholdsmight exclude
valid detections. Unlike NonLinLoc, REAL does not em-
ploy a detailed velocity model but rather uses constant
P- and S-wave velocities, which justifies adopting more
permissive residual limits at this stage.
S arrivals without a corresponding P arrival at the

same station for the same event are discarded because
they are generally less reliable.
After phase association, we use NonLinLoc software

(Lomax et al., 2000, 2014) to solve for the absolute
hypocentral location of the seismic events, assuming
the same 1-D layered velocity model (Improta et al.,
2017) used to generate the reference catalog, to ease
comparison. NonLinLoc estimates the posterior proba-
bility density functionof thehypocenter spatial location
(Lomax et al., 2000, 2014). This workflow yields 21,617
earthquake locations.
To assess the reliability of the detections, we manu-

ally inspected a representative subset of 100 randomly
selected events. Of these, 52 were confirmed as true
earthquakes with reliable hypocentral solutions, yield-
ing a precision of ∼52% at this stage. Among the re-
jected events, some correspond to earthquakes located
outside the study area, while others are characterized
by very low signal-to-noise ratios, making a clear visual
confirmation difficult.
We run NonLinLoc a second time, considering P and

S wave station-specific delays, derived from the aver-
age residuals after the first run (Lomax et al., 2000,
2014). This improves location accuracy by reducing
travel-time uncertainties. To filter out poor locations,
events with horizontal and vertical uncertainties larger
than 5 km, and those with RMS larger than 1 s are re-
moved. Such tuning offers a good compromise: it re-
duces the number of false positives and bad associa-
tions while preserving a high recall rate. However, the
new catalog does not include a small number of earth-
quakes from the original catalog due to the conservative
thresholds used to filter out bad associations and loca-
tions.
Finally, we calculate the local magnitude ML using

the attenuation formula by Bakun and Joyner (1984):

ML = log10A + log10
r

100 + 0.00301(r − 100) + 3 (1)

whereA is the amplitude inmmof the simulated record
of a Wood-Anderson seismometer, and r is the epicen-
tral distance in km. We use this equation because it is
the same localmagnitude (ML) relationship adopted for
the reference CMS catalog for the Val d’Agri region. Al-
though originally developed for Californian data, this
relationship was chosen by the CMS team as a practi-
cal proxy for ML in this specific region (Morelli et al.,
2025). Therefore, we apply the same formula to ensure
consistency and comparability with the reference cat-
alog. To calculate the magnitude, we first deconvolve
the instrument response, simulate the corresponding
Wood-Anderson response, and calculate amplitudeA as
the mean of the two horizontal half peak-to-peak am-
plitudes in mm of the recordings for each triggered sta-

tion. The peak-to-peak amplitude is calculated within
a window that starts 0.5 seconds before the P-wave ar-
rival and ends 3 seconds after the expected S-wave ar-
rival time. If only a P pick is available, the S arrival is
estimated approximately using constant P and S veloc-
ities (Vp = 6 km /s and Vs = 3.5 km /s, typical val-
ues for the crust (Dziewonski and Anderson, 1981)) as
ts ≈ tp + ∆( 1

Vs
− 1

Vp
), where ∆ is the hypocentral dis-

tance. The final local magnitude is calculated as the
median of all station magnitudes. The results are com-
pared to the reference CMS (INGV) catalog.
To reassess the reliability after the refinements, we

manually inspected a new subset of 100 randomly se-
lected events. This analysis indicates that 88% of the
detections correspond to true earthquakes with reliable
hypocentral solutions, demonstrating a substantial im-
provement in precision compared to the first evalua-
tion. This value reflects the intended balance between
completeness and precision.

QSworkflow
This workflow employs theQseek (QS) framework (Isken
et al., 2025), an automatic and data-driven earthquake
detector and locator. This workflow employs neural
network phase arrival annotations and waveform stack-
ing for detection and localisation of seismicity using an
adaptive octree grid search. We use PhaseNet (with the
original model) for P and S first arrival picking. The lo-
cation accuracy is further improved by applying source-
specific station corrections, which can account for the
3D velocity heterogeneities (Isken et al., 2025; Richards-
Dinger and Shearer, 2000).
Stacking-and-migration-based methods utilize the

full waveform information. Stacking the arrivals en-
hances the signal-to-noise ratio (SNR) and allows for as-
sessing the coherence of phase picks across multiple
stations. Coherent energy from true seismic arrivals is
reinforced, while incoherent noise is suppressed. The
subsequentmigration step backprojects the seismic en-
ergy toward the source (hypocenter) using the full shape
of the phase arrival annotation (Isken et al., 2025). The
stacked energy is defined as the semblance (Grigoli
et al., 2014) measuring the seismic arrivals’ alignment
across multiple stations. It quantifies the coherence
of signals by analyzing their energy distribution over
time and space. The semblance of the stacked wave-
forms reaches the highest value at the hypocentral loca-
tion. According to this definition, a higher semblance
value increases the likelihood of detecting a true posi-
tive. To identify coherent seismic sources, we compute
the maximum semblance over time and apply a detec-
tion threshold based on the Median Absolute Deviation
(MAD) of this trace. The MAD is a robust measure of
variability that allows us to adapt to varying noise lev-
els. TheMAD is scaled by a factor of 10 as a solid thresh-
old value for the semblance. Although semblance is pri-
marily a measure of the coherence of pick confidence
across stations, it is also influenced by the signal-to-
noise ratio (SNR) and data quality. For smaller events,
especially those distant from the network, low SNR and
fewer picks at some stations tend to reduce semblance
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Figure 1 Magnitude vs. QS semblance from the QS catalogs. a) earthquakes not present in the reference catalog are plot-
ted as red dots, together with those that appear in both (green). The blue dashed line marks a possible boundary for low-
semblance, high-magnitude dubious events. b) Magnitude-Semblance matrix calculated for the QS catalog. The color scale
represents the ratio of green dots in each bin.

values. Conversely, larger events generally produce
clearer signals atmost stations, resulting in higher sem-
blance values. Therefore, semblance is often indirectly
correlatedwith earthquakemagnitude through these ef-
fects. To prevent spurious detections due to very few
stations, event detection requires a minimum of three
stations; windows with fewer stations are discarded.
The framework includes the calculation of local magni-
tudes using the method as for the PRN catalog (Bakun
and Joyner, 1984). In this case, we consider only sta-
tions within 20 km of the epicenter for magnitude esti-
mation. This choice arises because Qseek, by default,
includes in the magnitude estimation all stations with
SNR above a certain threshold (2 in our case) in the time
window of the theoretical arrival, regardless of whether
the station is triggered. For micro-earthquakes, distant
stations often record mostly noise, which can be mis-
taken for seismic signal, leading to systematic overesti-
mation — in comparison to the one of the same event
in the reference CMS catalog — of local magnitude. Vi-
sual inspection of waveforms from distant stations con-
firms poor signal quality and randomnoise spikes caus-
ing false coherent signals. Given the network density,
sufficient reliable stations are available within 20 km,
so excluding more distant stations improves magnitude
consistency and reliability for small events. This dis-
tance cutoff is not applied to the PRN workflow, which
only considers triggered stations, thereby naturally fil-
tering out noisy distant recordings. We verify that this
approach results in more reliable local magnitudes for
small events, while larger events are unaffected.

We then follow an approach similar to the PRN work-
flow to filter false positives and events with low-quality
locations. We set the minimum number of picks to 5
to allow a recall aligned with PRN, at the cost of more
false positives that will be filtered out later. This ap-
proach ensures a coherent comparisonbetween the two

methods while maximizing the recall of the reference
catalog. Despite the preliminary filtering applied, the
QS catalog still contains a significant number of false
positives. These often correspond to events with higher
magnitude (e.g., M>2) that are absent from the original
catalog but with low semblance.
Given the size of the catalog, it is impractical to ver-

ify each earthquake manually. While a full manual la-
beling of true and false positives was not performed,
a visual inspection of 100 randomly selected events
from the initial catalog (consisting of 21,784 detections)
was carried out to obtain a rough estimate of preci-
sion. Among these, 55 events were visually confirmed
as true earthquakes, yielding an estimated precision of
approximately 55% for the unfiltered catalog. This rela-
tively low precision is an expected consequence of our
deliberate choice to adopt low detection thresholds in
the initial stage of the workflow, in order to maximize
completeness and ensure that weak but potentially real
events are not missed.
Wepropose an automated approach to filter false pos-

itives further. We compare detections in the QS and
CMS catalogs. Specifically, we define a match if the
origin time difference is less than 1.5 seconds and the
epicentral distance is less than 10 km. Events appear-
ing in both catalogs are considered true positives (TP).
Those only appearing in QS may either be false pos-
itives or new detections. Plotting the two families of
earthquakes in a Magnitude-Semblance diagram (Fig-
ure 1a) illustrates how TP (green dots) are clustered
within a specific region of the graph, where the sem-
blance correlates with the magnitude (Figure S1, Sup-
plementary Information). Events with low semblance
and high magnitude are believed to be false positives
(Figure 1a).
Figure 1b shows theMagnitude-Semblancematrix for

the QS catalog. The 2D magnitude-semblance space is
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rendered with pixels. The color scale represents the
rate of green dots (ratio between the number of green
detections and total detections in each Magnitude-
Semblance cell) as a function of magnitude and sem-
blance. The diagram shows onlymagnitudes equal to or
higher than the magnitude of completeness estimated
for the CMS catalog (-0.2), as we cannot compare those
below this threshold.
Based on Figure 1, we propose the following empir-

ical magnitude-semblance relation to filter false posi-
tives: M = 26 × S − 2.5 (shown in the figure as a blue
dashed line) whereM is themagnitude and S is the sem-
blance. The two coefficients were determined by grid
search, minimizing the proportion of green events to
the left of the line and the proportion of red events to
its right. A higher weight (0.85) is assigned to the first
proportion, as our primary objective is to maximize the
recall from the reference catalog. Furthermore, red
events are not necessarily false positives, but may also
be new detections.
Following anapproach similar toAdinolfi et al. (2018),

we analyze the relationships between magnitude and
average station-to-epicenter distance. Due to the at-
tenuation experienced by the seismic waves with dis-
tance, low-magnitude earthquakes are more likely to
be recorded by stations nearby. Therefore, detecting
small-magnitude events with large average station-to-
epicenter distances indicates false detections. Similarly
towhatwe do in Figure 1, we determine an empirical re-
lation to cut off false positives in external regions of Fig-
ure S2 (see Supplementary Information). After applying
themagnitude–semblance filter, the catalog sizewas re-
duced to 11,399 events. This significant reduction, while
discarding nearly half of the initial detections, is ex-
pected to improve the overall quality of the catalog by
removing events with low signal coherence or insuf-
ficient magnitude. We repeat the visual check on 100
randomly selected samples. At this stage 78 events are
confirmed, giving an estimated precision of 78%. The
filtering step was therefore effective in balancing com-
pleteness and reliability, as confirmed by the substan-
tial decrease in likely false positives and the retention
of a large number of high-quality detections. The final
value reflects the trade-off we chose between complete-
ness and precision. While the general approach can
also be used for other datasets, the obtained empirical
relations are specific to the case study. We applied the
same analysis to the PRN catalog for consistency, which
showed fewer false positives (Figure S3, Supplementary
Information). Figure S4 in the Supplementary Informa-
tion shows someexamples ofwaveforms corresponding
to low magnitude earthquakes that passed the filter.

4 Results
The PRN catalog consists of 9,618 events, with a recall
rate of 93%. The QS catalog consists of 11,399 earth-
quakes, with a recall rate of 77%. To assess the consis-
tency between the catalogs, we analyze the time and lo-
cations of detected earthquakes, identifying matching
patterns of epicenter clustering. Table 1 shows the me-
dian of the differences in origin time (∆to), epicentral

location (∆locepi), hypocentral depth (∆depth), and lo-
cal magnitude (∆ML) distributions, computed for each
intersection between the catalogs.

Table 1 Median difference in origin time (∆to), epicentral
location distance (∆locepi), hypocentral depth (∆depth),
and local magnitude (∆ML) for same-event determina-
tions in all pairs of catalogs.

Catalog ∆to ∆locepi ∆depth ∆ML

PRN-CMS 0.546 s 1.01 km -0.18 km -0.1
QS-CMS 0.515 s 1.34 km -0.05 km -0.1
QS-PRN -0.016 s 1.01 km 0.09 km -0.1

To assess location quality, we computed the median
uncertainty and the 90th percentile for horizontal and
vertical errors in each catalog. For the horizontal loca-
tion error, the CMS catalog has amedian of 0.4 km, with
90% of events located with uncertainty < 1.1 km (90th
percentile of the uncertainty); PRN has a median of 1.1
km (90thpercentile = 3.2 km), andQSamedianof 0.2 km
(90th percentile = 0.4 km). Regarding the vertical uncer-
tainty, CMS and QS both show a median of 0.5 km (90th
percentile = 1.1 km for both), while PRNhas amedian of
0.9 km (90th percentile = 2.1 km). The comparison be-
tween catalogs is also illustrated by the distribution of
hypocenters with depth in the cross-sections of Figures
2a, 2b, 2c, while Figure 2d shows the size of the inter-
sections (recall) between the catalogs and the new de-
tections. The PRN catalog allows to identify structures
where seismicity is clustered, due to the high quality
of NonLinLoc locations. The majority of earthquakes
are concentrated at the southwestern side of the basin
(Monti della Maddalena Fault System) within the upper
10 kmof the crust. At the same time, fewer events occur
along the northeastern side, with greater depths.
The roughly oval shape of the epicentral distribution

delimits the region where the network sensitivity is op-
timal (Morelli et al., 2025), and the domain of attention
of approximately 3800 km2, where the detection and lo-
cation exercise has been limited (distributed seismicity
extends further out). In agreement with the setup of
the reference CMS catalog, we also exclude earthquakes
with hypocenter depths larger than 23 km to focus on
the shallow crustal domain of interest. New locations
are primarily found in the sameactive region,where the
new catalogs achieve detection of weaker earthquakes
(Figure 3).
The normalized cumulative number of earthquakes

in Figure 4 shows similar temporal evolutions of the
three catalogs we compare. QS and PRN catalogs have
comparable trends throughout the period considered,
reflecting natural fluctuations in time of the seismic oc-
currence rate (note that cumulative distributions are all
normalized to 1). The reference catalog’s different time
evolution (slightly flatter than QS and PRN at around
2021/09 and steeper at around2023/05)might be thepos-
sible effect of parameter adjustments and optimization
in the supervised monitoring routine.
Figure 5 shows the timeline of detected events and

their magnitudes across the three catalogs. Overall, the
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Figure 2 Distribution of epicenters and relative vertical cross sections for a) CMS catalog, b) PRN catalog, c) QS catalog.
Vertical cross sections represent a sliver with a thickness of 5 km on each side. The dot size is proportional to Magnitude,
while the color scales with the depth. Fault traces from the dataset by Lavecchia et al. (2023). The black rectangle around the
Pertusillo lake area indicates the region selected for analysis in the Discussion section. d) Venn diagram of the three catalogs
and their intersections. Green: reference CMS catalog, orange: PRN catalog, blue: QS catalog.
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Figure 3 a) Epicenter distribution of earthquakes only present in the new PRN catalog and not in the reference bulletin. b)
The epicenter distribution of earthquakes only present in the new QS catalog and not in the reference bulletin.
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function of time, compared for the three catalogs. Green:
reference CMS catalog, orange: PRN catalog, blue: QS cata-
log.

magnitude estimates and their temporal evolution are
consistent among the catalogs. For larger events, the
magnitude estimates remain in good agreement. The
main differences appear at lower magnitudes, where
bothQS andPRNdetect additional smaller events, effec-
tively lowering the detection threshold. This difference
becomes less significant over time, following a change
in operational procedures on May 18, 2023, which im-
proved the detection threshold in the reference CMS
catalog.
Figure 5 shows that the rise in the number of events

observed in 2023, alongwith largermagnitudes, reflects
a general increase in seismic activity consistently cap-
tured by all three catalogs.
The frequency histogram shown in Figure 6 shows

the distribution of local magnitude for the three cat-
alogs. Similar to Figure 5, this demonstrates the im-
proved performance of both new catalogs in the mag-
nitude range -1 to 0.7. We estimate the completeness
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magnitude (Mc) with the Maximum Curvature method,
and b-values with the Ogata and Katsura (1993) method.
Results are presented in Table 2. Mc estimated for PRN
and QS catalogs are lower than the reference bulletin
(Table 2). Furthermore, we find consistent b-values
close to 1 for PRN and QS, while the CMS catalog has
a lower b-value. The discrepancy in few-unit counts at
largermagnitude is due to (slightly) differentmagnitude
estimates (as pointed out in the next Section) and to
few events occurring near the border of the study area,
which in different workflows may be located inside or
outside the boundary (and be therefore excluded in one
or another of the catalogs because of slightly different
locations).
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Figure 6 a) Frequency histogram and b) cumulative distributions of the magnitude estimations for the three catalogs.
Green: reference CMS catalog, orange: PRN catalog, blue: QS catalog.

Table 2 Completeness magnitude (MaxCurvature
method) and b value for the three catalogs considered.

Catalog Mc b value
CMS -0.2 0.93
PRN -0.3 1.09
QS -0.3 1.19

5 Discussion

5.1 Comparison of the workflows perfor-
mance

Both machine learning-based methods exhibit remark-
able efficiency in automatically monitoring the study
area. ThePRNmethodexhibits higher recall (93%) from
the reference CMS catalog with accurate earthquake lo-
cations, resulting in better delineated seismic clusters
and lineaments, as evidenced in map plots and cross
sections (Figures 2 and 3). Although the absolute un-
certainties fromNonLinLoc are slightly larger, they pro-
vide a more reliable estimate of location accuracy due
to the probabilistic nature of the algorithm, even when
using a 1D velocity model. In contrast, the CMS cat-
alog truncates hypocentral coordinates to fewer deci-
mal places, reducing spatial resolution and limiting the
ability to resolve small-scale structures illuminated by
seismicity. The normalized cumulative event plots (Fig.
4) show similar trends. However, during the first pe-
riod (before September 2021), the PRN and QS catalogs
had a more rapid increase in the earthquake cumula-
tive number than observed in the reference CMS detec-
tions. As the processing parameters for PRN and QS
do not change with time, the elevated event rates be-
fore September 2021 may be due to increased small-
magnitude seismicity that went unnoticed by the stan-
dard processing. This is shown in Figure 5, wheremany
minor earthquakes are missing in the reference CMS
catalog. Over time, this difference has become less pro-
nounced due to a change in operational procedures, re-

sulting in an improved detection threshold for the CMS.
The supervised CMS routine has a sharp increase in
event rate in August 2023 (Figure 5). This highlights
an additional advantage of employing an efficient, au-
tomatic, and stable method for re-processing an entire
period, ensuring consistency and reducing potential bi-
ases introduced by procedural changes over time.
We calculate local magnitudes in our methods using

the same attenuation model as in the CMS catalog, but
some small differences in the estimation remain. This
explains theminor discrepancies in Figure 6. The same
event can fall into two different histogram bins accord-
ing to the catalog we are considering. This is hardly no-
ticeable in more populated bins, but accounts for dif-
ferences in bins with population on the scale of units.
We attribute this to variance in the number of phases
detected (and hence used for magnitude computation)
for the same event in the three catalogs: PRN and QS
events have more detected phases. This can be due to
PhaseNet’s higher sensitivity to finding more arrivals
with lower amplitude than the original method. How-
ever, a more detailed comparison in magnitude estima-
tion is outside the scope of this study. Regardless of
theseminor discrepancies in the histogrambins, we ob-
serve a higher number of earthquakes than the original
catalog at lowmagnitude (betweenML -1 and 0.7), while
preserving similarity between the two distributions at
higher magnitudes. In Figure S5 (Supplementary In-
formation) we compare only the events above a cutoff
magnitude of the CMS catalog. This outcome aligns
precisely with our objectives: enhancing the monitor-
ing sensitivity to lower magnitudes, expecting similar
results at higher magnitudes, thereby confirming the
method’s reliability.

5.2 Noise and performance of the detection
The distribution in time of the magnitude of earth-
quakes (Figure 5) shows coherent detection of the
largest earthquakes as expected, and similar cyclic sea-
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sonal variations of theminimummagnitude detected in
all the earthquake catalogs. This cyclicity is likely due to
noise levels’ seasonality, which can increase or reduce
the SNR. The periods of lowest magnitude detected co-
incidewith the summers, duringwhichwe expect lower
noise levels related to calmer weather conditions. We
are working in the frequency range 1 - 45 Hz, so we ex-
pect the contribution of sea noise and wind, which is
likely a major contributor to noise at the highest fre-
quencies. While in the range 1 - 10 Hz we expect the
main contribution of anthropogenic noise. Both nat-
ural and anthropogenic noise sources, therefore, ap-
pear relevant in limiting seismic detection complete-
ness. To analyse the possible correlation between the
lowestmagnitude detected and seismic noise, we calcu-
late monthly PPSDs (Probabilistic Power Spectral Den-
sities; McNamara and Boaz, 2005) at all stations. For
each PPSD, we consider the median value in different
frequency ranges. Many stations show a clear season-
ality correlated with the variation of magnitude com-
pleteness, especially towards the lower end of the in-
vestigated frequency band. Figure 7a shows a station
(GE.MARCO) exhibiting significant correlation (Pearson
coefficient ∼ 0.7, p-value « 0.05) between the PPSD me-
dian, computed in the frequency range 1 - 2Hz, and the
seasonal variation of the minimum magnitude in the
PRN catalog. For readability purposes, we show here
only one of the three catalogs; the results for the other
two catalogs are provided in the Supplementary Infor-
mation (Figure S6-S7).
A similar trend is found when we focus on the hourly

variation. To investigate the influence of anthropogenic
noise on our dataset we study the variation of the aver-
age minimummagnitude detected at different hours of
the day: we found a diurnal oscillation with the high-
est value of such minimum detected magnitude (i.e.,
worst sensitivity, due to higher noise levels) at about 12
PM, and lowest values (best detection performance) de-
tected around midnight. This diurnal oscillation well
correlateswith one of themedian PPSD as shown in Fig.
7b for the same example station GE.MARCO (Pearson
coefficient ∼ 0.97, p-value « 0.05). The hourly median
PPSD value is calculated by averaging the values over
almost three years.

5.3 Pertusillo water level and seismicity rate

With almost three years of data available, we may ad-
dress the possible long-termmodulation of the seismic-
ity rate, in response to the seasonal changes of the wa-
ter level at the Pertusillo artificial reservoir (Valoroso
et al., 2009; Stabile et al., 2014). The reservoir has an
average water depth of ∼95 m spanning an area of ∼75
km2, experiencing significant and rapid seasonalwater-
level fluctuations (Valoroso et al., 2009). In such reser-
voirs, changingwater levels change the stresswithin the
surrounding rocks. During the loading phase, the fluid
pressure within rock pores rises as the water level in-
creases, which reduces the effective normal stress act-
ing on fractures and faults. This stress can promote
fault slip and increased seismicity. Conversely, dur-
ing the unloading phase, when the water level drops,
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Figure7 a)Monthly andb) hourlyPPSD50thpercentile on
a sample station (GE.MARCO) averaged over the three com-
ponents (E, N, Z) vs minimum magnitude detected day by
day. It is averaged over eachmonth and hour, respectively.

fluid pressure decreases, effective stress increases, and
the seismicity rate tends to decline (e.g., Talwani, 1997;
Gupta et al., 1972). Berbellini et al. (2021) found a signif-
icant correlation between relative seismic velocity vari-
ations and the hydrometric level of the nearbyAgri river
feeding the Pertusillo reservoir — considered a proxy
for the total water storage in the shallow aquifers. The
poroelastic effect likely governs the observed variations
in seismicity rates, as fluctuations in water levels are
mostly positively correlated with seismicity. Valoroso
et al. (2023) points to such cyclicity over 13 years using
a coarse reference catalog, while their local 13-month-
long dataset does not allow for studying yearly cycles.
Telesca et al. (2025) analyzed the temporal clustering of
seismicity and its correlation with reservoir water level
variations in the Pertusillo reservoir area using fractal
and spectral analysis methods. Their findings suggest a
delayed response of approximately 1 month, attributed
to pore-pressure diffusion, supporting the hypothesis of
protracted reservoir-triggered seismicity.
To verify such seasonal modulation in our dataset, we
investigate a subset of the PRN catalog, limited to the
region of interest closest to the lake (longitude 15.82-
16.00, latitude 40.2-40.31), and compute the daily seis-
micity rate. The selected area is indicated by the black
rectangle in Figure 2a. To exclude noise seasonality ef-
fects on the seismicity rate, we consider only the events
above the magnitude of completeness Mc=-0.2, calcu-
lated with MaxCurvature method. In Figure 8 we com-
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pare such seismicity rate with the water level in the
reservoir (downloaded from the district basin authority
website: http://www.adb.basilicata.it). To preserve clar-
ity and readability, we chose to display only one catalog;
equivalent plots for the remaining two catalogs are in-
cluded in the Supplementary Material (Figures S6-S7).
We observe a local increase in seismicity when the

reservoir water level rises, and a corresponding de-
crease in seismicity when the water level falls, which is
more notable in 2021 and 2023. The seasonal increase
in seismicity occurs with a delay of some weeks. No-
tably, in 2023, we observed both the highest water lev-
els and the highest seismicity rate. In contrast, dur-
ing 2022, although the reservoir also reached high lev-
els, the seismicity remained low and comparable to the
background level, with only a slight and short-lived in-
crease. Overall, the analysis of our more complete seis-
mic catalog supports the hypothesized seasonal pattern
of local seismicity (Valoroso et al., 2023).

6 Conclusions
Seismology is an excellent and promising field for the
application of machine-learning (ML) methods for sev-
eral purposes (e.g., Mousavi and Beroza, 2022, 2023b).
Many applications have shown the ability to carry out
complex tasks effectively and efficiently, so favourable
operational developments are to be expected. Here,
we have used the PhaseNet deep neural network seis-
mic arrival time picking method (Zhu and Beroza,
2019), combined into two different workflows to anal-
yse micro-seismicity recorded by a heterogeneous, in-
tegrated seismograph network in the tectonically ac-
tive Val d’Agri region (Southern Italy), also seat of oil
and gas extraction as well as artificial water impound-
ment. Compared to a more customary reference prac-
tice based on an STA/LTA detector andmanual operator
revision, the ML-based workflows produced rich earth-
quakes catalogs with about twice the number of events
and twice the detected arrivals per event (a larger num-
ber of phases to be used in the hypocentral location is
highly beneficial for its quality). As illustrated in the
Methods section, we completed our workflows using an
efficient method to discard false positives.
We chose a rather conservative detector setup that

reproduces most of the events in the reference catalog
(PRN: recall rate 93%; QS: 77%) while discarding many
false positives and uncertain events.
The benefit of the automatically generated catalogs is

apparent. Once the significant parameters (such as the
minimum number of detected phases to allow the defi-
nition of an event, and similar criteria) are set, thework-
flow can be applied automatically to real-time data. Be-
sides the apparent advantage of a high saving of opera-
tor time, this fact also contributes to the homogeneity
of results, as with the wish of any different parameter
value, an entire catalog can be recomputed on the fly.
By increasing the sensitivity of the event detection

process, we may more easily see the influence of time
variations on the population of earthquakes. Further-
more, we can detect the impact of the seasonal varia-
tions of high-frequency background seismic noise con-

nected with weather, and we distinctly see a correla-
tion of micro-earthquake occurrence with the charge-
discharge cycles of the Pertusillo water reservoir. Al-
though these observations suggest a correlation, further
investigation is required to fully understand the rela-
tionship between water level fluctuations and seismic-
ity rates. Using the PRN catalog, future studies will fo-
cus on amore detailed analysis of the temporal and spa-
tial patterns of seismic activity in response to changes
in water levels, particularly considering poroelastic ef-
fects and delayed responses. This upcoming research
will aim to quantify these correlations more rigorously
and provide deeper insights into the mechanisms driv-
ing the observed seismic behavior.
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numberof earthquakesevery3days (orange) in thePRNcat-
alog, i.e., seismicity rate. Water level data starts in Decem-
ber 2020, considering the delayed effect of seismicity.

Data and code availability

We used open seismic data from the following seis-
mic networks: IV (Istituto Nazionale di Geofisica e Vul-
canologia – INGV, 2005, doi:10.13127/SD/X0FXNH7QFY),
VD (CNR IMAA Consiglio Nazionale delle Ricerche
- Italy, 2019, https://doi.org/10.7914/SN/VD, Stabile et
al., 2020), IX (Irpinia Seismic Network – ISNet, 2005)
and GE (GEOFON Data Centre, 1993, https://doi.org/
10.14470/TR560404). Waveforms and metadata can
be accessed through the Federation of Digital Seis-
mograph Networks Web services at GEOFON (https://
geofon.gfz.de/waveform/webservices/) and INGV (/https:
//terremoti.ingv.it/webservices_and_software).
Seismic data from networks VA (ENI SpA, 2001, https:

//doi.org/10.7914/SN/VA) and TP (TOTAL E&P Italia Spa,
2018, https://www.fdsn.org/networks/detail/TP/) must be
requested from the operators.
Software PhaseNet is published on GitHub https://

github.com/AI4EPS/PhaseNet. Software REAL is avail-
able at https://github.com/Dal-mzhang/REAL. Software
NonLinLoc is available at https://github.com/ut-beg-
texnet/NonLinLoc. Qseek is published on GitHub https:
//github.com/pyrocko/qseek.
We used Obspy (Beyreuther et al., 2010) and Pyrocko

(Heimann et al., 2017) libraries for data analysis. Plots
have been generated using Matplotlib (Hunter, 2007),
and maps using QGIS.
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The PRN and QS catalogs are available on Zenodo.org
(doi:10.5281/zenodo.17123383 (Caredda et al., 2025)).
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