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Abstract Ourunderstandingof faultmechanics andearthquakeprocesses remains limited, largely due to
minimal direct observations near active faults at seismogenic depths. This lack of data restricts our ability to
accurately assess and mitigate both natural and human-induced seismic hazards. However, recent advance-
ments in drilling capabilities and downhole sensing technologies offer an opportunity to observe and quan-
tify the physical conditions within and adjacent to active fault zones. In this contribution, we highlight how
scientific drilling can provide access to the near-fault environment, enabling measurements of stress, strain,
temperature, fluid pressure, and rock properties at depths where both aseismic and seismic fault slip occur.
These observations are essential to refine models of earthquake nucleation and dynamic rupture, bridging
gaps between laboratory experiments, numerical simulations, and surface observations. These insights can
advance fundamental understanding in earthquake science while also supporting the development of more
effective seismic hazard assessments and risk mitigation strategies.

Non-technical summary We do not yet know all the details about how and why earthquakes hap-
pen because they occur deep underground where it is hard to collect information. Without this information,
it is difficult to say whether an earthquake might occur and how large it might be. However, new tools and
better drilling techniques can get us closer to fault zones – and sometimes inside them. We can place sensors
underground to look at what is happening along faults to learn more about how earthquakes start and why
they stop. In this article, we discuss howdrilling deep into the Earth close to faults can provide important new
information about how faults slip.

1 Background andMotivation

In the United States and around the world, a grow-
ing number of people live in areas at risk of damag-
ing ground shaking from earthquakes (Petersen et al.,
2024; Silva et al., 2019). Increasing demands for sub-
surface energy sources (oil and gas, enhanced geother-
mal systems) and geologic sequestration of carbon diox-
ide will increase the potential for anthropogenically in-
duced earthquakes (Ellsworth, 2013; Majer et al., 2007;
Foulger et al., 2018; White and Foxall, 2016). However,
the conditions controlling the initiation, propagation,
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and arrest of earthquake ruptures remain poorly under-
stood. Seismologists typically observe earthquakes and
infer fault properties from surface instruments located
tens of kilometers from the causative fault. These seis-
mic data are complementedwith other surface and sub-
surface observations, remote sensing data, laboratory-
scale measurements, and computer simulations to at-
tempt to build a picture of fault mechanics and earth-
quake processes. Our ability tomodel such geologic sys-
tems, forecast their future evolution, and derive effec-
tive physics-based hazard mitigation strategies is ham-
pered by the lack of observations of the state and evolu-
tion of fault zones at seismogenic depths.
Previous scientific drilling projects near active faults
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have yielded novel and surprising observations, result-
ing in complex images of near-fault properties and fault
behavior. In 1988, the Cajon Pass Scientific Drillhole lo-
cated approximately 4 km from the San Andreas Fault
(SAF) near San Bernardino, California, provided in-
sights into fault and fracture distributions (Barton and
Zoback, 1994) and confirmed the low heat flow indica-
tive of aweakSanAndreas Fault (LachenbruchandSass,
1992), with high differential stresses in the adjacent
crust (as expected for a weak SAF/strong crust model)
but locally anomalous stress orientations (Zoback and
Healy, 1992). The creeping section of the SAF near Park-
field, California, was the target of the SAF Observatory
at Depth project (SAFOD; Zoback et al., 2011), which
highlighted the role of fault rock properties (e.g., weak
mineral phases such as Mg-smectite clay, saponite) in
controlling fault strength and slip behavior (Lockner
et al., 2011; Carpenter et al., 2011; Moore and Rymer,
2012).
Brodsky et al. (2010) convincingly argued the value

of rapid response drilling projects to collect transient
data at seismogenic depths after a large earthquake.
In the years following the 1999 M7.7 Chi-Chi, Taiwan
earthquake, a series of boreholes were drilled into the
causative Chelungpu Fault, sampling the principal slip
zone of the event and providing a complex picture of
the fault damage zonewithmultiple slip sectionswithin
a broader deformation zone (Ma et al., 2006). In 2012,
the Japan Trench Fast Drilling Project (JFAST) moni-
tored temperature, fluid flow, and other fault properties
across the fault that ruptured in the 2011 M9.1 Tohoku,
Japan earthquake. Transient temperature changeswere
observed coincident with nearby aftershocks that were
interpreted to reflect fluid pressure pulses due to fault
slip (Fulton and Brodsky, 2016).
The Deep Fault Drilling Project targeted the shallow

portion of the Alpine Fault in New Zealand to under-
stand fault properties late in the seismic cycle (Townend
et al., 2009), using various geophysical logs to detail the
densities and orientations of fractures (Massiot et al.,
2018) andmonitor fluid flow (Janku-Capova et al., 2018).
A fault zone observatory at 5-7 km depth explored con-
ditions near reservoir-triggered earthquakes in Koyna,
India (Gupta et al., 2015), providing strong constraints
on the in situ stress field (Goswami et al., 2020). The
Nankai Trough Seismogenic Zone Experiment (NanTro-
SEIZE) is a long-term drilling project from 2007-2018
that targeted the megathrust fault at the plate inter-
face offshore of Honshu, Japan and, while ultimately
falling short of that goal, made extensive technologi-
cal advancements for drilling through complex near-
fault regions, returned core from a fault zone, and es-
tablished long-term fluid pressure monitoring at mul-
tiple boreholes (Tobin et al., 2019). Araki et al. (2017)
showed that even outside the primary fault zone, for-
mation pore pressures could be used to estimate volu-
metric strain and infer slip on the near-trough segment
of the megathrust. These prior drilling projects high-
light the value ofmeasurements and observations in the
near-field of faults at seismogenic depths.
New subsurface drilling efforts can build on the tech-

nological advancements made by past drilling projects

and leverage the latest drilling and sensor technologies
that allow the direct measurement and ongoing moni-
toring of the evolution of stress, strain, and rock proper-
ties in the near-fault volume. Fault drilling projects tar-
geting active seismicity, such as repeating earthquakes
as was the target of SAFOD (Zoback et al., 2011) or near
vigorous induced seismicity sequences as proposed by
the Scientific Exploration of Induced SeisMicity and
Stress (SEISMS) effort (Savage et al., 2017), provide a
unique opportunity to densely sample the near-field of
an earthquake. Except in the case of infrequent, large
magnitude earthquakes, it is generally not possible to
collect near-field recordings of earthquakes (i.e., within
a fraction of the rupture length of an earthquake) at the
surface or even with shallow boreholes. Fault drilling
could enable such near-field observations in areas of ac-
tive seismicity with high rates of moderate and smaller
earthquakes. However, it remains a steep challenge,
as the target earthquakes are small (M<4) and sensors
must thus observe the event within 100 m or less. Here,
we highlight the value of scientific drilling projects that
target the fault volume near active faults and leverage
new advances in drilling and sensor technologies to an-
swer fundamental questions in earthquake science.

2 Opportunities for Earthquake Sci-
ence fromScientific DrillingProjects

Despite the knowledge provided by prior scientific
drilling projects, there is still much to learn through
the collection of dense time-lapse datasets at seismo-
genic depths near faults (Reches and Ito, 2007; Ansel-
metti et al., 2020; Ben-Zion et al., 2022). Most scientific
drilling projects focused on earthquake processes were
initiated over a decade ago, prior to the refinement of
drilling techniques and the development of new sen-
sor technologies. Figure 1 shows a sketch of the con-
ventional and advanced borehole technologies that are
available for dense time-lapse data collection at seismo-
genic depths near faults. Significant technological ad-
vances in drilling, completion, and instrumentation of
highly deviated and/or multilateral boreholes will en-
able laterally extensive sampling of the near-fault vol-
ume, rather than point sampling of the fault zones (Ma
et al., 2016; Lindsey and Martin, 2021; Teodoriu and
Bello, 2021). For example, the NanTroSEIZE project
made significant drilling advancements that improved
borehole stability in the geologically complex near-fault
regions and enabled better sampling and logging using
measurement-while drilling techniques (Yamada et al.,
2019). Recent advancements in sensor technologies en-
able 4D monitoring of subsurface conditions under the
challenging pressures and temperatures encountered
at seismogenic depths. Distributed sensing technolo-
gies for absolute static anddynamic strains (Jin andRoy,
2017), pore pressures, permeability fields, seismic sig-
nals, and temperature (Karrenbach et al., 2018) have
been shown to be reliable for boreholemonitoring. Dis-
tributed sensors, such as distributed acoustic sensing
(DAS), distributed strain sensing (DSS), and distributed
temperature sensing (DTS), could be installed in cross-
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Figure 1 3-dimensional sketch of an active fault zone showing the conventional and advanced borehole technologies that
are currently available for dense time-lapse data collection at seismogenic depths near faults. DAS - distributed acoustic
sensing, DSS - distributed strain sensing, DTS - distributed temperature sensing. Vertical and deviated boreholeswould allow
for cross-fault and along fault coring, sensing, andwireline logging. Wireline logging can provide relevant formation property
measurements including (but are not limited to) resistivity and conductivity, fluid pressures, porosity, geochemical sampling,
and borehole imaging. Cross- and along-fault pressure testing could provide information about stress, fluid pressure, and
formation transmissivity. Borehole monitoring is typically complemented by a wide range of surface instrumentation (not
illustrated here).

and along-fault laterals providing data from a volume
within and near the fault (Figure 1). These new tech-
nologies could complement more traditional, higher fi-
delity point measurements both in boreholes and at the
surface (Mellors et al., 2021; Ma et al., 2024). Longer-
term monitoring to capture evolution of a fault zone
through a portion of the seismic cycle remains chal-
lenging as it requires instrumentation that can with-
stand elevated depths and temperatures for extended
durations. Scientific drilling projects aimed at estab-
lishing well-instrumented underground observatories
in the 3D volume around an active fault are likely to play
a critical role in advancing our understanding of the
earthquake triggering and propagation mechanisms.

Understanding when and where an earthquake will
start and how large it will grow remains enigmatic.
Even for induced earthquake sequences that show
strong correlations with local fluid injection, the mech-
anisms governing when and how large an earthquake

may occur, or even whether an earthquake sequence
will occur at all, remain largely unknown (Ellsworth,
2013; Kivi et al., 2023). Seismological observations, lab-
oratory studies of natural and simulated fault rocks
and surfaces, and numerical simulations demonstrate
a complex interplay between fault geometry, fluid flow,
friction, fault and host rock composition, in-situ stress,
and possible induced or triggered (poro-)elastic stress
changes in controlling fault slip initiation, propagation,
and arrest (Ampuero et al., 2006; Cochran et al., 2023;
Goebel et al., 2017; Allam et al., 2019; Fan et al., 2019;
Heimisson, 2020; Kroll and Cochran, 2021; Haddad and
Eichhubl, 2023). Yet, we lack observational constraints
on many of these properties, including their interac-
tions, heterogeneity, and influence on earthquake oc-
currence at seismogenic depths. To make progress, we
need to know what the fault properties (e.g., stress dis-
tribution, fluid conditions, faultmaterial) are at seismo-
genic depths and have detailed images of the near-fault
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structure, damage zones (Zhang and Schmitt, 2025),
and slip planes (Lay et al., 2021). Such information
could only be collected using arrays of borehole sensors
within or in the near-field of active faults.
Direct observations of the in-situ conditions of the

near-fault volume at seismogenic depths are critical,
including their evolution through time. As discussed
in Hickman et al., (1995, and associated papers) it has
long been recognized that fluids can exert mechani-
cal and chemical effects on a variety of faulting pro-
cesses, including the structural and mineralogical evo-
lution of fault zones, fault strength, and the nucleation,
propagation, arrest and recurrence of earthquake rup-
tures. Fluids are likely a key controller of earthquake
occurrence and triggering (Ross et al., 2020; Takano
et al., 2024; Gabrielli et al., 2022; Haddad and Eichhubl,
2023). While fluid transport regimes, fluid pressures,
fluid chemistries, and fluid-rock interactions in and
near faults have been studied extensively for exposed
faults (Bense et al., 2013; Callahan et al., 2020; Williams
and Fagereng, 2022), we only have limited knowledge of
these processes at seismogenic depths of active faults
beyond the fault-zone drilling projects described above
(SAFOD, NanTroSEIZE, Chelungpu Fault project, and
JFAST). Similarly, the temperatures encountered near
andwithin fault zones at seismogenic depths are closely
tied to fluid flow and provide critical information on
fault strength and mineral stability, (Rowe and Griffith,
2015; Harris, 2017; Fulton et al., 2013). Quantifying a
range of near-fault properties before, during, and af-
ter slip supports theoretical andmodeling effortswithin
the broader research community (Sone and Uchide,
2016; Ben-Zion et al., 2022; Dal Zilio et al., 2023). Sci-
entific drilling combined with long-term downhole ob-
servations within and adjacent to fault zonesmay be re-
quired to make progress on these topics.
Strain and displacement measurements within and

near the fault can capture seismic or aseismic frac-
turing or faulting along the fault and within a volume
around the primary slip zone. Optical fibers can mea-
sure distributed strains and are often cemented be-
tween the casing and rock along extended sections of
the borehole (Lellouch et al., 2021). And new sen-
sor technology, deployed inside sections of the casing
of boreholes, can measure three-dimensional displace-
ments (Guglielmi et al., 2021). With such observations
close to the seismic sources, the full stress tensor and its
variability across active faults can be estimated. More-
over, such new borehole instruments can help provide
in situ estimates of the frictional and hydromechanical
properties of faults. A significant fraction of the rel-
ative fault motion may also be accommodated by de-
formation in a zone around the primary fault structure
that may vary over the seismic cycle (Oskin et al., 2007;
Johnson, 2013). In-situ borehole observations provide
opportunities to validate the magnitudes of such dis-
tributed deformation and its time-dependence.
Precursory phenomena, specifically earthquake nu-

cleation processes (Dieterich, 1992; Lapusta and Rice,
2003), have not been reliably observed for natural earth-
quakes. Recent earthquakes like the 2011 Mw9.1 To-
hoku, the 2014 Mw8.1 Iquique, and the 2024 Mw7.6 Noto

earthquakes were preceded by slow slip and/or swarms
of earthquakes (Kato et al., 2012; Ruiz et al., 2014; Ku-
mazawa and Ogata, 2024). Near-field observatories in
areas of ongoing seismicity would allow subtle features
associated with earthquake initiation, if present, to be
observed and characterized. For example, measure-
ments of initial fault acceleration and the evolution
of moment release are only possible very close to the
nucleating slip surface, requiring instrumentation to
be installed at depth in the near-field of the rupture
(McLaskey, 2019). Additionally, the role of aseismic slip
in earthquake occurrence and the triggering of crustal
faults remains unclear. Scientific fault drillingwould al-
low us to get close enough to the fault to image minor
aseismic transients.
Furthermore, how stresses change along a fault both

during rupture and over the seismic cycle remains
poorly resolved. Borehole observationsprovide rare op-
portunities to infer the absolutemagnitude of stress and
its variation near active faults (Lin et al., 2013; Talukdar
et al., 2022; Talukdar and Sone, 2024). Seismologists can
infer stress drops during rupture, based on a corner fre-
quency and low-frequency amplitude measured from
the spectrum of an earthquake (Brune, 1970). How-
ever, these measures are highly scattered and likely too
simplistic (Shearer et al., 2006; Prieto et al., 2007; Aber-
crombie, 2014; Baltay et al., 2024) because seismolo-
gists are using observations tens of kilometers away
from an earthquake to measure the high-frequency be-
havior of an earthquake rupture (Kemna et al., 2020;
Parolai and Oth, 2022; Abercrombie, 2015). The inter-
pretation of stress drops, their variability with depth
(Abercrombie et al., 2021), through time (Ruhl et al.,
2016; Kemna et al., 2021), and relation to aftershock
productivity (Wetzler et al., 2016) are still active areas
of research. Instrumentation installed at depth and in
the near-field of small to moderate earthquakes could
provide the necessary resolution to reliably estimate
stresses released during earthquakes. Only by combin-
ing thesewith absolute stressmagnitude estimates from
borehole observations can we learn if an earthquake’s
stress drop fully or partially releases the shear stress on
a fault.

3 Summary

Advances in our understanding of earthquake physics
and triggering mechanisms have important implica-
tions far beyond seismic risk assessment in tectonically
active regions. A better knowledge of the temporal evo-
lution of stress, fluid flow, and mechanical properties
of fault zones could assist in mitigating anthropogeni-
cally induced seismicity related to energy exploration
and development. Subsurface technologies such as ge-
ologic carbon sequestration, enhanced geothermal sys-
tems, and wastewater disposal play a critical role in en-
ergy security, but significant advancement in their risk
reduction and public acceptance may be limited with-
out further gains in understanding the controls on fault
slip initiation, propagation, and arrest.
Continental scientific drilling projects that target ac-

tive faults represent perhaps the best chance to advance
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both natural and induced seismic risk assessment and
mitigation. Near-field observations and monitoring in
the fault zones could provide better constraints on fac-
tors controlling earthquake size, recurrence and stress
interactions, spatial heterogeneity of the subsurface
properties and their evolution throughout the seismic
cycle. Filling knowledge gaps in these areas has the po-
tential to advance complementary theoretical andmod-
eling efforts in earthquake science and faultmechanics.
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