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Abstract The determination of seismic moment tensor (MT) parameters is subject to uncertainties from
data noise and structural error due to the imperfect Earth model, which is rarely considered in regional earth-
quake catalogs. In this study, we apply a hierarchical Bayesian MT inversion with uncertainty quantification to
seven moderate-earthquakes (M,, 4.5-5.5) in the Adriatic Sea region. The event collection includes three in
mainland Croatia: the 2020 M,, 5.4 Zagreb earthquake and its M,, 4.9 aftershock, and the M., 5.0 foreshock of
the 2020 Petrinja earthquake, two events in the offshore Adriatic Sea: the 2021 M,, 5.2 central Adriatic earth-
quake, the 2024 M,, 4.6 southern Adriatic earthquake, and two in Italy: the 2022 M, 5.5 Costa Marchigiana-
Pesarese earthquake, and the 2023 M,, 4.9 earthquake in Marradi (Tuscany). The inversion output features
the source depth and the posterior distributions of the MT parameters, enabling the uncertainty quantifica-
tion. Comparing our results with regional routine catalogs highlights the improvement in source determina-
tion, particularly in confidence of non-double-couple components when incorporating the data and structural
uncertainties. The refined source mechanisms could be useful for understanding the complex geological set-
tings, assessing the hazard potential, and further improving the regional earthquake catalogs in the Adriatic
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Sea region.

1 Introduction

The determination of earthquake source mechanisms
relies on seismic inversion, a numerical procedure
that infers the source parameters using recorded seis-
mic waveforms and available Earth models. For small
to moderate earthquakes, the earthquake sources are
commonly represented by the point-source moment
tensor (MT), a 3 x 3 symmetric matrix of six indepen-
dent force couples. A full MT can be decomposed
into double couple (DC) and non-double couple (non-
DC) components, the latter comprising isotropic (ISO)
and compensated linear vector dipole (CLVD) compo-
nents according to Knopoff and Randall (1970) and oth-
ers (e.g., Sipkin, 1986; Vavrycuk, 2014). The DC com-
ponent represents shear slip on planar faults, which
is typical of most tectonic earthquakes, while the non-
DC components have more complicated causes and im-
plications. The non-DC may originate from intrinsic
source processes, the combined effect of DC processes,
or they may be an artifact of the inversion (e.g., Rosler
and Stein, 2022). In well-documented non-DC events,
the ISO component reflects explosions or implosions
causing volume changes (e.g., Alvizuri and Tape, 2018)
and the CLVD component is often linked to magma
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movement in volcanic environments (e.g., Dreger et al.,
2000). A comprehensive overview of MT decomposition
and non-DC sources can be found in Julian et al. (1998).

The determination of the relative significance of the
MT compositions is important in characterizing the
physical nature of seismic sources. Rapid seismic
source inversion of MT parameters has been estab-
lished as a routine procedure in seismology, and the at-
tention has shifted towards uncertainty quantification
of the solutions, which is featured in this work.

The two primary sources of uncertainty in seismic
source inversion are data noise, which is inherited from
the data acquisition and processing stages, and the er-
ror due to imperfect theory, dominated by inaccuracies
in Green’s functions caused by the simplified descrip-
tion of the Earth’s interior, also known as model error
or structural error. A rigorous uncertainty treatment
for data noise and structural error is crucial for enhanc-
ing the reliability of MT parameter solutions. Many ef-
forts have been made to consider data noise (e.g., Du-
putel et al., 2012; Mustac et al., 2018, 2020; Musta¢ and
Tkalci¢, 2016, 2017; Saoulis et al., 2025) and structural
error (e.g., Hallo and Gallovi¢, 2016) separately. The
most recent advancements are in jointly treating these
two classes of uncertainty in MT inversion (e.g., Pham
et al., 2024; Pham and Tkalcié, 2021; Vasyura-Bathke
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(a) Overview map of the studied region with its position in Europe marked by the blue rectangle in the inset.

Approximate Adria margins are indicated by black dotted lines. The most important historical earthquakes mentioned in
text are shown by white stars, together with the year of occurrence. The seven studied earthquakes are shown by yellow
stars, with numbers corresponding to the event numbers in Table 1. (b) MT solutions from the MT inversion in this study
for seven selected earthquakes. For each event, the beachball represents the recovered deviatoric MT solution. The size of
the beachball is scaled proportionally to the corresponding moment magnitude. Black lines on the map indicate the known
faults in this region, as documented in the European Database of Seismogenic Faults (Basili et al., 2013). The yellow line is

the tectonic plate boundary.

et al., 2021). However, uncertainty quantification is yet
to be fully incorporated in regional earthquake catalogs.

We recently developed Bayesian inversion methods
to estimate MT parameters, incorporating uncertain-
ties stemming from heterogeneities in the Earth struc-
ture models and station-specific noise in seismic wave-
forms (Hu et al., 2023, 2024). Our approach utilizes a
lightweight scheme to treat the structural error by ap-
plying station-specific time shifts as free parameters to
re-align predicted waveforms with the observations, so
it has the potential for routine analysis of many events.
In this proof-of-concept work, we apply this method
to reassess the MT parameters of moderate-size earth-
quakes in the Adriatic Sea region, motivated by its com-
plex tectonic setting (discussed in the Study Area sec-
tion) and the diversity of the observed focal mecha-
nisms.

In this study, we selected seven earthquakes with re-
ported moment magnitudes (M,,) between 4.5 and 5.5
that occurred over the past five years in the Adriatic Sea
and the surrounding Croatia and Italy. They are labeled
as Events 1-7in Fig. 1 and listed in Table 1. They include
two earthquakes in mainland Croatia: the 2020 M,, 5.4
Zagreb earthquake and its largest M, 4.9 aftershock, the
largest M,, 5.0 foreshock of the 2020 M,, 6.4 Petrinja
earthquake, and two in the offshore Adriatic Sea: the
2021 M,, 5.2 central Adriatic earthquake, and the 2024
M, 4.6 southern Adriatic earthquake. The other two
events are in Italy: the 2022 M,, 5.5 earthquake in Costa
Marchigiana Pesarese (Pesaro and Urbino) and the 2023
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M, 4.9 earthquake in Marradi (Tuscany). By comparing
with the solutions from regional catalogs from agencies,
such as the Istituto Nazionale di Geofisica e Vulcanolo-
gia (INGV, Italy) catalog (Pondrelli, 2002, henceforth re-
ferred to as the INGV catalog) last accessed on 10 Oc-
tober 2024 (now possibly outdated), the study’s results
highlight the improved confidence in the determined
solutions for regional applications. The reliable source
mechanisms can be helpful in further guiding the inter-
pretation of the complex geological settings around the
Adriatic Sea.

2 Study area

The Adriatic Sea region is one of the most debated
and geologically complex tectonic settings along the
broader margin between the Eurasian and African
plates. The semi-enclosed Adriatic Sea basin sits in
the middle of this region, surrounded by the Apen-
nines in the southwest and the Dinarides in the north-
east. Its complex structural settings are shaped by
tectonic activity, sedimentation, and geomorphology
(Kastelic et al., 2013; Le Breton et al., 2017; for a re-
view, see Piccardi et al., 2011). The region is formed
by the ongoing convergence of the Eurasian and African
plates, which drives the counterclockwise rotation and
northward movement of the Adriatic microplate (Adria,
Fig. 1a). This tectonic interaction leads to the colli-
sion and complex deformation between Adria and the
Dinarides (and Alps), resulting in seismicity, along the
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Origin time Lati- Longi- Depth  Magni- Solution in this study
Event o o
(UTC) tude(®) tude()  (km)  tude Depth  Mae My,  Ms,  M.. M,
(km) (10°N-m) (10**N-m) (10*°N-m) (10*°N-m) (10**N-m)
2020-03-22 _16007 -0536 4215  -2242  -3.053
Bventl  rosomozoooz 0879 16028101 M54 > 10161  +0.072 +0.044 +0223  +0.114
2020-03-22 8738 -1547 4376  -2.127 -0815
Event2  yog01:00000z7 2880 16024 94 My49 3 +0.085 +0.046 +0.048 +0281  +0.191
2020-12-28 _17.704 5523  -8890 2759  -4.086
Event3  qosogo700z  A2HOL 162218 94 M5 8 +0203  +0.133  +0.097 +0.168  +0.139
2021-03-27 M52 52141 -20467 -45070 -91563 -21.105
Bventd  J13u751000z 42O 16.33 > (INGV) 4 10705 +1.119 +0435 +2.150 +3.381
2024-02-23 Mp47 3211 1660 1048 0152 1775
BventS 1090319000z O 17810 (INGV) 9 +0.040  +0.047 +0030 +0.036  +0.049
2022-11-09 Mo56 98268 -96.113 -128.675 -71.868 -26.179
Bventé  yogoras000z A3 13326 (INGV) 6 11871 42336  +1336 +4073  +5734
2023-09-18 M1 49 28776 4670 10370 7212 10877
Bvent? 030014000z 4> 1196 (INGV) 3 +0211 40222 +0.133  +1.000  +0.884

Tablel Theseven earthquakesinthe Adriatic Sea and its surroundings in Croatia and Italy were analyzed in this study. The
origin timeis from the INGV catalog (Pondrelli, 2002, last accessed on 10 Oct 2024). The information in columns 2-6 for events
1and 2, arefrom Herak et al. (2021b), event 3 is from Herak and Herak (2023), and other events are from INGV (Pondrelli, 2002,
last accessed on 10 Oct 2024). Our solutions are presented in columns 7-12, including the source depth from the parameter

search, and five MT parameters, each accompanied by uncertainty in the format of mean + one standard deviation.

northeastern margin of Adria in the Dinarides (Croa-
tia, Slovenia, and Montenegro, e.g., Herak and Herak,
2024; Herak et al., 2005, 1996), and in Italy, particu-
larly along the Apennines and the southwestern Adriatic
coast (e.g., Chiarabba et al., 2005; Rovida et al., 2020,
2022). Additionally, intraplate seismicity is observed
within both the Eurasian and Adria plates (Fig. 1a).

Seismicity in the Adriatic Sea itself features a distinct
pattern that divides the region into three sectors: the
northern, central, and southern Adriatic (Fig. 1a). Ac-
cording to Orecchio et al. (2023), the main seismic ac-
tivity over the past 24 years—up to 2021—occurred in
the central Adriatic, where 14 earthquakes with magni-
tudes M,, 4.0-5.5 were recorded. Inthe northern sector,
seismic events are primarily clustered along the west-
ern edge of the Adriatic Sea, particularly near the Ital-
ian coastline. In contrast, the southern Adriatic basin
typically experiences fewer and weaker earthquakes.
Therefore, the cause of the M}, 4.7 earthquake at 09:23
UTC on 23 February 2024 (No. 5in Fig. 1a) in this region
remains uncertain.

In addition, the Croatian coastline is also tectonically
complex, comprising two distinct seismicity domains.
The northwestern one stretches from NW of Sibenik
to the Istria peninsula, while the southeastern (SE) do-
main spans from Dinara-Kames$nica Mt. to the south-
ern Adriatic Sea (Ivancic¢ et al., 2018). The SE domain
includes the greater Dubrovnik epicentral area, which
is considered the region with the highest seismic hazard
in Croatia. The largest historic earthquake there since
records began was the Great Dubrovnik earthquake of
1667 (e.g., Albini, 2015). It was one of the most devas-
tating earthquakes in the broader region, which—along
with the large fire that broke out after the earthquake—
destroyed most of the city. Two other well-known events
happened near the small medieval town of Ston: the

3

Ston earthquake of 1850 (Herak et al., 2023) and the re-
cent Ston-Slano earthquake of 1996 with M,, 6.0 (Gov-
or¢in et al., 2020; Herak and Herak, 2024).

Attention then shifts to the Croatian mainland, where
one of the country’s most notable recent earthquakes
was the 22 March 2020 M,,5.4 Zagreb earthquake. The
mainshock and its aftershock sequence occurred in
Croatia’s capital, Zagreb, in north-west Croatia. This re-
gion lies between the major regional tectonic units of
the Alps to the north, the NW Dinarides to the south-
west, and the Tisia mega-unit to the east. As a re-
sult of complex geological processes, several inselbergs
have formed between these units (van Hinsbergen etal.,
2020; Schmid et al., 2020). The largest of these is the
Medvednica Mountain, with the city of Zagreb located
in its southern foothills. It is striking NE-SW, almost or-
thogonal to the NW-SE trend of the Dinarides (Tomljen-
ovié et al., 2008).

The seismicity of NW Croatia is characterized as mod-
erate, with rare occurrences of strong earthquakes (e.g.,
Ivanci¢ et al., 2018). Over the last few centuries, the
entire continental part of Croatia has been struck by a
number of notable events, such as the M 5.6 1938 Bil-
ogora, and the M, 5.7 1964 Dilj Gora events. Ivancic
et al. (2018) suggested that the whole region was in the
stress accumulation phase. Locally, the largest known
earthquakes in the Medvednica-Zagreb area before the
2020 earthquake occurred in 1775, 1880, 1906, and 1990
(Herak et al., 2009). Another significant earthquake in
the nearby region was the 1909 Kupa Valley earthquake,
which led Mohorovici¢ to discover the Moho disconti-
nuity.

The 1880 event was the largest among these continen-
tal events and remains known as the Great Zagreb earth-
quake. Soon after the earthquake, the Earthquake Com-
mittee was formed to document its effects (Torbar, 1882,
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Hantken von Prudnik, 1882) (see also Herak and Herak,
2006). The Great Zagreb earthquake resulted in three
deaths and damaged nearly all of the 3670 buildings that
existed in Zagreb at the time. The maximum intensity is
VIII on the EMS-98 scale, and the magnitude estimated
from macroseismic data is M,,, 6.1. Subsequent earth-
quake in 1906 was weaker, with magnitude M, 5.3 calcu-
lated from both the macroseismic and the instrumental
data (Herak et al., 2021a).

North-western Croatia is one of the three regions in
the country with the highest seismic hazard. Further-
more, Zagreb and its surroundings are densely popu-
lated with numerous cultural, academic, and political
institutions, industrial and commercial facilities, and
transport infrastructure. The 2020 earthquake was a
harsh reminder of the imposing seismic risk. It caused
one casualty, 26 people were severely injured, and there
was extensive damage in the historical center of Zagreb.
More than 25,500 buildings were inspected by civil en-
gineers, out of which about 35% required short-term re-
pair measures, 20% were temporarily unusable, and 5%
were unusable (Atali¢ et al., 2021; Savor Novak et al.,
2020). The damaged buildings included hospitals, the
Croatian parliament, and schools, kindergartens, uni-
versity buildings, museums, theatres, and sacral build-
ings. Therefore, understanding the nature of this earth-
quake can help reduce the damage caused by future
earthquakes in the area.

On the opposite side of the Adriatic Sea, the Apen-
nine Peninsula is a highly seismically active region. In
just the past four decades, it has been struck by six
earthquakes with moment magnitudes M,, > 6.0, along
with several others in the range of 5.5 < M, < 6.0—all
occurring within seismic sequences that lasted several
months to years (Rovida et al., 2020). The seismicity
in the region is primarily controlled by Italy’s current
tectonic setting, which is shaped by multiple factors—
including the convergence between the Eurasian and
African plates, the curvature of the collisional zone at
their margins (e.g., D’Agostino et al., 2008), and the
broader geodynamic evolution of the Mediterranean re-
gion following the closure of the Mesozoic Alpine Tethys
(e.g., Handy et al., 2010), etc. Further details are dis-
cussed in Latorre et al. (2023) and Palano (2015).

3 Method

Here, we utilize the latest Bayesian MT inversion
method, which accounts for uncertainties in data noise
and Earth structure model (Hu et al., 2023), to deter-
mine the MT parameters for seven representative earth-
quakes.

The method uses station-specific time shifts between
the observed and predicted waveforms as free parame-
ters in the inversion as proxies to account for azimuthal
heterogeneities in the region. Hallo and Gallovi¢ (2016)
demonstrated that time shifts present a major factor
in model uncertainty and reflect the main features of
structural heterogeneities in the frequency band typi-
cally deployed in the regional MT inversion schemes.
They are incorporated in the inversion by shifting the
Green'’s functions in time to improve the match with ob-

4

served waveforms. The method also accounts for data
noise through a diagonal noise covariance matrix by
assuming uncorrelated data noise. As noise varies be-
tween stations, depending on their proximity to the sea
or sources of urban seismic noise, station-specific am-
plitudes of the data noise covariance matrices are also
unknowns to be recovered in the inversion.

The likelihood function of Bayesian inversion in-
cludes all information from the data and Earth structure
and is proportional to the posterior probability of model
parameters. It is defined as

p(djm, k, t) = Hﬁ1; X
(2m) " |Cs (k)] (1)
exp {—; (g; (m, ;) —d;)" C;7* (gi (m, ti)_di):l

where m = [M,,, My, My, M., M,.]) is a vector of
MT parameters with five parameters by restraining de-
viatoric MTs only, k{k;} is a vector of station-specific
noise parameters included in the covariance matrix C;
for component i, t{¢;} is the vector of time shifts, also
free parameters represented as observed time minus
predicted time, g; (m,t;) is the shifted predictions and
d; the observed seismogram for component i, M is the
number of seismogram components (3 times the num-
ber of stations), and N is the number of data points in
each seismogram. For the data noise treatment, we use
the root mean square of data o; as the reference noise
strength (e.g., Musta¢ and Tkalcié, 2016), and construct
the data covariance matrix C; as

Ci (ki) = (ko) L. (2)

The posterior probability is numerically estimated by
the Markov chain Monte Carlo (McMC) method. The
McMC chain generally consists of two stages: the warm-
up stage, when Bayesian samplers explore the unlikely
region of the parameter space with lower posterior
probabilities, and the convergence stage, when the sam-
plers examine the highly likely solutions in great details.
We conservatively discard the first half of the chain,
considered as the warm-up stage, and retain the sec-
ond half iterations (the convergence stage) as the solu-
tion ensemble representative of the posterior distribu-
tion. To visualize solution uncertainty, the ensemble is
presented in this study as overlapping beach balls and
posterior distributions of the parameters. The mean so-
lution of the posterior distribution is then used to ana-
lyze the event’s characteristics and the comparison with
other earthquake catalogs.

4 Data preparation

Using the same inversion scheme, we prepare the wave-
form data of the seven selected earthquakes (Table 1)
from local/regional seismic stations. We mainly use the
local network in Croatia for the earthquakes that occur
onshore in Croatia, with some supplementary stations
in surrounding countries. We downloaded the seis-
mograms from the European Integrated Data Archive
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Event Magnitude (Mw)  DC (%) CLVD (%) Nodal plane 1 (°) Nodal plane 2 (°)
S=64.2+04, S=267.3+04,
1 5.260 + 0.003 97.76+0.98 2.24+0.98 D=438+0.4, D=486+04,
R=729+05 R=105.8+0.5
S=55.6+1.0, S$=2538+1.1,
2 4.660+0.003 95.29 +1.55 47141.55 D=415+0.7, D=50.0+0.8,
R=762+16 R=1019+13
S=79.7+0.5, S$=318.6+0.6,
3 4810+ 0.003 49.10+1.43 50.90 + 1.43 D=56.3+0.4, D=523+0.5,
R=473+09 R=1355+0.9
$=288.0+1.5, S=1439+1.1,
4 5.360 + 0.004 94.72 +2.45 5.28+2.45 D=70.8+0.4, D=232+0.6,
R=766+11 R=1236+23
S=114.8+0.6, S=221.9+0.4,
5 4.330+0.003 96.78 +2.22 3224222 D=593+0.7, D=63.7+0.6,
R=149.0+0.8 R=34.7+09
S=305.2+1.5, S=1453+1.6,
6 5.540 + 0.004 78.05+2.58 21.95+2.58 D=549+0.5, D=36.8+0.7,
R=781+19 R=106.3+2.5
S=302.0+1.4, $=99.4+15,
7 5.000 + 0.002 87.34+2.03 12.66 +2.03 D=550+0.5, D=372+08,
R=-766+19 R=-1084+223

Table 2 Results of seven events listed in Table 1, including the percentage of DC and CLVD components, and two nodal
planes defined by [strike (S), dip (D), rake (R)]. Uncertainties are reported as mean + one standard deviation for each param-

eter.

(https://orfeus-eu.org/data/eida/) hosted by the Obser-
vatories and Research Facilities for European Seismol-
ogy (ORFEUS). The three-component waveform data are
then corrected for the instrumental response to obtain
displacements and filtered between 20 s and 50 s using
a fourth-order one-pass Butterworth filter. Finally, the
datais cutinto a window centered on the Rayleigh waves
based on the origin time in Table 1, specifically, a 120 s
window for earthquakes in the Croatian mainland and
a 200 s window for earthquakes in the Adriatic Sea and
Italy.

We design a criterion modified from Ekstrom (2006)
to select stations for the inversion by adding the weight
of epicenter distance. The criterion is based on the com-
bined rank of the station score and the azimuth cover-
age. The station score is given as

score = SNR+ D (3)

where SNR is the normalized signal-to-noise ratio
(SNR) measured by data root-mean-square of the 200 s
after and before the P-wave arrival time (Halauwet et al.,
2024; Scognamiglio et al., 2009) and D is the normal-
ized score for epicenter distance (Scognamiglio et al.,
2009) determined considering the earthquake magni-
tude. Then, the stations are ranked based on the station
score, and the first station is selected with the highest
rank. The second station is chosen from the rest of the
stations, which gives the highest combined rank of sta-
tion score and the azimuth coverage measured by the ef-
fective number of stations, referred to as ENS hereafter,

5

asdefined by Eq. 10 in Ekstrom (2006). The later stations
are chosen one by one following Ekstrom (2006). The
details can be found in the Supplementary Material.

We manually chose 10-12 stations with a high SNR
and providing good azimuth coverage for the earth-
quakes in the Croatian continental part with the aim
to utilize as many stations as possible from Croatia’s
national network, comprising 30 permanent stations.
We use an empirically tested and carefully designed
scheme for other earthquakes analyzed in this paper to
select eight out of the hundreds of pre-processed sta-
tions instead.

The predicted waveforms are processed in the same
way as the observed waveforms. They are calculated by
following the method developed by Jost and Herrmann
(1989), and Minson and Dreger (2008). We compute the
Green’s functions (GFs) using the frequency-wave num-
ber (i.e., f-k) method implementation in Computer Pro-
grams in Seismology (Herrmann, 2013) for the source
location in Table 1. For earthquakes in the Croatian
mainland, we utilize a composite structural model to
mitigate the 3-D heterogeneity in the region. The Croa-
tian mainland’s geological structure is complex with
a significant crustal thickness variation (e.g., Stipce-
vié et al., 2020), necessitating the use of a composite
structural model (e.g., Tkalcic et al., 2009) to compute
Green’s functions. As shown in Fig. S1, four 1-D models
are used depending on the station location. For earth-
quakes in Italy and the Adriatic Sea, we use a 1-D veloc-
ity model (a.k.a. CIA; Herrmann et al., 2011), which is
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Figure 2 Inversion results for the 2020 Zagreb main shock (Event 1). (a) Map of the study region showing the earthquake
location (red star) and the 12 stations (triangles). The colors shown in the color bar denote the recovered station-specific time
shifts between observed and predicted waveforms. (b) A parameter search for the source depth from 1to 20 kmin 1 kmincre-
ment. The red curve (left y-axis) represents the posterior probability of the mean MT (red beachball) in the convergence stage
varying with depths, while the black curve (right y-axis) shows the percentage of DC component of the mean MT. The verti-
cal dashed line marks the optimal depth corresponding to the maximum posterior probability. (c) MT solution (beachball)
from INGV. (d) MT solutions at the optimal depth in this study, including the mean MT (left) and all MTs during the inversion
(right), where yellow represents the warm-up stage, and black represents the convergence stage. (e) Waveform fit between
observed (black) and predicted (red) waveforms from the mean MT in (d). The numbers below waveforms are epicenter dis-
tance, azimuth, recovered stations-specific time shift, and noise parameters. The listed waveform fit level (VRs) in (c) and
(d) are computed by using the GFs from the same composite Earth model, at the same 12 stations, and filtered in the same
frequency band, but with each solution’s respective source depth.

also used in the INGV catalog to determine the devia- As summarized in Figs. 2 and 4-9, panels (a) show
toric MT parameters. the map of earthquake and stations, (b) show the pa-
rameter search for source depth, and panels (c) and (d)
compare the MT solution from the INGV catalog with

5 Results the mean MT solution from our inversion. The evolu-

tion of MTs during the whole inversion is also visualized
The information on the seven earthquakes, along with by the color-coded beachballs on the right in panel (d),
the source depth from the parameter search in this where yellow colors indicate the warm-up stage with
study and MT solutions with their associated uncertain- lower probabilities, and dark colors indicate the con-
ties, is presented in Table 1. The decomposition of MT vergence stage with higher probabilities. Panels (e) plot
solutions, corresponding nodal planes and their associ- the waveform fit between the observations and predic-
ated uncertainties can be found in Table 2. The mean tions generated by the mean MT solution. The recov-
deviatoric MT solution for each earthquake is plotted as ered station-specific noise parameters k; and station-

a beachball in Fig. 1(b).
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Figure3 Posterior distribution of unknown parameters in the Bayesian MT inversion for the 2020 Zagreb earthquake (main-
shock, Event 1), including five parameters of the deviatoric MT, M;; 12 station-specific noise parameters, k;, and 12 station-
specific time shifts ¢;. The unit of MT parameters is 5 x 10! Nm. The unit of time shifts is a second. Noise parameters are
unitless. Each subpanel shows a scatter plot of parameter pairs during the convergence stage of the inversion, with points
shaded from black to gray according to density. The overlaid contours are included to highlight the shape of the distribution.
A magnified view of five source parameters is shown in the upper right corner.

specific time shifts 7; are also listed. The distribution
of recovered time shifts is plotted in panel (a). The pos-
terior distributions of the parameters are displayed in
Figs. 3 and S2-S7, alongside the overlapping beachballs
in Figs. 2 and 4-9 to illustrate the uncertainty in the solu-
tions. The following sub-sections provide the details of
the MT inversion results for each of the targeted earth-
quakes.

5.1 The three earthquakes in Croatia (main-
land)

5.1.1 The 2020 Zagreb earthquake (mainshock)

Our inversion for the 2020 Zagreb earthquake (Event 1)
reveals a pure DC mechanism of reverse faulting with a
moment magnitude M, 5.26 at a depth of 5 km (Fig. 2).
The parameter search for source depth shows a clear
peak at a depth of 5 km with the highest probability in
Fig. 2(b). The mean MT from the convergence stage at
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Figure 4 Inversion results for the largest aftershock of the 2020 Zagreb earthquake (Event 2). See the caption of Fig. 2 for
details.

this optimal depth comprises a 97.8% DC and a 2.2%
CLVD, as shown in Fig. 2(d). The focal mechanism indi-
cates a reverse faulting with nodal planes defined in Ta-
ble 2. This solution generates the predicted waveforms
that fit the observations well, as evidenced by the vari-
ance reduction (VR) of 80%.

The posterior distribution of 29 inverted parameters,
including 5 for the deviatoric MT, 12 for station-specific
noise, and 12 for station-specific time shifts, is summa-
rized in Fig. 3. A notable observation is that no multi-
modal distribution is observed for any parameter. Fur-
thermore, the inter-parameter trade-off between each
pair of parameters is negligible except for the pair of
M, and M,,,, which shows a weak linear dependence
in Fig. 3.

5.1.2 The largest aftershock of the 2020 Zagreb
earthquake

The inversion results of the largest aftershock of the
2020 Zagreb earthquake (Event 2) in Fig. 4 suggest that
the largest aftershock occurred shallow, at a depth of
3 km, with a similar focal mechanism to the mainshock.
Our deviatoric MT inversion prefers a source dominated

8

by a 95.3% DC component and a negligible CLVD com-
ponent (4.7%). The faulting has a geometry as listed
in Table 2. The posterior distribution of 25 inverted
parameters, including 5 for the deviatoric MT, 10 for
station-specific noise, and 10 for station-specific time
shifts, is summarized in Fig. S2. There is no multi-modal
distribution observed in any of the parameters. Fur-
thermore, there is no substantial inter-parameter trade-
off between each pair of parameters.

5.1.3 The largest foreshock of the 2020 Petrinja
earthquake

The largest foreshock of the 2020 Petrinja earthquake
was the M, 4.9 event that struck on December 28, 2020,
a day before the main M,, 6.4 earthquake. It occurred
near the town of Petrinja, causing minor structural
damage and alarming residents. The subsequent devas-
tating mainshock caused significant destruction and ca-
sualties (e.g., Baize et al., 2022; Herak and Herak, 2023,
Markusic et al., 2021). We exclude the mainshock in this
study because further investigation may be needed to
validate the point-source approximation for this event,
given its larger magnitude. The MT inversion for its
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Figure 5 Inversion results for the largest foreshock of the 2020 Petrinja earthquake (Event 3). See the caption of Fig. 2 for
details.

largest foreshock can contribute valuable insight into
the source mechanism of the mainshock.

The inversion of full waveforms at 12 stations with
very good azimuth coverage (Fig. 5a) indicates a signif-
icant non-DC mechanism during this earthquake. The
parameter search for the source depth leads to a depth
of 8 km with the highest probability, as shown in Fig. 5b.
The MT solution at this optimal depth consists of 49.1%
DC and 50.9% CLVD components. The nodal planes of
the recovered DC solution are listed in Table 2. This
source mechanism with the significant CLVD compo-
nent can explain the observations at a fair waveform fit
level with VR =77.7% (Figs. 5d and 5e).

The posterior distribution of 29 inverted parameters,
including 5 for the deviatoric MT, 12 for station-specific
noise, and 12 for station-specific time shifts, can be
found in Fig. S3. Similarly to previous cases, there is
no multi-modal distribution for any of the parameters,
and there is no substantial inter-parameter trade-off be-
tween each pair of parameters.

9

5.2 Thetwo earthquakesinthe offshore Adri-
atic Sea

For Event 4, our station-selection algorithm chooses
eight stations, including one from Bosnia and Herzegov-
ina, two from Croatia, and five from Italy, with a good
azimuth coverage (ENS = 6.81) as in Fig. 6a. A parame-
ter search for the source depth indicates that this earth-
quake occurred at a depth between 2 and 5 km where a
very similar focal mechanism (as beachballs) and prob-
ability (the red curve) are obtained (Fig. 6b). The MT
solutions at these depths indicate that the earthquake is
a pure DC source because the CLVD component is very
small which is close to zero for the depths of 4 km and
5km as shown by the black curve in Fig. 6b. The optimal
source depth is 4 km. The corresponding fault plane is
included in Table 2.

The posterior distribution of 21 inverted parameters,
including 5 for the deviatoric MT, 8 for station-specific
noise, and 8 for station-specific time shifts, can be found
in Fig. S4. Two stations, CR.DBRK and MN.BLY, require
significant time shifts to align the predicted waveforms
with the observations. Therefore, their time shift pa-
rameters, ¢; and t¢s, nearly saturate to the upper bound
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of Fig. 2 for details.

of the prior. The significant time shifts are likely be-
cause this event’s actual location is about 30 km to the
SSE from the location INGV used (last accessed on 10 Oc-
tober 2024; the location was updated in a recent work on
this event by Di Luccio et al. (2025), which was under re-
view during the time we prepared our manuscript).

For Event 5, we try to use the full waveforms but filter
them into a shorter-period band, i.e., 15-50 s. We man-
ually choose eight stations, as in Fig. 7a, because of the
limited availability of stations on the regional scale con-
sidered. The azimuthal coverage is not as good as that
of the other four events in Croatia. The inversion results
are summarized in Fig. 7. The optimal source depth is
9 km, as shown in Fig. 7b, with a similar probability for
10 km. Our inversion suggests that this earthquake is a
pure DC focal mechanism with a 96.8% DC component
and a negligible CLVD component (3.2%). The nodal
planes of the focal mechanism are listed in Table 2. The
posterior distribution of 21 inverted parameters can be
found in Fig. S5. No multi-modal distributions and no
substantial inter-parameter trade-offs were observed.
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5.3 The two earthquakes in Italy

For Event 6, our inversion favors a DC-dominated
source together with a large CLVD component mecha-
nism (Fig. 8). The station-selection algorithm chooses
eight stations with a good azimuthal coverage of ENS
= 6.57 as in Fig. 8a. The search for the optimal source
depth results in a depth of 6 km. As shown in Fig. 8c,
our deviatoric MT solution consists of dominating DC
(78.1%) and significant CLVD (21.9%) components. The
solutions support reverse faulting during this earth-
quake with nodal planes listed in Table 2. We obtain a
moment magnitude M,, = 5.5. The posterior distribu-
tion of 21 inverted parameters in Fig. S6 demonstrates
that no multi-modal distributions and no strong inter-
parameter trade-offs are observed.

The inversions for Event 7 are summarized in Fig. 9.
Our algorithm chooses eight stations with a high az-
imuthal coverage of ENS = 7.8 as plotted in Fig. 9a. The
parameter search for the source depth leads to a depth
of 3 km, as shown by the red curve in Fig. 9b. As listed
in Table 2 and Fig. 9d, our MT solution includes a sig-
nificant DC component (87.3%) and a 12.7% CLVD com-
ponent. The DC component indicates a normal faulting
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Figure7 Inversion results for the southern Adriatic earthquake (Event 5). The optimal source depth is 9 km. See the caption

of Fig. 2 for details.

with nodal planes in Table 2. The predicted waveforms
from our deviatoric MT match with the observations ata
high level of VR=89.7%. The posterior distribution of 21
inverted parameters can be found in Fig. S7. No multi-
modal distributions were observed. However, the linear
dependency between MT parameters and noise or time
shift parameters is present.

6 Discussion

6.1 The presence of non-DC components

We investigate the notable presence of a CLVD compo-
nentin the MT solutions for three earthquakes—Event 3,
Event 6, and Event 7—with particular emphasis on Event
3, which includes a 50.9% CLVD component. First, we
perform a full MT inversion using the optimal source
depth determined from the previous depth search. As
shown in Fig. 10, the full MT inversion for Event 3 yields
significant non-DC components: 50.4% CLVD and 5.0%
ISO, consistent with the deviatoric MT inversion results
presented in Section 5.1.3.

We conduct a jackknife sensitivity test to assess the
robustness of the inversion results, particularly the sub-

11

stantial CLVD component. In this test, we randomly dis-
card 1 to 5 of the 12 stations and repeat the deviatoric
MT inversion 8 times for each case, resulting in 40 in-
versions at a depth of 8 km. As shown in Fig. S8, the
CLVD component remains consistently present in all so-
lutions, with a mean value of 50.1%. Given the regional
tectonic setting, volcanic and geothermal contributions
to the large CLVD component can be excluded. Al-
though the liquefaction was observed during the main-
shock (i.e., the 2022 M,, 6.4 Petrinja earthquake), possi-
ble fluid effects at the source depth is unlikely to con-
tribute to the CLVD component. Instead, the com-
plex aftershock sequence of the mainshock (Herak and
Herak, 2023) suggested it may reflect the geometric
complexity of the source process likely involving two or
more nearby faults.

Similarly, the full MT inversions and sensitivity tests
for Event 6 (Figs. S9 and S10) and Event 7 (Figs. S11 and
S12) confirm the presence of CLVD components in their
solutions. We performed a series of inversions by ran-
domly removing one station from the selected 8 stations
(8 trials), then repeated the process with removal of 2
and 3 stations, resulting in a total of 24 inversions. The
sensitivity tests obtain an average CLVD component of
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Figure 8 Inversion results for the 2022 M,, 5.5 earthquake in Costa Marchigiana Pesarese (Event 6). The optimal source

depth is 6 km. See the caption of Fig. 2 for details.

21.6% for Event 6 and 21.3% for Event 7, even though the
values fluctuate likely due to the decreased azimuthal
coverage after discarding 1-3 stations from the original
set of 8 stations shown in Figs. 8a and 9a. However, the
underlying causes of the non-DC components in these
three events remain uncertain and warrant further in-
vestigation, which is beyond the scope of this study.
Nonetheless, the presence of the CLVD component is
consistent with the INGV solutions, albeit with varying
degrees of significance. Notably, our solution for Event
3, which includes a higher CLVD component, provides
a better fit to the observed data than the INGV solution.

6.2 Comparison with solutions from avail-
able routine catalogs

For Event 1, compared with the INGV solution, which
includes a significant CLVD component of up to 32.3%,
our pure DC solution is 1 km shallower and provides
a much higher VR (by 12%) using the GFs under the
same source-station configuration but taking its own
depth, as shown inFigs. 2c-2e. The Kagan angle (Ka-
gan, 1991; Tape and Tape, 2012) expressing the angular
distance between our solution and the INGV solution is
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11°. The fault geometry angles obtained here exceed the
range of the HRCS038 seismogenic fault from the Euro-
pean Database of Seismogenic Faults (Basili et al., 2013),
which expects a 50°-60° strike, 50°-70° dip, and 20°-50°
rake. However, they are consistent with the solution of
[strike = 67°, dip = 47°, rake = 79°] or [strike = 263°, dip
=44°, rake = 102°] from the inversion of first motion po-
larity data by Herak et al. (2021b).

The solution of Event 2, the largest aftershock of the
2020 Zagreb earthquake, is very similar to the main-
shock with a Kagan angle of 11°, but shows a small dif-
ference from the INGV solution of [strike = 78°, dip =
38°, rake = 108°] or [strike = 235°, dip = 54°, rake = 76°]
with a Kagan angle of 21°. Even though both our and
INGV solutions favor pure DC sources, our MT solu-
tion generates a much better waveform fit (VR = 77.1%
vs. VR = 39.3%) between the observations and predic-
tions at eight chosen stations, as shown in Figs. 4c-4e.
The source of difference in waveform fit could be the
deeper source depth (10 km) and a higher moment mag-
nitude in the INGV solution. We may have a better con-
straint on the source depth and the magnitude by incor-
porating uncertainty treatment using a composite Earth
model (Fig. S1) and incorporating more local stations

SEISMICA | volume 4.2 | 2025



SEISMICA | RESEARCH ARTICLE | Bayesian Reassessment of Seismic Moment Tensors and Their Uncertainties in the Adriatic Sea Region

48°N [a) & ]
g*\ T
10 876 4
47°N M e
-
‘l\VSALO
45°N 7

‘MN.VLc"x

IV.CRMI
‘I\/.OSSC

44°N

43°N 0

‘(IV.MGAB

42°N

6.3 100

6.2 1

- 80

<
o
‘_'61‘ <°\
g —60~g
26.0 1 o
il o) C
o L 40 Y
e ol 9
25.9
M |

e
[e")
)

5.7

I 7 & 11 13 15 17 10 21
Depth (km)

Figure9
See the caption of Fig. 2 for details.

(Fig. 4a).

The recovered faulting for Event 3 is expected by the
HRCS37 seismogenic fault model (Basili et al., 2013),
which predicts a 60°-80° strike, 50°-70° dip, and 20°-50°
rake. Similarly, the INGV solution for this event also fa-
vors a non-DC source with 63.3% DC and 36.6% CLVD
components. However, the focal mechanism is signifi-
cantly different in the INGV catalog [strike = 254°, dip =
72°, rake = 34°] or [strike = 153°, dip = 58°, rake = 159°]
with a Kagan angle of 88°, as plotted in Fig. 5¢, and their
solution can only fit part of the data considered here,
with a relatively low VR of only 28.2%. The focal mech-
anism obtained here is also different from the solutions
[strike = 335°, dip = 85°, rake = -179°] or [strike = 245°,
dip = 89°, rake = -4°] from Herak and Herak (2023) using
the first motion polarity data and assuming a pure DC
source mechanism.

For Event 4, we obtain a source depth of 4 km, which
is consistent with the 5 km depth reported in the INGV
solution, despite the latter including a significant CLVD
component of up to 30%. The geometry of the fault
is similar to the INGV solution (Kagan angle of 18°)
as plotted in Fig. 6¢, as both solutions support a re-
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Inversion results for the 2023 M, 4.9 earthquake in Marradi, Tuscany (Event 7). The optimal source depth is 3 km.

verse faulting for this event. The estimated moment
magnitude M,, = 5.36, at the optimal depth of 4 km is
0.11 larger than the one from INGV. Our solution pro-
duces a better waveform fit between the observations
and predictions at these eight stations, as shown in
Fig. 6d and 6e.

For Event 5, our inversion indicates a pure DC focal
mechanism, while the INGV solution in Fig. 7c has a
much higher CLVD component of 23.1%. Additionally,
our estimated magnitude is smaller than the INGV’s es-
timate. The Kagan angle between them is 20°. These dif-
ferences lead to a much better waveform fit to the used
observations than the INGV solution, as in Fig. 7c-7e.
The focal mechanism in this study is also somewhat dif-
ferent than the ones from the first motion polarity data
(Herak, 2024) [strike = 113°, dip = 65°, rake = 170°] or
[strike = 207°, dip = 81°, rake = 25°]. They both depict
a strike-slip mechanism but rotated slightly relative to
each other (Kagan angle of 23°). The obtained source
depth of 9 km agrees with the 10 km from the INGV so-
lution.

For Event 6, both our solution and the INGV solution
support the reverse faulting with similar nodal planes as
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Figure 10 Full MT inversion results for Event 3. (a) Beach-
ball of the mean MT solution. (b) Beachballs of all MT so-
lutions sampled throughout the entire inversion process,
color-coded by the logarithm of the likelihood (see color bar
on the right). (c) Lune diagram showing MTs from the con-
verged stage of the inversion; the red cross marks the mean
solution. (d) Lune diagram showing the evolution of MTs
over the whole inversion stage, with each solution colored
by its log-likelihood, consistent with panel (b).

listed in Table 2 and in Figs. 8c and 8d with a Kagan angle
of 13°. We obtain the same source depth of 6 km and a
similar moment magnitude, M,, = 5.5, as the INGV be-
cause both methods use the same velocity model (CIA
model) and similar regional waveforms. The MT solu-
tions in this study and those from the INGV catalog gen-
erate the same waveform fit between the observations
and predictions (Figs. 8c-8e). However, a difference be-
tween them is still observed; a CLVD component ob-
tained here is 5% larger than the INGV result.

For Event 7, we obtained a shallower source depth,
3 km, compared to the 6 km depth from the INGV cata-
log, but the MT solutions are similar, with a Kagan an-
gle of 11°, both dominated by a DC component with a
large CLVD component. Both solutions indicate nor-
mal faulting with comparable nodal planes. The pre-
dicted waveforms from our deviatoric MT show a higher
level of agreement with the observed data (VR =89.7%),
which is 12% higher than that of the INGV solution
(Figs. 9c-9e). Such a good waveform fit could be caused
by the shallower source depth, which not only corre-
sponds to the highest probability (see Fig. 9b), but also
yields the near-highest VR among the tested depths for
this event (VRs for 1-6 km are 86.0%, 88.0%, 89.7%,
90.0%, 87.5%, and 81.2%, respectively).

In the case of Event 7, more linear dependencies be-
tween parameters are observed in Fig. S7, such as be-
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tween M, and M,., as well as between M, and ¢4, ts,
t4, etc. Their underlying causes remain uncertain. A
plausible explanation is the decreased resolution asso-
ciated with shallow events, since such similar depen-
dencies are not observed for the deeper events (e.g.,
Events 1, 3, 5, and 6). Additionally, the presence of sig-
nificant non-DC components in its MT solution likely
increases the effect of model complexity, making it dif-
ferent from the other shallow events at similar depths,
such as Events 2 and 4.

6.3 Challenge for small events

For Event 5, the full waveform inversion is challenging
because its magnitude is smaller than other events in
this study. This earthquake occurred in the south Adri-
atic basin—the deepest part of the Adriatic Sea. Unlike
other regions of the Adriatic Sea, this area rarely experi-
ences seismicity, according to the Croatian Earthquake
Catalogue (Herak et al., 1996), with supplemented data
up to 2022. The INGV reported a local magnitude of
My, 4.7 for this unexpected earthquake. Based on the
empirical relationship between the duration and the
moment magnitude (Ekstrom et al., 1992; Ekstrom and
Engdahl, 1989), the ruptures of smaller earthquakes
usually last shorter, and are therefore more efficient at
generating high-frequency waveforms. The resolvabil-
ity of source parameters for smaller earthquakes relies
on the use of shorter-period full waveform data but re-
mains difficult because of the simplified description of
the Earth’s structures, as discussed in our previous stud-
ies (e.g., Hu et al., 2023; Pham et al., 2024). Alterna-
tively, utilizing the parts of full waveforms, such as the
first motion polarity, the amplitudes, or amplitude ra-
tios, can mitigate the demanding high-frequency wave-
form modeling. A detailed summary can be found in
Shang and Tkalci¢ (2020).

6.4 Station-specific time shifts as measures
of structural error

The station-specific time shifts between the observa-
tions and predictions and station-specific noise for the
mainshock and aftershock of the 2020 Zagreb earth-
quake (Events 1 and 2) exhibit a consistent pattern.
As shown in Fig. S13a, the common stations used for
both events require similar time shifts to re-align the
predicted waveforms with the observations. This con-
sistency arises because the time shifts are primarily
due to the structural error in the Earth model. Conse-
quently, the spatial distribution of these shifts reflects
regional structural heterogeneity, as discussed by Hu
et al. (2023). Furthermore, the estimated relative noise
levels at the stations are also consistent between the two
earthquakes, as illustrated in Fig. S13b.

A key distinction in our MT inversion approach lies
in handling uncertainty related to structural errors and
data noise, which largely accounts for the differences
between our MT solutions and those reported in ex-
isting earthquake catalogs. Structural errors are ad-
dressed through station-specific time shifts between the
observed and predicted waveforms. Unlike the cut-and-
paste (CAP) method (Zhao and Helmberger, 1994; Zhu
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and Helmberger, 1996), these time shifts are treated as
free parameters, allowing us to fully account for their
uncertainty. On the other hand, data noise is assumed
to be uncorrelated, modelled using a diagonal covari-
ance matrix in Eq. 1), justified by the high SNRs ob-
served in most events. Hu et al. (2023) highlighted
the importance of this assumption for inverting small
to moderate earthquakes. Although incorporating cor-
related noise, as done by Musta¢ and Tkalci¢ (2016),
can be beneficial, it requires a full covariance matrix
and is computationally intensive. This study proposes
a lightweight alternative with discussed assumptions,
offering a practical solution for developing a modern
earthquake catalog in this region.

7 Conclusions

In this study, we utilize our evolving Bayesian MT inver-
sion to determine MT parameters for seven earthquakes
with reported magnitudes between 4.5 and 5.5 over the
past five years in the Adriatic Sea and its surrounding
areas in Croatia and Italy. The method considers the
uncertainty deriving from data noise and structural er-
rors due to the simplified description of Earth’s inte-
rior. The optimal source depths, mean MT solutions,
their decompositions, corresponding nodal planes, and
associated uncertainties for the seven earthquakes are
summarized in Tables 1 and 2. Our results show that
four events (Event 1, Event 2, Event 4, and Event 5 in
Table 1) exhibit nearly pure DC mechanisms. The re-
maining three events show significant non-DC compo-
nents: Event 3 has a significant CLVD component of
50.9%, whereas Event 6 and Event 7 have smaller but
consistent CLVD components (21.95% and 12.7%, re-
spectively). In addition, Event 2 and Event 7 have shal-
low optimal source depths of 3 km.

The comparison with the INGV and other regional
catalogs demonstrates the method’s feasibility and po-
tential improvement in source determination after un-
certainty treatment for data noise and structural error.
Our MT solutions for Event 6 and Event 7 in Italy closely
match those from INGV, likely due to the use of the same
velocity model and similar network coverage. For Event
2, we obtained a shallower source depth of 3 km than
10 km from INGV by using different velocity models,
even though both solutions support a similar pure-DC
mechanism. For Event 3, both our solution and that of
INGV include significant non-DC components, the ori-
gins of which warrant further investigation. In contrast,
our pure-DC solutions for Events 1, 4, and 5 differ from
the INGV solution with significant non-DC components
and can better fit the waveforms selected by a station-
selection scheme considering epicenter distance, SNR,
and azimuth coverage. The refined source mechanisms
could complement local seismogenic fault models for
the complex geological setting, assess the hazard po-
tential, and support improvement to the regional earth-
quake catalogs in the Adriatic Sea region.
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