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Abstract Wwe present the first global-scale database of 4.3 billion P- and S-wave picks extracted from 1.3
PB continuous seismic data via a cloud-native workflow. Using cloud computing services on Amazon Web Ser-
vices, we launched ~145,000 containerized jobs on continuous records from 47,354 stations spanning 2002-
2025, completing in under three days. Phase arrivals were identified with a deep learning model, PhaseNet,
through an open-source Python ecosystem for deep learning, SeisBench. To visualize and gain a global under-
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standing of these picks, we present preliminary results about pick time series revealing Omori-law aftershock

decay, seasonal variations linked to noise levels, and dense regional coverage that will enhance earthquake
catalogs and machine-learning datasets. We provide all picks in a publicly queryable database, providing a
powerful resource for researchers studying seismicity around the world. This report provides insights into the
database and the underlying workflow, demonstrating the feasibility of petabyte-scale seismic data mining
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on the cloud and of providing intelligent data products to the community in an automated manner. Accepted

1 Introduction

Detecting earthquakes by picking P- and S-wave arrival
times is fundamental to seismology. It enables rapid
estimation of earthquake source properties, provides
early warning for potential ground shaking, and sup-
ports seismic hazard assessment. Picking the arrival
time is also the first step in building earthquake cat-
alogs. Traditional earthquake detection methods are
typically unsupervised and rely on signal characteris-
tics such as impulsivity, using techniques like the short-
term average/long-term average (STA/LTA) filter (e.g.,
Allen, 1982) or kurtosis-based approaches (Hibert et al.,
2014). However, these methods are highly sensitive to
background seismic noise, limiting their effectiveness
to small-magnitude events or recordings from particu-
larly quiet stations.

Recent advances in seismic data processing tech-
niques demonstrate that artificial intelligence (AI) and
machine learning (ML) overcome these limitations and
have shown high performance in earthquake detection
(Perol et al., 2018; Ross et al., 2018; Mousavi et al.,
2019b), phase picking (Zhu and Beroza, 2019; Zhu et al.,
2022; Mousavi et al., 2020; Ross et al., 2020; Michelini
et al., 2021), and phase association (Ross et al., 2019b;
Mousavi et al., 2020; McBrearty and Beroza, 2023). Su-
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pervised deep learning approaches to earthquake detec-
tion and phase identification require and have benefited
from large, labeled datasets (e.g., several hundred thou-
sand examples of P-waves, S-waves, and noise, along
with the timing of body wave arrivals) for model train-
ing. These datasets are often compiled from analyst-
reviewed phase picks cataloged by regional seismic net-
works and compiled by researchers for Al-readiness
(Zhu and Beroza, 2019; Mousavi et al., 2019a; Yeck
et al., 2021; Ni et al., 2023; Zhu et al., 2025). Once
trained, deep-learning-based detection and phase pick-
ing frameworks have significantly outperformed more
conventional approaches in sensitivity and timing accu-
racy. They can detect arrivals in data with low signal-
to-noise ratios and reliably pick arrivals to within less
than 0.1 s (Zhu and Beroza, 2019; Mousavi et al., 2020),
without requiring manual intervention for hyperpa-
rameters. Additionally, once trained, these models are
inference-only, making them extremely fast and scal-
able. These successes, combined with the abundance
of readily available continuous seismic data, facilitate
large-scale regional and global data mining efforts.
Data volumes in seismology are expanding rapidly,
with researchers now typically tackling datasets of TBs
in size that require advanced computing strategies for
analysis. Cloud computing is a promising infrastruc-
ture that can support this by enhancing the reliabil-
ity, scalability, and accessibility of data (Gentemann
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Figurel Map of stations, displayed as triangles and color coded according to the Data availability in station-years included
in EarthScope, NCEDC, and SCEDC archives. Panel (a) shows the distribution of global station data availability. Panel (b)
shows a detailed view of stations in the United States, while Panel (c) shows data availability in California.

et al., 2021), promoting reproducible and open sci-
ence. Most importantly for users, cloud computing
provides large-scale computing power close to the data
archives, eliminating the need to download massive
datasets and enabling users to run analyses in-place on
the cloud using cloud-native tools (e.g., elastic comput-
ing, batch computing, scalable storage, and database
services). We refer the readers to Ni et al. (2025) for
comprehensive descriptions of various AWS resources
commonly used for scientific computing, including the
ones used in our experiment. The Southern Califor-
nia Seismic Network (SCEDC) has been hosting a copy
of its entire data archive on the Amazon Web Services
(AWS) Simple Storage Service (S3) since 2019 (Yu et al.,
2021). The Northern California Earthquake Data Cen-
ter (NCEDC) followed a similar model and architecture
in 2024. The EarthScope Consortium is a non-profit
organization that supports Earth science research by
collecting, managing, and providing access to seismic
and geodetic data collected worldwide from all United
States (US) NSF-supported seismic experiments, a sub-
set of the US regional seismic networks, and a selec-
tion of stations from global seismic networks (Zawacki
et al., 2023). It serves the scientific community by op-
erating and maintaining networks of instruments, cu-
rating data and metadata, and delivering these to end-
users. In recent years, the EarthScope Consortium de-
cided to migrate data collection, archiving, and delivery
services to the cloud.

Here we present results from one of the first large-
scale, cloud-based seismic data-mining efforts. We pro-
cessed approximately 1.3 PB of continuous seismic data
from stations worldwide (see Figure 1). Leveraging
modern cloud infrastructure, we developed a scalable
cloud-native workflow to efficiently manage and ana-
lyze this extensive dataset. The sections below describe
the waveform formats, cloud architecture, and com-

2

pute resource utilization. We also describe the struc-
ture and contents of the resulting phase-pick database
and provide public access through a web service. This
work demonstrates the feasibility and advantages of us-
ing cloud computing for robust, high-throughput seis-
mic waveform analysis. At the same time, the resulting
database can serve as a starting point for the commu-
nity to study seismicity globally. As in a typical catalog
workflow, phase picking is the most runtime-intensive
step. We believe that our database, providing global-
scale, high-quality phase picks, has the potential to sub-
stantially accelerate seismicity studies worldwide.

2 Methods

2.1 Data

The NCEDC provides public access to continuous seis-
mic waveform data through AWS, utilizing the AWS
Open Data Sponsorship program. NCEDC continuous
waveform data are hosted in the ncedc-pds S3 bucket
in the us-east-2 region (Ohio, United States). Files are
organized by network, year, and day of year, and are
stored in miniSEED format, with each file represent-
ing one day of data from a single channel. Similarly,
the SCEDC offers public access through the scedc-
pds S3 bucket in the us-west-2 region (Oregon, United
States). The EarthScope Consortium provides data ac-
cess to credentialed users through an S3 Access Point,
which gives fine-grained control over permissions and
network access. While users interact with the Access
Point much like a standard S3 bucket, internally, re-
quests are routed through a Lambda function that han-
dles S3 requests, enabling dynamic access management
and custom logic. The combined archives represent
47,354 stations recording data between January 1, 2002,
and March 31, 2025, for a total of more than 1.3 PB of

SEISMICA | volume 4.2 | 2025



SEISMICA | DATA REPORT | Global-scale Database of Seismic Phases

DocumentDB ” Public query
Cluster

- job metadata

station metadata -

- phase picks
checkpoints - P P

- checkpoints

-

EarthScope station response
FDSN service e —) .

ObsP
(, *Py) Batch Fargate

@ seisBench

station list -
date range - .b d'
1 mSEED
—
ol

~

S3 Storage

J

i § \

Figure 2 The scalable cloud-native workflow for seismic phase picking. Containerized jobs are submitted to AWS Batch,
which loads miniSEED seismic waveforms directly from AWS S3 buckets. Phase arrivals were identified with PhaseNet
through the SeisBench implementation. A DocumentDB cluster is employed to store job metadata, picks, and checkpoints.
Finally, an EC2 instance is used to provide a public database query service.

continuous seismic data (Figure 1).

2.2 Workflow

Several earthquake catalog building workflows exist
(Walter et al., 2021; Zhang et al., 2022; Retailleau et al.,
2022; Sun et al., 2024), some of which have focused on
cloud deployments (Zhu et al., 2023; Krauss et al., 2023).
Here, we develop a scalable cloud-native workflow for
seismic data processing designed for large-scale data
mining using AWS services, which we illustrate in Fig-
ure 2.

The workflow begins with a user-specified list of sta-
tion codes and a defined time range. A unique combina-
tion of 40 stations and a 20-day time window is paired
as one job, which is submitted to an AWS Batch com-
puting queue. We request 8 vCPU and 16 GB RAM for
each job, with interruptible SPOT instances enabled.
In contrast to the on-demand counterpart, SPOT in-
stances utilize unused AWS capacity with a discount
(up to 90%) but can be arbitrarily recalled. With ap-
propriate retrial and checkpoint mechanisms imple-
mented, SPOT instances effectively optimize the cost ef-
ficiency of our workflow. The submitted jobs stay pend-
ing until requested resources are supplied, automati-
cally elevating queued jobs into the running state un-
til the account quota is reached. With a 12,000 vCPU
account quota, the computing queue allows 1,500 jobs
to run in parallel. A running job first retrieves instru-
ment response information from the EarthScope In-
ternational Federation of Digital Seismograph Stations

3

(FDSN) fdsnws-station service via the ObsPylibrary
(Beyreuther et al., 2010). A temporary user creden-
tial is requested from EarthScope to specifically enable
EarthScope S3 access, while no credential is required
for SCEDC and NCEDC. Waveforms are loaded directly
from the S3 buckets by mapping the network code to the
appropriate data center’s bucket, bypassing the need
for middleware returning waveforms such as the FDSN
fdsnws-dataselect service. Forthis project, we pro-
cessed all available seismic data from January 1, 2002,
to March 31, 2025, across channels with the following
codes: EH?, HH?, BH?, HN?, EP?, DP?, EL?, SL?, SH?, CN®.
When stations host multiple location codes or channel
types, we pick and record them separately in the work-
flow. We skip waveforms that are empty, embargoed, or
contain over 50 gaps per component.

Once dataisacquired, phase arrivals are identified us-
ing PhaseNet (Zhu and Beroza, 2019), a deep learning-
based algorithm for automatic P- and S-wave detec-
tion, trained on the INSTANCE dataset (Michelini et al.,
2021), implemented through the SeisBench framework
(Miinchmeyer et al., 2022; Woollam et al., 2022). We
extract ground velocity estimates around each peak if
horizontal components exist. Each job’s output in-
cludes phase picks, job metadata, and checkpoint in-
formation during processing. These are stored in an
AWS DocumentDB server, which functions as a NoSQL
database for tracking job progress and storing results.
This cloud-native architecture supports high through-
put, fault-tolerant processing of large-scale seismic
datasets, leveraging the scalability and modularity of
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Field Description Type Example
8*stations trace_1id Station identifier str UW.SHW.01
network_code Network code str UwW
station_code Station code str SHW
location_code Location code (if any) str 01
channels Available channels str SH
latitude Latitude of station float 46.19364
longitude Longitude of station float -122.23492
elevation Elevation in meters float 1442.0
start_date Operational start date str 1972.275
end_date Operational end date str 3000.001
7*picks trace_1id Station identifier str CI.SVD.
channel Channel code str HH
start_time Start of pick window datetime 2012-01-01T02:45:37.400
peak_time Peak amplitude time datetime 2012-01-01T02:45:38.270
end_time End of pick window datetime 2012-01-01T02:45:38.610
confidence ML confidence score float 0.48456
amplitude Signal amplitude float 0.00027764
phase Phase type (P/S) str P
run_id Associated run ID Objectld ObjectId(...)
6*picks_record trace_id Station identifier str CI.SVD.
channel Channel code str HH
year Year of record int 2012
doy Day of year int 1
n_picks Number of picks int 12
run_id Associated run ID Objectld  ObjectId(...)
6*sb_runs run_id Run ID Objectld ObjectId(...)
model ML model used str PhaseNet
weight Model weight name str instance
p_threshold P-phase detection thresh- float 0.2
old
s_threshold S-phase detection thresh- float 0.2
old
components_load Input component config- str ZNE12
ure
seisbench_ver SeisBench version str 0.8.2
weight_ver Weight version str 2

Table1l DocumentDB Collections and Schema Summary

AWS cloud services — separating data storage (S3), com-
pute (Batch), and output management (DocumentDB).

2.3 Database

We employ the AWS DocumentDB to store intermedi-
ate and final data products. The DocumentDB service
is a NoSQL database that manages and stores data in
a structured, flexible format. The database is orga-
nized into several collections, each representing a dif-
ferent category of data relevant to the seismic data pro-
cessing workflows we’ve implemented here. Each col-
lection contains documents (JSON-like records) with a
defined set of fields representing specific information
pieces. The collections are also indexed to improve per-
formance and to avoid duplicate picks.

The DocumentDB server organizes station metadata
and processing outputs into distinct collections (Ta-
ble 1). This design enables efficient querying and audit-
ing of picking results and the exact software and settings
used to generate them. The schema is flexible enough
to query independent information, as station informa-

4

tion, job configuration, and analysis results are stored
independently but connected through unique IDs and
timestamps. During this experiment, an I/O-optimized
classinstance (db.r6g.2xlarge, 8 vCPUs, 64 GB RAM) was
employed as the DocumentDB server.

3 Results

3.1 Job Statistics

Mining the EarthScope dataset took less than three
days, while the combined NCEDC and SCEDC datasets
took less than 16 hours. Given the configurations de-
tailed in Section 2.2, this experiment results in a total
cost of ~$15,000. Since this was the first major data min-
ing exercise on the EarthScope archive, job sets were
launched manually, progressively, and actively moni-
tored. Each set of jobs was intended to process a year
of data recorded on all stations with channels matching
those listed above. Figure 3a shows the progression of
the jobs mining the EarthScope dataset, color-coded by
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Figure 3 Detailed job run history for the EarthScope, NCEDC, and SCEDC dataset. Panel (a) shows the Job ID as a function
of time, color-coded by year the data was recorded, for the EarthScope dataset. Panel (b) shows the job progression for the
NCEDC and SCEDC datasets. Panels (c) and (d) show the pending jobs as a function of time. Panels (e) and (f) show the
running jobs as a function of time. The horizontal dashed line represents the job quota.

the year the data was recorded. Figure 3c and e show the
pending and running jobs as a function of time. Time
periods where jobs were manually launched manifest as
increases in the number of pending and running jobs.
Since we used a quota of 1500 running jobs, the pend-
ing jobs decreased at an approximately constant rate.
There are occasional abrupt decreases in the number of
running jobs, for example, the one near 60 hours in Fig-
ure 3c, that correspond to times when stations are listed
as available in the metadata service, but no data is actu-
allyloaded. Figure 3b, d, and f show the job ID, pending,
and running as a function of time. For the NCEDC and
SCEDC datasets, all jobs were submitted and queued si-
multaneously and not parsed by year, as they were with
the EarthScope dataset.

3.2 Phase Picking

The mining exercise resulted in a total of 4.3 billion
picks (2.8 billion P-wave picks, 1.5 billion S-wave picks),
with the EarthScope, NCEDC, and SCEDC datasets con-
taining 2.8, 1.1, and 0.4 billion picks, respectively. Fig-
ure S1 shows the total number of picks broken down by
the dominant network codes in each dataset. The NC
network has the largest number of picks at nearly 1 bil-
lion, followed by UW at 0.5 billion, and CI at 0.4 billion.
These differences in the number of picks among net-
works may be factorized into multiple aspects: 1) the
amount of data available, 2) the tectonic settings where
stations are installed, 3) non-tectonic noise signals that
could be incorrectly picked, and 4) noise level that af-
fects the performance of the phase picker

5

Figure 4 shows examples of the daily number of picks
as a function of time for ten stations around the world.
Station UW.BVW is a station near Beverly, WA, atop
the Saddle Mountains. UW.BVW displays a strong sea-
sonality of detections, with detection rates peaking in
the late summer. IU.FURI is a station in southern Ad-
dis Ababa, Ethiopia. This station shows a large num-
ber of detections beginning in late 2024 and extending
into early 2025. These detections likely correspond to
a swarm of earthquakes that began in late September
and produced 19 M5+ earthquakes, the largest of which
was a M5.9 on February 14th, 2025. IU.MAJO in Mat-
sushiro, Japan, clearly recorded aftershocks from the
2011 M9 Tohoku-oki, 2014 M6.2 Hakuba, and 2024 M7.5
Noto earthquakes, as well as many others. AK.MCK in
McKinley Park, AK shows strong seasonality in detec-
tions and recorded the 2002 M7.9 Denali earthquake.
HV.KKO in Hawai’i records seismicity from the 2018
M6.9 earthquake and ongoing eruptive activity from the
Kilauea volcano. NZ.KHZ in Kahutara, New Zealand,
recorded the 2013 M6.5 Blenheim and the 2016 M7.8
Kaikoura earthquakes and aftershocks. IU.QSPA at the
South Pole shows a strong seasonality of detections
and also records increased detections beginning in late
2024, possibly due to a series of M5+ events near the Bal-
leny Islands and on the Pacific-Antarctic Ridge. C.GO04
at the Tololo Observatory, Vicuna, Chile, records the
2015 M8.3 Illapel and the M6.7 Coquimbo earthquakes.
II.NNA records the 2007 M8.0 Pisco, Peru earthquake.
Finally, CI.CGO records the 2009 M4.7 Inglewood, 2009
M5.8 Northern Baja California, the M6.4 and M7.1 2019
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Figure 4 Daily picks for selected stations. Stations are indicated by triangles on the central map, annotated with location
and channel codes. For each of the ten example stations, the detail plots show a time series of the number of picks per day

and a 28-day moving average in red.

Ridgecrest, and the 2020 M5.8 Lone Pine earthquakes.

Figure 5 shows the number of picks and earthquakes
after three selected large earthquakes: (a) 2015 M8.3 II-
lapel earthquake, (b) 2016 M7.8 Kaikoura earthquake,
and (c) 2002 M7.9 Denali earthquake. In each case,
the daily pick count follows approximately an Omori
decay law (Utsu, 1961). While the Omori decay in
the event count can only be observed for a short pe-
riod in the regional and global reference catalogs used,
they are stable over longer durations in the pick count.
For the Kaikoura earthquake, the Omori decay in pick
counts is stable over more than 1000 days. Notably, the
Omori p values, describing the decay rate, differ be-
tween picks and events with systematically higher p val-
ues for events, indicating a faster decay. For example,
for the Illapel earthquake, we estimate p = 0.87 for the
event counts, a typical value, yet p = 0.49 for the pick
counts, a surprisingly low value. We suggest this differ-
ence originates from the joint effects of event rate and
event magnitude on the pick counts. This highlights the
value of analyzing pick count dynamics to study earth-
quake statistics. Several time series of picks shown in
Figure 4 exhibit seasonality, demonstrating the poten-
tial effects of the noise floor.

4 Discussion

To estimate the total number of earthquakes we can
identify from the 4.3 billion seismic phase picks, we
begin by assessing how picks are distributed across
different magnitude bins. Based on estimates from
McBrearty and Beroza (2023), we expect an average of

6

approximately 20 P-wave picks per M1 earthquake, 60
picks per M2, and 100 picks per M3. Because earth-
quake frequency decreases with increasing magnitude,
for each M1 event (20 picks), we expect roughly 0.1 M2
events (6 picks) and 0.01 M3 events (1 pick). This im-
plies that M2s contribute only about 30% as many picks
as M1s, and M3s contribute just 5%. While these esti-
mates are for the dense network in California, the same
trends, even though with shifted magnitude values, are
observed in deep learning-based catalogs from other re-
gions (e.g., Miinchmeyer et al., 2025). This suggests that
the dataset is overwhelmingly composed of picks asso-
ciated with earthquakes near the regional detectabil-
ity threshold, e.g., in densely instrumented regions like
California M1 and smaller. Using this assumption, and
taking 20 picks per event as a working average, along
with an estimated association rate of 25%, based on typ-
ical values from literature (McBrearty and Beroza, 2023;
Miinchmeyer, 2024; Miinchmeyer et al., 2025; Journeau
et al., 2025), we arrive at a rough estimate of more than
54 million earthquakes that could be associated with the
data. We note that many further picks will correspond
to actual events that just lack sufficiently many detec-
tions to successfully associate them. For context, in the
time period of interest, the Southern California Seismic
Network (SCSN) catalog contains approximately 450,000
events, while the Advanced National Seismic System
(ANSS) Comprehensive Earthquake Catalog (ComCat)
includes about 4 million events for the United States and
larger global events. Deep learning methods have al-
ready demonstrated the ability to increase catalog com-
pleteness by up to an order of magnitude in sparsely
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United States Geological Survey (USGS) catalog. In each case, we count all events with at most a 1.5-degree difference in

latitude and longitude from the reference station.

instrumented regions (Park et al., 2022). Given the un-
precedented scale of this pick database, we fully expect
it to significantly expand the number of earthquakes
identified globally, particularly in regions that have his-
torically been under-detected.

We anticipate that the archive of picks will be of use
to many researchers in the field of earthquake science.
As such, we have made it available for public query us-
ing web services and URL builders (see Data and Code
Availability). A dedicated EC2 instance receives HTTPS
requests and directly returns query results. As an ex-
ample, one can query the picking results for AK.MCK.
station for one month of data using the Python script
in Listing 1. The script uses the pandas package (https:
//pandas.pydata.org) and loads the query results as a
data frame. We also offer a binary dump of the entire
database for download.

Our demonstration is simply a starting point for fu-
ture and more focused exploration. For instance, we
did omit the NCEDC SP? channels that had a name
change at some time during the network operation. We
also omitted using specialized base models, such as
PickBlue, that include hydrophone data and would be
more appropriate for picking ocean-bottom seismome-
ter (OBS) data (Bornstein et al., 2024). There are also op-
portunities to identify non-traditional seismicity, such
as volcanic earthquakes (Zhong and Tan, 2024) or low-
frequency earthquakes associated with slow slip events
(Miinchmeyer et al., 2024; Lin et al., 2024). The fully
open-source and modular design of the workflow en-
sures reproducibility while allowing flexibility to incor-
porate different models and pre-trained weights opti-
mized for different applications. This enables other re-
searchers to easily adopt and extend the cloud-native
workflow for their own analyses. Future work might
consider using template matching to enhance our de-
tections, as done in California (Ross et al., 2019a).

7

Moreover, we did not use data from other seismic data
providers. For instance, we omitted the non-FDSN seis-
mic networks, the Observatories and Research Facili-
ties for European Seismology (ORFEUS) federated net-
works, and the AusPass networks. Pulling data from
these data centers can be done using their FDSN web
services; however, care must be taken not to overload
the data service (e.g., MacCarthy et al., 2020). Because
of the resiliency of the commercial cloud providers to
spiked demand in data access, a strategy to improve the
stability of the non-cloud-hosted archive is to use cloud
storage as a backup in case of service interruption and
route users toward the cloud-hosted archive instead of
the local seismic network’s data servers.

5 Conclusions

In conclusion, our data mining experiment plants the
seed for impactful advances in geophysics. Cloud-based
and Al-aided picking of P- and S-waves can be used to
retrain neural networks and improve the rapid and pre-
cise assessment of earthquake hazards, such as earth-
quake early warning (e.g., Zhang and Zhang, 2024).
These newly detected potential earthquakes and wave-
forms may be valuable to build foundational models for
seismology that learn fundamental seismic signal pat-
terns from massive waveform libraries (e.g., Wangetal.,
2025; Liu et al., 2024), and then be fine-tuned for specific
tasks (e.g., picking, polarity, backazimuth, etc.). Run-
ning this petabyte-scale workflow on the cloud also pro-
vides a testbed for greener computing with tools that
can allow researchers to deploy carbon-aware comput-
ing jobs (e.g., West et al., 2025).
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Listing1 Python query of the picking database
pandas as pd

url = f"{base_url}query?tid=AK.MCK.&start_time=2010-01-01&end_time=2010-02-01&Llimit=1000"

base_url = "https://dasway.ess.washington.edu/quakescope/service/picks/"
pick = pd.read_csv(url, delimiter="|")
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