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Abstract 0n23April2025,a M, 6.3 earthquake struck the Sea of Marmara near the Kumburgaz segment
of the North Anatolian Fault (NAF), triggering over 500 aftershocks within 15 days. This study presents a rapid
assessment of the event through aftershock relocation using double-difference technique, fullmoment tensor
inversion of the mainshock, and ground motion analysis. The mainshock exhibited a strike-slip mechanism at
adepth of 6 km with a significant non-double-couple component (40%). The aftershocks mostly occurred east
of the mainshock, primarily within 10 km depth. Shakemaps derived from ground motion recordings highlight
peak ground accelerations exceeding 210 cm/s? east of the mainshock in western Istanbul and Modified Mer-
calli Intensities reaching level 6. The ground motion prediction equation developed for the region slightly un-
derestimated the peak ground motions in short-period pseudo-spectral acceleration (PSA) and peak ground
acceleration (PGA). Comparison with Turkish seismic design codes revealed that short-period PSA reached
code limits in some stations, raising concerns for structural resilience especially in older buildings in those
areas.

Ozet (Turkish) 23 Nisan 2025 tarihinde, Marmara Denizi'nde Kuzey Anadolu Fayt'nin (KAF) Kum-
burgaz segmenti yakwnlarinda M., 6,3 biiyiikliigiinde bir deprem meydana geldi ve 15 giin icinde 500'den
fazla artgt depreme neden oldu. Bu galisma, ¢ift fark teknigi (ing. double difference) kullanilarak artct
sarsinttlarin yeniden konumlandirilmast, moment tensor ters ¢oziimii ve zemin hareketi analizi yoluyla de-
premin hizlu bir degerlendirmesini sunmaktadir. Ana deprem, 6km derinlikte ve yanal atumlt bir faylanma
gosteren bir fay mekanizmast ¢oziimiiyle meydana gelmis ve muhtemelen bélgedeki karmasik faylanma
ozellikleri nedeniyle kayda deger bir kuvvet gifti olmayan bilesene (ing. non-double-couple) sahip bir
yanal atumlt deprem mekanizmast sergilemistir (40%). Artct depremler genellikle ana depremin dogusunda
ve ilk 10 km derinlikte meydana geldi. Zemin hareketi kaytitlarindan elde edilen sarsintt haritalart, is-
tanbul'un batisinda 210 cm/s?'yi asan yer ivmelerini ve Mercalli siddet 6lceginde 6 seviyesinde degerler
gozlendi. Bélge icin gelistirilen yer hareketi tahmin denklemi (ing. ground motion prediction equation),
kisa periyotlu en biiyiik spektral ivmelerde (PSA) ve en biiyiik zemin ivmesi (PGA) igin yaptigt tahminlerde
gergekte olglilen degerlere gore diisiik kalmistir. Tirk sismik tasarum kodlarwyla karstlastirildiginda, bazt
istasyonlarda kisa periyotlu PSA'nin kod sinurlarina ulastige goriilmis ve bu ozellikle o bélgelerde bulunan
eski binalarin yapisal dayanikliligt konusunda endiseler uyandirmisttr.

1 Introduction

The North Anatolian Fault (NAF) is the Eurasian-
Anatolian tectonic plate boundary (Sengor et al., 2005).
It is a right-lateral strike-slip fault that accommodates
the west-to-southwest Anatolian microplate movement
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et al., 2006; Ergintav et al., 2023). NAF has experienced
numerous large earthquakes (M > 7) in the last 100
years (Ambraseys, 2002), including notable events in
1939 (Erzincan, M 7.8) and 1999 (Izmit, M 7.4).

The Marmara Region, located in northwestern

at an average rate of approximately 20 mm/yr (Reilinger
et al., 2006). It is induced by the northward nudge
of the Arabian plate against the Eurasian plate, forc-
ing the Anatolian plate to escape to the west (Reilinger

*Corresponding author: dertuncay@ogs.it

Tiirkiye, is an active tectonic zone where the NAF
crosses beneath the Sea of Marmara. The area has wit-
nessed damaging earthquakes in the 20th century, such
as the 1912 Miirefte (surface wave magnitude, M, 7.3;
Aksoy et al., 2010) and 1999 (moment magnitude, M,
7.4) Izmit earthquakes (Figure 1). These earthquakes
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caused extensive damage and highlighted the seismic
hazard of the region (Karasozen et al., 2023; Erdik et al.,
2025), especially due to its proximity to the densely
populated megacity of Istanbul (Figure 1).

During the 20th century, most of the NAF segments
ruptured in major earthquakes, except for the western
segments beneath the Sea of Marmara, along the so-
called Main Marmara Fault (MMF), located near Istan-
bul (Le Pichon et al., 2001). The presence of a seis-
mic gap in the MMF, between the rupture zones of
1912 and 1999 in the Sea of Marmara, has long been
a topic of debate, as the theory suggests that this un-
broken section could produce a major earthquake (M
> 7) (Bohnhoff et al., 2013; Ergintav et al., 2014; Oztiirk
et al., 2025). Recent studies have revealed that parts
of this region undergo aseismic creep, rather than sud-
den rupture, particularly along the Tekirdag and Cen-
tral Basins (Bohnhoff et al., 2013). The Marmara Sea has
historically experienced many large earthquakes, and
the Kumburgaz, Cinarcik, and Princes’ Island segments
(Figure 1) were expected to rupture due to an overdue
seismic gap in the regional seismic cycling (Schmittbuhl
et al., 2016).

Relative to other parts of the NAF, the MMF beneath
the Sea of Marmara has a more complex structure. It
displays many sub-faults (Emre et al., 2018), character-
ized by multiple subsidiary faults of different orders,
ranging from small to large. This raises questions about
whether stress is distributed across numerous faults in
a wider zone or concentrated along the principal fault
zone (Figure 1). The tectonic complexity of the area is
added to by the presence of a pull-apart basin, crustal
thinning, and locally thick sedimentary deposits up to
7 km in the western Marmara Sea (Yilmaz et al., 2022;
Bécel et al., 2009), which may be important controlling
factors influencing the potential for large earthquakes
in the region.

The Sea of Marmara had not witnessed a major
earthquake (M>7) or greater during the instrumental
period, but it produced moderate earthquakes. The
M, 5.8 Silivri earthquake that occurred in September
2019, only a few kilometers from the Kumburgaz Basin
(Karabulut et al., 2021) and had a complex source mech-
anism (Sahin et al., 2022; Turhan et al., 2023). Karab-
ulut et al. (2021) demonstrated that the 2019 thrust
fault mechanism of the earthquake, the spatial and
temporal distribution of its aftershocks, and the ac-
companying stress changes could plausibly have in-
creased the overall stress along the Marmara Fault seg-
ment. Aftershocks primarily propagated southeast,
where the largest slip was also observed, near the MMF.
Using a finite-fault model derived from strong-motion
data, Karabulut et al. (2021) calculated Coulomb stress
changes and found that the Silivri earthquake increased
stress, particularly in the southeastern portion of the
rupture zone, at depths of 7-10 km. This area lies along
the MMF, in the transition between the Central and
Kumburgaz Basins.

Istanbul is one of the most populous cities in the
world, with a high seismic hazard and risk due to the
NAF’s capability of producing large-magnitude earth-
quakes (Sengor et al., 2005). A supposed seismic gap
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located in the south of Istanbul, in the Marmara Sea,
makes Istanbul one of the most studied cities in terms
of hazard (Atakan et al., 2002; Akinci et al., 2017; In-
fantino et al., 2020) and risk (Pyper Griffiths et al., 2007;
Yakut et al., 2012; Stupazzini et al., 2021). The current
seismic design code of Tiirkiye estimates its design lim-
its using prescribed short, medium, and long spectral
periods that are assessed via empirical ground motions
prediction equations (Akkar et al., 2018). Hence, es-
timating ground motion parameters and spectral am-
plitudes plays a significant role in understanding the
performance of the current design code, as well as in
estimating damage states for structures built accord-
ing to design criteria for regular (residential and com-
mertial) and strategic buildings (schools, governmental
buildings etc.) which use 10% and 2% probability of ex-
ceedance in 50 years to determine the amplitudes of the
design code, respectively.

Peak ground motions also carry important informa-
tion regarding the earthquake physics, as the direc-
tivity effect carries large amplitudes with long periods
towards the propagation direction (Somerville et al.,
1997), and permanent ground deformation (fling step
effect) may produce large seismic loads, especially to
tall structures (Kenawy and Pitarka, 2025). Local site ef-
fects may also amplify the ground motions (Klin et al.,
2021), which may amplify the destructive effects of
earthquakes (Ozel et al., 2002). Thus, estimating ground
motion variations in a seismic event is crucial for assess-
ing earthquake physics, shallow soil effects, and dam-
age distribution.

On 23 April 2025 at 09:49:16 (UTC), a M,, 6.3 earth-
quake struck the Sea of Marmara. Here we assess
the mainshock and aftershocks, relocate over 550 af-
tershocks within the first 15 days, and investigate the
full moment tensor of the main shock. Furthermore,
we create shakemaps to find the spatial distribution of
ground motions, plot ground motion parameters com-
pared with a regional attenuation model, and compare
the spectral response at near-epicentral stations with
several Turkish seismic design codes. Finally, we dis-
cuss the seismic significance of this earthquake relative
to the Marmara Sea and emphasise key questions raised
by this event.

2 Data

For the relocation analysis, a seismic catalog, which
contains 562 aftershocks between 23 April and 9 May
2025, is obtained from the Disaster and Emergency
Management Authority (1973) event catalog database.
For the full moment tensor (MT) inversion of the main-
shock, open access seismic data from nine different
regional networks (see the Data and code availability),
with station distances ranging between 250 and 900 km,
were inverted after a visual quality check using the Py-
rocko/Snuffler (Heimann et al., 2017) software. Wave-
forms with large time gaps, clipping, or excessive noise
were excluded from the analysis. In total, 20 three-
component stations were selected for MT inversion, and
the waveforms were rotated into the radial (R), trans-
verse (T), and vertical (Z) components. The CRUST2.0
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Figure1 a) Map of the Marmara region and the features in the Marmara Sea. The figure displays the 23 April 2025 M,, 6.3
earthquake source mechanism and its aftershock distribution (green dots, aftershocks relocated in this study). The green star
shows the centroid location of the mainshock. The triangles indicate the stations used in this study. The red lines show the
active fault linesin the region (Emre et al., 2018), including the Kumburgaz, Cinarcik, and Princes’ Islands segments (labelled).
The seismic activity is plotted for the comparison of the two seismic sequences. Black circles indicate outliers according
to our relocation criteria (see Section 3.1). The orange star shows the centroid location of the 26 September 2019, M,, 5.8
earthquake (Karabulut et al., 2021) and its aftershocks, which are shown by orange circles. The bottom-left inset shows the
regional tectonic setting, including plate boundaries and relative plate motions (Reilinger et al., 2006). The top-left inset
shows a zoom-in of the aftershock distributions for both sequences. The ruptured segments and the locations of the 1912
and 1999 earthquakes are given in magenta. The yellow highlighted area shows the segment of transition and the creeping
(aseismic part) by Becker et al. (2023). b) Depth distribution of the aftershocks in histograms. ¢) The decomposition of full
Moment Tensor inversion for the best and mean solutions for the 2025 mainshock. The symbol size indicates the relative
strength of the components.

velocity model (Bassin et al., 2000) was used for these band stations suffered from saturation effects and are

inversions.

The seismic data for the ground motion analysis
is obtained from the national networks of Disaster
and Emergency Management Authority (1973, 1990);
Kandilli Observatory And Earthquake Research Insti-
tute, Bogazici University (1971); TUBITAK Marmara Re-
search Center (2016). In total, data from 262 stations
with epicentral distances (R.,;) between 25 - 220 km are
used in which 224 have good data quality. Many broad-

3

excluded from further processing. In total, 22 broad-
band and 202 strong motion recordings were identified
for the ground motion assessment.
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3 Methods

3.1 Earthquake Relocation

The events are analyzed using the hypoDD double-
difference (DD) inversion algorithm (Waldhauser and
Ellsworth, 2000) following similar steps, such as event
selection, phase weighting, and uncertainty determi-
nation, presented by Tan et al. (2023) and Tan (2024)
and using the 1D velocity model developed by Karabulut
et al. (2011). The algorithm assumes that the hypocen-
tral separation between two neighboring events is
smaller than the station distances. Therefore, the ray
paths are similar, and the travel time difference be-
tween two events observed at a common station can be
attributed to the spatial offset between the events (Got
et al., 1994; Waldhauser and Ellsworth, 2000). The ten
nearest neighboring events within a 5 km radius, con-
sidering the aftershock distribution, are selected to con-
struct event-pair chains for a robust DD inversion. The
minimum 8 P/S phase arrival time observations are used
to generate event pairs. According to these criteria,
about 545 events are selected for the DD inversion and
about 400 events are relocated.

3.2 Moment Tensor Inversion

We performed full MT inversion based on a Bayesian
bootstrap probabilistic joint inversion method using the
Grond software (Heimann et al., 2018; Biiylikakpinar
etal., 2022; Metz et al., 2023; Jamalreyhani et al., 2023).
This method provides the uncertainties for the model
parameters of the resulting MT inversion. The source
model parameterization consists of the location, depth,
and time of the point-like earthquake origin (centroid),
the six independent components of the moment ten-
sor, and a source duration. The MT was calculated via
waveform inversion in the time domain using three-
component data (R, T, and Z) in the frequency band
of 0.02-0.05 Hz to invert the surface waves, with the
frequency band chosen based on the event magnitude
and station distance, as further details can be found in
Kiihn et al. (2020). Synthetic seismograms were taken
from pre-calculated Green’s functions (Heimann et al.,
2019). We applied 50,000 iterations for a robust inver-
sion based on convergence tests. The inversion pro-
vides the best and mean solutions, as well as uncertain-
ties in the source parameters.

3.3 Ground Motion Parameters and Intensity
Distribution

To estimate the ground motions, instrument response
removal, detrending, Hann window tapering with a 5%
taper ratio, and filtering with 4th-order Butterworth
bandpass filtering between 0.01 - 50 Hz have been ap-
plied to each trace. Ground-shaking maps and the cor-
responding macroseismic intensity (in terms of Mod-
ified Mercalli Intensity, MMI) distribution were gen-
erated using ShakeMap (version 4; Wald and Worden,
2016; Worden et al., 2018). Inputs are the peak ground
motion parameters: peak ground acceleration (PGA)
and peak pseudo-spectral acceleration (under the as-
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sumption of single degree of freedom system with 5%
damping ratio, PSA), at 0.3s and 1.0s, recorded at 224
seismic stations. For each station, the maximum of the
horizontal component is used as input. The ground mo-
tion prediction equation (GMPE) by Kale et al. (2015)
and the ground motion to intensity conversion equa-
tion (GMICE) by Worden et al. (2012) were selected in
ShakeMap’s configuration to inform the ground mo-
tion interpolation. Spatial correlation between ground-
motion pseudo-spectral accelerations at different peri-
ods was incorporated through the equation (42) by Loth
and Baker (2013, 2020). Site effects were accounted for
using a Vs3g proxy, based on the map developed by
Okay and Ozacar (2024), unless the site characteristics
were determined by Disaster and Emergency Manage-
ment Authority (1973). The interpolations have been
performed under the point-source approximation, con-
sidering the hypocentre obtained with the earthquake
relocation. The choice has been made considering the
distance of the seismic source from the coast, the rel-
atively high density of stations in the area, and the lim-
ited effect that the use of an extended source would have
with respect to the associated uncertainty.

4 Results

The aftershocks are concentrated east of the epicentre
of the mainshock, within the Kumburgaz Basin (Fig-
ure 1), at shallow depths, mainly in the top 10 km, with
horizontal and vertical uncertainties of +£1.5 km and
+4.4 km, respectively. This eastern clustering resem-
bles the 2019 event, which also showed a similar pat-
tern (Figure 1a top left inset). Karabulut et al. (2021) re-
ported a rupture asymmetry in 2019, with enhanced slip
and seismicity to the east. The 2025 aftershocks simi-
larly align with this eastern edge, where stress had pre-
viously accumulated, suggesting a comparable concen-
tration mechanism.

The mainshock had a M, of 6.3 4+ 0.2 and was lo-
cated at 40.86°N, 28.18°E with a 2.5 km epicentral un-
certainty. The mean full moment tensor solution indi-
cates a strike-slip mechanism with strikel = 260°, dipl
= 65°, rakel = 180°, and strike2 = 350°, dip2 = 90°, rake2
= 25°, with a centroid depth of 6.0 km + 0.8 km. Non-
double couple components are found as isotropic 5%
+ 8 and compensated linear vector dipole (CLVD) 40%
+ 20. Our results are in good agreement with fault pa-
rameters reported by other agencies (e.g., GCMT, USGS,
GFZ). Reported focal depths range between 4 km (IPGP,
IPGP Data Center, 2024) and 13 km (KOERI, Kandilli Ob-
servatory And Earthquake Research Institute, Bogazici
University, 1971). Significant non-double-couple (non-
DC) components have been reported as well, such as
USGS 43% (U.S. Geological Survey, Earthquake Hazards
Program, 2017), and GCMT 33% (Dziewonski et al., 1981,
Ekstrom et al., 2012). Uncertainties in source parame-
ters e.g., magnitude, depth, and moment tensor com-
ponents, are systematically reported in our study, pro-
viding a more robust interpretation of the source char-
acteristics. An interactive online report showing the re-
sults of MT inversion (e.g., uncertainties, waveform fits)
is provided in the Data Availability section.
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The interpolated ground shaking maps, based on
recorded ground motion parameters, are presented in
Figure 2 in terms of PGA, PSA at 0.3s and 1.0s, and
estimated macroseismic intensity (expressed as MMI).
The highest ground motion values on land are observed
along the northern coastline near the epicentre and in
the area west of Istanbul, in agreement with maximum
station recordings. The elevated values recorded at the
stations in these areas can be justified by either the
closer proximity to the epicentre or the effect of site
amplification, as suggested by low V3, values at sta-
tions TK-3415, TK-3416, and TK-3428 (Figure 2h and Fig-
ure S1). The instrumental macroseismic intensity ex-
ceeds level 6 along the coast and decays gradually with
increasing distance from the epicentre. These intensi-
ties are not obtained as direct observations of the effects
of the earthquake but rather by converting recorded
ground motion parameters, and as such, they are ex-
pressed as a continuous scale. Given the offshore loca-
tion of the event and the dense station coverage, the use
of a point-source approximation is considered appropri-
ate for this analysis.

Along with the spatial distribution of the ground shak-
ing, the performance of the GMPE model developed
for the region by Kale et al. (2015) is also evaluated,
which provides essential information regarding the at-
tenuation trends in the area. Kale et al. (2015)’s model
slightly underestimated the PGA and PSA 0.3s (Figure 2),
whereas in PSA 1.0s the predictions of the model overes-
timates the observations. Residuals of the GMPE model
can be seen in Supplementary Material (Figure S2).

We carry out a further analysis on the spectral accel-
eration data to understand the performance of current
and previous Turkish design codes. Following the 1939
Erzincan earthquake (M,, 7.9) in Tiirkiye, the first earth-
quake design principles were introduced at the national
level, along with the country’s earthquake hazard maps.
The first modern design code was introduced in 1975,
then it was updated in 1997, 2007, and 2018 (Akkar et al.,
2018; Bliyliksarag et al., 2022). We selected stations of
TK-3415, TK-3929, TK-3431, and TK-5906 to compare the
design codes as they are either the stations closest to
the epicentre and/or those that recorded the largest PGA
(Figure 2). For the analysed signals and locations, the
design codes have spectral amplitudes between 0.75g
and 1.2g, depending on the design code, in the interme-
diate frequencies. As shown in Figure 3, observed spec-
tral amplitudes are lower than the design codes, except
for the very low-frequency content of TK-3431, which
exceeds the 1997 design code.

5 Discussion

The centroid of the 23 April 2025, Marmara Sea earth-
quake (M, 6.3) is on the western edge of the Kumburgaz
Basin, south of the epicenter of the 2019 M,, 5.8 earth-
quake. The earthquake ruptured the Kumburgaz Basin
and occurred along the NAF with a strike-slip mecha-
nism at a depth of 6 km, exhibiting a significant CLVD
component. This location was anticipated due to stress
transfer southward toward the Kumburgaz Basin and
closer to the NAF caused by the previous earthquake

5
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(Karabulut et al., 2021). The previous event was charac-
terized by a complex source mechanism with high non-
DC components (Turhan et al., 2023) as in the case of
the 2025 M, 6.3 event.

The observed CLVD component in the 2025 earth-
quake could be due to the various factors related to the
source process, crustal structure, inversion artifacts, or
the data quality. From a source perspective, geomet-
ric fault complexities—such as fault steps, bends, or
branches—as well as stress heterogeneity and rupture
segmentation can generate non-DC radiation (Frohlich
et al., 1989; Kuge and Lay, 1994). In terms of struc-
tural effects, lateral variations in sediment thickness
and crustal anisotropy may distort waveform propaga-
tion and contribute to the apparent non-DC compo-
nent. Seismic anisotropy, in particular, has been doc-
umented in the Marmara region (Eken et al., 2013) and
should be considered when interpreting moment ten-
sor solutions. From the inversion, complex source-time
functions that are not sufficiently represented in the
assumed source models can lead to fake CLVD signa-
tures. Inversion artifacts may also result from network
geometry, velocity model inaccuracies, or methodolog-
ical limitations (Rosler et al., 2023, 2024; Biiyiikakpinar
etal., 2025). Lastly, misoriented horizontal components
can also produce misleading CLVD features in the MT
inversion (Biiylikakpinar et al., 2021). The estimation
and interpretation of CLVD is delicate and should there-
fore be approached with caution (Biiyiikakpinar et al.,
2025). While a detailed discrimination of these con-
tributing factors is beyond the scope of this rapid report,
further research is warranted.

The aftershocks of the 23 April earthquake were dis-
tributed over 40 km along the Kumburgaz Basin. The
hypocentral depth ranges from 0 to 20 km mainly in
the first 10 km, aligning with the depth of the centroid
of the mainshock. Similar to the 2019 Silivri and 1999
Izmit earthquakes, the April 2025 earthquake also ex-
hibited an eastward pattern of aftershocks, consistent
with the regional tectonics and right-lateral strike-slip
mechanism of the NAF (Karabulut et al., 2021; Becker
etal., 2023).

The Marmara Sea has historically experienced many
large earthquakes, and the Kumburgaz, Cinarcik, and
Princes’ Islands were expected to rupture due to an over-
due seismic gap in seismic cycling (Schmittbuhl et al.,
2016). Interestingly, the Cinarcik Basin has not rup-
tured, despite several studies speculating that it could
produce an M>7 earthquake (Parsons et al., 2000; Erdik
et al.,, 2004). This raises the important question of
whether stress barriers and/or another creeping seg-
ment may exist in the west. Similar complexities have
been observed in the Tekirdag Basin region to the west,
where evidence suggests variable coupling along the
fault (Becker et al., 2023). Further studies are needed
to better constrain the slip behavior of individual seg-
ments along the MMF in light of recent seismic activity.

The large PGA recorded in Silivri district (TK-3429 sta-
tion, PGA: 106 cm/s?) can be linked to the epicentre’s
proximity. On the other hand, large PGA values are ob-
served in stations located on the western part of the
city. Districts such as Avcilar (Station TK-3428, PGA: 94
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Figure2 Ground shaking maps for different ground motion parameters and corresponding values at the stations are shown
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cm/s?) and and Kiiciikcekmece (Station TK-3415, PGA:
210 cm/s?) are located on an alluvial soil and soil ampli-
fication is a well known fact for those areas which also
suffered major destruction during August 1999 Izmit
earthquake (M,, = 7.4) even though the R.,; was around
100km (Ergin et al., 2004; Tezcan et al., 2002; Ozel et al.,
2002; Kilic et al., 2005; Picozzi et al., 2009; Karabulut and
Ozel, 2018). Findings of Picozzi et al. (2009) indicate sig-
nificant site amplification between 0.2 and 10 Hz in the
vicinity of TK-3428 and TK-3415, potentially resulting in
higher PGAs. Moreover, stations located on the districts
north of Avcilar and Kiiclikcekmece, namely Sultangazi
(Station TK-3433, PGA: 105 cm/s?) and Arnavutkoy (Sta-
tion TK-3431, PGA: 153 cm/s?, Station TK-3434, PGA: 159
cm/s?) also recorded large ground motions. These dis-
tricts experienced rapid urbanisation in the last decade,
and soil amplification may play a significant role in the
case of a large earthquake; hence, more detailed stud-
ies on those parts of the city are essential to understand
soil characteristics.

Peak ground motions tend to have larger values along
the eastern part of the epicentre, towards Istanbul, with
respect to its western part. Apart from the soil amplifi-
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cation, the directivity effect may play a role in the larger
amplitudes. Tiirker et al. (2024) showed a strong di-
rectivity effect in 2023 Golyaka-Diizce Earthquake (M,
= 6.1). Analysing the rupture dynamics can be a good
topic for the event to link the large peak ground motions
in Istanbul. Large amplitudes in the direction of Istan-
bul may occur not only due to soil amplification or the
directivity effect, but also due to a combination of these
two factors.

TK-3429 and TK-5906 stations are some of the closest
stations to the epicentre, which is located northeast and
northwest of the epicentre. Yet, their spectral accelera-
tion amplitudes are low with respect to the design lim-
its. The energy is concentrated between 0.1s and 0.6s,
which is also the case for TK-3415, but in short peri-
ods, TK-3415 spectral amplitudes reach almost 0.8g, al-
though the station is far away from the epicentre. In TK-
3431, there are large spectral amplitudes in short peri-
ods (<0.1s), which is similar to the TK-3415. Large spec-
tral amplitudes at the TK-3431 station approach the de-
sign values for all codes within very short periods. The
calculated spectral accelerations fall within the capacity
range addressed by the current and old seismic design
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codes, demonstrating that these codes are sufficiently
robust to account for such ground motions.

A major issue with previous design codes was that it
used a coarse zonation map to assign amplification fac-
tors (Gunes, 2015), which set the design level thresholds
at relatively low amplitudes for most of the western side
of Istanbul (Akkar et al., 2018). The latest design code in-
corporates site-specific coefficients to estimate the de-
sign code, which are modified from the 2020 European
Seismic Hazard Model (Danciu et al., 2021). The com-
bination of low construction quality in old buildings
(Cogurcu, 2015), lack of building inspections (Morales-
Beltran, 2025), and the ageing effect (Bertolini et al.,
2013) results in more than 350 buildings getting struc-
tural damage and one building collapsed (Giizel and
Fraser, 2025). For an expected large magnitude Mar-
mara earthquake in NAF with a magnitude around 7,
old structures will likely suffer significant damage due
to the weaknesses mentioned above. It will also be
likely to observe underestimated design amplitudes, as
observed in the 2023 Kahramanmaras earthquake dou-
blets (Akinci et al., 2025). If construction standards are
not followed, it is possible to expect damage in new
buildings as well.

Based on our analysis, we believe some outstanding
scientific questions are raised that are given below:

1. To what depth did the rupture associated with the
2025 earthquake and what is the estimated depth
extent of fault slip?

2. What are the underlying causes of the source com-
plexity observed in the 2025 earthquake, also ob-
served with the 2019 event, and how is source com-
plexity reflected in the spatial distribution of the af-
tershocks?

3. How much static stress was transferred to the adja-
cent fault segments in the Marmara Sea along the
NAF following the 2025 rupture, and what is the po-
tential maximum magnitude for the remaining un-
ruptured segments?

4. Canlarger amplitudes recorded around Avcilar and
western Istanbul be linked to a directivity effect?

5. What is the contribution of the local site amplifica-
tion on the large ground motions in western Istan-
bul and are those local site effects not only limited
to the Avcilar and its neighbors close to the Mar-
mara Sea, or the same trend can be followed rather
north, in Arnavutkdy?

6 Conclusions

On 23 April 2025, a M,, 6.3 earthquake occurred on the
North Anatolian Fault, underneath the Sea of Marmara,
which is capable of creating M > 7 earthquakes with
an epicentre close to the city of Istanbul on the MMF
segment, which is considered to be a seismic gap. The
earthquake occurred south of the 2019 M, 5.8 event
with a strike-slip mechanism and more than 500 after-
shocks, most of which are positioned on the east side
of the epicentre, towards Istanbul. The MT analysis of
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the main shock shows a considerable CLVD component,
which may reflect source and/or structural complexity
or heterogeneities within the rupture zone. The earth-
quake signals are recorded by more than 200 seismic
stations (R.p; <220km). Ground motion signals have up
to 0.2g of PGA and 0.64g in PSA 0.3s. Peak ground mo-
tions have larger amplitudes in the northeast of the epi-
centre (i.e., towards Istanbul) with respect to the north-
west direction, which can be due to various factors such
as directivity and soil amplification. Although the ob-
served ground motions were close to building code de-
sign values at one station, more work is needed to un-
derstand patterns of amplification in the west of Istan-
bul.
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