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Abstract We present TieBeNN, a wrapper that integrates open-source, state-of-the-art seismic moni-
toring tools, including advanced machine learning–based approaches, to enhance the German Federal Seis-
mological Survey’s (EdB) automatic real-time earthquake monitoring system. TieBeNN extends the existing
workflow by adding automatic, probabilistic focal depth estimation using NonLinLoc and introduces a Loca-
tion Quality Score (LQS) to quantify location reliability with a single metric. In testing, TieBeNN’s automated
locations approach theaccuracyof humananalyst solutions, demonstrating comparableperformance inwell-
instrumented regions. By automating depth determination and providing immediate quality assessment, the
system reduces analysts’ daily workload, allowing them to focus on events flagged as low-quality or com-
plex. The LQS effectively distinguishes well-constrained event locations from those with large uncertainties
or poor network geometry, enabling rapid identification of high-quality automatic results versus those requir-
ing review. However, events below the Moho depth (i.e., deeper than approximately 30 km), which are rare in
Germany, remain challenging: their uncertainties are larger, and LQS values tend to be lower, indicating lim-
itations in the current calibration. Overall, these enhancements significantly advance real-time local seismic
eventmonitoring inGermanyby increasingboth the speedand reliability of automatic event characterization.

1 Introduction
The rapid growth of vast seismic data repositories in
recent years reflects the necessity for robust automatic
real-time processing workflows in earthquake monitor-
ing, capable of performing at a level comparable to
human analysts (e.g. Quinteros et al., 2021; Stammler
et al., 2021; Strollo et al., 2021; Arrowsmith et al., 2022;
Mousavi and Beroza, 2022). This demand is driven by
the expansion of seismic networks, increasing com-
putational capabilities, and continuous improvements
in seismic equipment. Collectively, these develop-
ments have facilitated the detection of smaller magni-
tude earthquakes, whichoccur farmore frequently than
larger events. These advances have transformed seis-
mology into a data-rich science, creating numerous op-
portunities to apply machine learning to a broad range
of seismology-related problems, including earthquake
monitoring, subsurface characterization, and seismic
image interpretation (Arrowsmith et al., 2022; Mousavi
and Beroza, 2022, 2023). Specifically, deep learning, a
data-driven technique, has beenwidely employed in big
data analysis and has been applied to tasks including
event detection and seismic phase picking (Ross et al.,
2018a; Zhu and Beroza, 2019; Mousavi et al., 2020; Soto
and Schurr, 2021; Münchmeyer et al., 2022; Li et al.,
2024), event classification (Renouard et al., 2021; Wang
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et al., 2023), seismic moment tensor estimation (Stein-
berg et al., 2021), magnitude estimation (Mousavi and
Beroza, 2020; Quinteros-Cartaya et al., 2024) and polar-
ity estimation (Ross et al., 2018b; Hara et al., 2019).
Automated event monitoring workflows that at least

partially leverage advances in machine learning have
been successfully applied in various contexts. For in-
stance, Shi et al. (2022) generated continuous seismic
phase probabilities, which were subsequently backpro-
jected and migrated for seismic source location. This
approach was used to monitor induced earthquakes
around geothermal production sites in Iceland. Zhang
et al. (2022) developed an earthquake location work-
flow that integrates multiple routine functions for local
and regional events. They applied it to the 28 Septem-
ber 2004 Mw 6.0 Parkfield sequence, locating over three
times as many events as the Northern California Earth-
quakeData Center. Likewise, Retailleau et al. (2022) cre-
ated a wrapper to perform high-quality seismicity anal-
ysis in real time, enhancing the reaction time of obser-
vatories monitoring active volcanic systems and their
associated tectonic settings.
In this report, we introduce an automatic, near-

real-time local event detector developed for Germany.
Our system leverages community-standard and state-
of-the-art tools in seismic monitoring, including ma-
chine learning–based models for seismic event detec-
tion, phase picking, and waveform denoising (Münch-
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meyer et al., 2022; Zhu et al., 2019). It also incorporates
a novel phase associator inspired by the oct-tree data
structure (Münchmeyer, 2024) and employs the tradi-
tional probabilistic earthquake location method for ab-
solute hypocenter estimation (Lomax et al., 2000).

2 Automatic local event detections at
BGR

2.1 The German earthquake catalog
In Germany, the Federal Seismological Survey (EdB,
Erdbebendienst des Bundes), part of the Federal Institute
for Geosciences and Natural Resources (BGR, Bunde-
sanstalt für Geowissenschaften und Rohstoffe), addresses
seismological and geophysical issues at the national
level and sustains the German Regional Seismic Net-
work (GRSN), along with several additional seismic sta-
tions (Stammler et al., 2021). The EdB collaborates
closelywith the seismological surveys ofGermany’s fed-
eral states, as well as affiliated universities and research
institutes, to monitor seismicity across the country. It
operates a data center that serves as an official node
of the European Integrated Data Archive (EIDA; https:
//eida.bgr.de/). Waveform data and station information
are freely accessible via the FDSN/EIDA web services.
An FDSN event service is currently in preparation and is
already operational internally. The internal catalog in-
cludes both preliminary events detected automatically
and those reviewedby the analyst ondutyusing the Seis-
micHandler software package (Stammler, 1993) as part
of routine verification procedures.
The German earthquake catalog has a magnitude of

completeness of 2 (Stammler et al., 2021). In addition to
tectonic earthquakes, which account for approximately
30% of the analyzed events, 56% are quarry blasts and
explosions. Moreover, induced seismicity represents a
significant portion of the catalog in Germany, a coun-
try with substantial geothermal resources and grow-
ing investment in fossil fuel–free energy sources. Con-
sequently, 14% of seismic events are labeled as in-
duced, such as those related to natural gas production
or geothermal energy utilization.

2.2 Detection algorithms at BGR
A range of algorithms has been implemented at BGR to
analyze the full waveform dataset for automatic event
detection. These include Short Time Average over Long
Time Average (STA/LTA) detectors on single traces; an
array detector applied to Gräfenberg data in southern
Germany (primarily for detecting teleseismic events ar-
riving with nearly plane wavefronts); template match-
ing; a SeisComP instance; and an amplitude decay (AD)
detector (Stammler et al., 2021, and references therein).
The outputs of these detection algorithms are compiled
into a summary detection list, which is made available
on an internal website and serves as the foundation for
daily manual analysis.
The primary automatic detector for local and re-

gional events at BGR is the AD-Detector. Unlike the
other systems, it does not rely on seismic phase picks.

Instead, it performs a search over an irregularly dense
grid covering Germany and neighboring regions, pro-
gressing in one-second time steps using waveform seg-
ment files of continuous data. Each grid point repre-
sents a hypothetical epicenter. Grid-point density is de-
rived from seismicity maps, with grid-point spacings
in Germany ranging between 20 and 40 km, denser in
areas of higher seismicity. For each point, signal-to-
noise ratios are calculated in time windows based on
expected arrival times of the Pg, Pn, Sg, and Sn phases,
derived using the Regional Seismic Travel Time (RSTT)
model (Myers et al., 2010). These signal-to-noise values
are evaluated in a number of ways, including amplitude
decay with epicentral distance, to compute a quality-
function value. This quality is taken as the maximum
across all grid points at a given time step. A detection is
triggered when the quality function exceeds a dynamic
threshold derived from an elevated smoothed mean of
the quality values. Each detection includes the latitude
and longitude of the grid point with the highest quality
value, along with the event time. Since the AD-Detector
does not estimate depth, theoretical travel times are cal-
culated for a source at 0 km depth. Nonetheless, the al-
gorithm is highly sensitive and reliably detects events
as small as approximately ML ∼ 1.4, depending on lo-
cal station density and ground properties (see Figure 1).
Because grid density scales with regional seismicity,
the AD-Detector’s preliminary epicenters are typically
within < 10 km of the final source locations. The AD-
Detector also estimates a magnitude for each detection
based on amplitudes in the signal windows. While the
input traces are not Wood–Anderson simulations—and
thus not fully compliant with standard local magnitude
definitions—the estimates are adequate for a first ap-
proximation of event strength.

The AD-Detector currently has a delay of approxi-
mately five to ten minutes in generating detection mes-
sages after the event time. This is due to both its internal
setup, which processes data in five minute segments,
and its computational intensity, as the algorithm per-
forms millions of complex operations per second dur-
ing grid searches. However, advances in multicore pro-
cessor technology have substantially reduced the sys-
tem’s runtime in recent years.

The latest version of the AD-Detector operates in
near real time using a set of software containers
that perform a series of tasks, including waveform
reading from SeedLink servers (https://docs.fdsn.org/
projects/seedlink/en/latest/protocol.html) or disk; wave-
form preparation (windowing, filtering) using ObsPy
(Beyreuther et al., 2010; Megies et al., 2011; Krischer
et al., 2015); executing the core detection algorithm;
result message generation; and web-accessible visu-
alization for operators and analysts. Statistics are
also compiled. Communication between containers
and external consumers is handled via detection mes-
sages using the RabbitMQ message broker (https://
www.rabbitmq.com/).
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Figure 1 Quick-look graphics automatically generated by the AD-Detector for analyst orientation, showing anML 1.3 event
detected by the AD-Detector. Left: Waveform traces sorted by epicentral distance from the grid point with the highest quality
value, with colored lines indicating time windows for the expected Pg and Sg phases (red) and Pn and Sn phases (blue).
Right: The irregular grid on which the quality function is calculated at one-second intervals, showing the event epicenter in
theWest Bohemia/Vogtland region, represented by the grid point with the highest quality value. This example illustrates the
AD-Detector’s sensitivity to small-magnitude events.

3 From automatic local event detec-
tion to hypocenter estimation

The automatic local eventmonitoring systemdeveloped
in this work, called TieBeNN (TIEfenBEstimmung mit-
tels Neuronaler Netze, Depth Estimation using Neural
Networks), was designed to provide more precise au-
tomatic event locations and to integrate focal depth es-
timation into the daily real-time monitoring routine at
EdB.The system is triggeredwhenever a quasi-real-time
detectionmessage is generated by the AD-Detector. The
TieBeNNwrapper performs three key tasks, detailed be-
low.

3.1 Phase picking
In the first step, after receiving a detection message
from the AD-Detector—which includes the event time
and epicenter coordinates—an ObsPy client accesses
waveform data stored locally in the SeisComP Data
Structure (SDS) directory at the Federal Seismological
Survey. Waveform data are collected from both broad-
band and short-period channels, where first arrivals
of local events are usually well detected. The net-
work selection is automatic and depends on the epi-
center coordinates. Typically, this includes the GRSN
(about 50 stations), some stations of the GEOFON net-
work maintained by the German Research Center for
Geosciences (GFZ, Deutsches GeoForschungsZentrum), as
well as local and regional networks operated byGerman
states and universities, complemented by stations in
neighboring countries (France, Belgium, Luxembourg,
Netherlands, Switzerland, Austria, Czech Republic, and
Poland; Stammler et al., 2021 and references therein), in
total about 350 stations in and around Germany. Some
federal network data are under temporary embargo and
used only internally. Any waveform data not available
locally are requested via FDSN web servers, ensuring
broader station coverage, especially near borders.

Sixty-second waveform windows are retrieved from
stations within a fixed epicentral distance, which is
user-defined. Our tests show that optimal retrieval
distances depend strongly on station density: in well-
instrumented regions, a well-distributed station set can
already be obtained within 60 km. However, in poorly
covered areas, even extending the epicentral distance to
150 km may still result in insufficient station coverage.
We focus exclusively on Pg and Sg phases, as refracted
waves can introduce significant depth errors without an
accurate model of the refractor (Diehl et al., 2021).
The collected waveforms undergo preprocessing, in-

cluding denoising with the machine learning–based
DeepDenoiser model (Zhu and Beroza, 2019), but only
for stations within 100 km. For more distant sta-
tions, denoising alters the P-wave coda in a way that
often results in S-waves incorrectly classified as P ar-
rivals. For phase picking, we usemodels integrated into
SeisBench—a framework for training, evaluating, and
comparing machine learning–based models on bench-
mark datasets (Münchmeyer et al., 2022;Woollam et al.,
2022). Specifically, PhaseNet (Zhu et al., 2019) and EQ-
Transformer (Mousavi et al., 2020) proved robust on
our dataset of local events in Germany, showing strong
translation invariance and consistent phase detection,
in agreement with the findings of Münchmeyer et al.
(2022). Both models support picking on single-channel
and three-component stations. Based on their accurate
predictions on our dataset—with median absolute er-
rors of 0.08 s (P) and 0.10 s (S), and mean absolute er-
rors of 0.16 s (P) and 0.22 s (S)—we use the pre-trained
versions provided by SeisBench rather than training on
our own data.

3.2 Phase association
False picks can degrade event location and especially
depth estimation. Their impact is most severe for
low signal-to-noise ratios, sparse pick sets, and small-
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magnitude events. Therefore, reliably associating
phase picks is critical.
TieBeNN supports two phase associators. The first,

GaMMA (Zhu et al., 2022), treats phase association as
an unsupervised clustering problem using arrival times
and amplitude features. The second, PyOcto (Münch-
meyer, 2024), is specifically designed for addressing
sensitivity and long runtimes when dealing with dense
seismic sequences by using 4D space-time partitioning
(mimicking a grid search), while supporting both ho-
mogeneous and 1D velocity models. Both models were
tested for real-time feasibility.
In our tests, PyOcto performed slightly better—

correctly associating more picks and missing fewer—so
it was set as the default associator for TieBeNN’s real-
time workflow. GaMMA remains available as an alter-
native. The 1D velocity model used for PyOcto is the
same one later employed for probabilistic hypocenter
estimation (see below).

3.3 Probabilistic hypocenter estimation

Once picks are associated, TieBeNN exports the loca-
tion information, along with station metadata and con-
trol files, for hypocenter estimation using NonLinLoc
(Lomax et al., 2000, 2014). We employ its suite of pro-
grams for velocity model construction, travel-time cal-
culation, and global probabilistic location.
An advantage of our automatic location workflow is

the availability of the AD-Detector’s preliminary, yet
relatively accurate, epicenter estimate. This informa-
tion enables the use of local 1D velocity models—when
available—for a more refined hypocenter search within
a finer local grid using NonLinLoc. These dedicated
models improve epicentral accuracy over the coarser
fixed-grid estimate from the AD-Detector.
Local 1D velocity models integrated into TieBeNN

for hypocenter estimation cover various regions in Ger-
many and neighboring countries. In southwestern Ger-
many, the system employs the vertical seismic-profile–
derivedmodel for Insheim (Küperkoch et al., 2018). For
western Germany, models include the BENS velocity
model, developed from well-recorded local events in
the Northern Rhine area (Reamer and Hinzen, 2004),
and the more recent KIT6 velocity model for the East
Eifel Volcanic Field (Ritter et al., 2024). In southern
Germany and along theGerman–Austrian andGerman–
Swiss borders, the system uses the ASZmod1 velocity
model for the Albstadt Shear Zone (Mader et al., 2021),
which is characterized by simple and stable layering;
the AlpsLocPS model (Braszus et al., 2024), a machine
learning–based velocity structure for theGreater Alpine
Region; and a model for the Central Alps derived from
the inversion of high-quality P- and S-phase data (Diehl
et al., 2021). In West Bohemia/Vogtland—one of the
most seismically active regions surroundingGermany—
available 1D models include the isotropic upper crustal
modelWB2005 (Málek et al., 2005), a 1D approximation
of the 3D velocity model WB2012 (Růžek and Horálek,
2013), and the PO2 velocity structure derived via iso-
metric inversion for the Nový Kostel earthquake swarm
(Málek et al., 2023). For all other regions, TieBeNN uses

a standard 1D layer-over-half-space model applied rou-
tinely at EdB for local event analysis (Schlittenhardt,
1999; Stammler et al., 2021). This model is based on av-
erage travel-time curves from seismic phases recorded
by GRSN stations over the past 25 years.
Although TieBeNN supports 3D velocity models for

hypocenter estimation, no robust nationwide model
exists. Currently, local, dedicated 1D models outper-
form regional or global 3D alternatives (Stammler et al.,
2021).

3.4 Limitations inautomatic local event loca-
tion and somemitigation strategies

Despite their strong performance, deep learning–based
phase pickers are vulnerable to generalization errors,
sensitivity to noise, and false detections—all of which
can impair downstream location accuracy. To mitigate
this, several strategies have been proposed. For ex-
ample, superimposing local seismic noise—readily ob-
tained from continuous seismic recordings—onto train-
ing data improves model robustness (e.g., Zhu et al.,
2020; Yin et al., 2022). Yuan et al. (2023) introduced a
multi-model, multi-frequency ensemble approach us-
ing SeisBench models to generate multiple predictions
per seismogram. Picks are then combined to increase
reliability. However, the application of this approach—
which is not implemented in our workflow—in quasi-
real-time requires evaluating its computational cost.
Multicore processing may help offset delays.
Park et al. (2023) highlight that predictions made

by machine learning–based phase pickers can vary—
sometimes substantially—depending on the alignment
of waveform data within the processing window. Since
our automatic depth estimation workflow is triggered
upon receiving detection messages from the AD-
Detector, which provide event times accurate to within
a few seconds, careful definition of waveform window-
ing is essential to mitigate prediction inconsistency. In
our dataset, we repeatedly observed several manifes-
tations of this problem: for instance, predicted arrival
times—represented as timestamps with maximum pre-
dicted probability near the actual phase—can vary de-
pending on the waveform start time; alternatively, pre-
dicted timestamps might remain stable across differ-
ent time-windowalignments but exhibit sufficiently low
predicted probabilities in some alignments to fall below
the fixed detection threshold. Additionally, the most
accurate P-phase predictions sometimes occur under
a different waveform alignment than that yielding the
most accurate S-phase picks. To address these issues,
we implemented a multiple-window approach, varying
the start time for phase-pickingwindows between 0 and
10 s prior to the event’s origin time. Specifically, dis-
crete window start times at 0, 2, 5, and 10 s before the
event were used, each with a total duration of 60 s. For
each phase and station, we retain the timestamp with
the maximum predicted probability across all window
alignments. This approach significantly reduced pre-
diction inconsistencies while remaining practical for
quasi-real-time applications.
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Figure 2 The tectonic events in the BGR manual catalog used for testing TieBeNN. Red boxes indicate regions where local
velocity models were applied for hypocenter estimation with NonLinLoc: box 1 (AlpsLocPS model; Braszus et al., 2024), box
2 (Central Alps model; Diehl et al., 2021), box 3 (BENSmodel; Reamer and Hinzen, 2004), and box 4 (ASZmod1model; Mader
et al., 2021). ASZ: Albstadt Shear Zone. Histograms show the local magnitude and depth distribution.

4 Testing the automatic local event lo-
cation system

4.1 An event catalog for the test

To evaluate TieBeNN’s performance, we produced a cat-
alog of manually located events at BGR to be repro-
cessed using our automatic system. This catalog com-
prises tectonic events in Germany and neighboring re-
gions from 2021 through 2023, constrained spatially
within latitude 47–54◦N and longitude 6–15◦E, and with
local magnitudes greater than 1, totaling 594 events.
Around 60% of the events have a fixed manual depth,
typically due to limited station coverage and/or insuf-
ficient S-phase constraints. Figure 2 displays the spa-
tial distribution of the events along with histograms
illustrating their depth and local magnitude distribu-
tions. The histograms show that the majority of cata-
loged events have local magnitudes less than 2 and that
often depths in the catalog are manually fixed at 10 km.

4.2 TieBeNN setup

TieBeNN requires the event time and preliminary epi-
central coordinates as inputs, which, in our test con-
figuration, were taken from the BGR manual catalog;
in real-time operation these will be supplied by AD-
Detector detection messages. We set a maximum epi-
central distance of 150 km forwaveform retrieval, limit-
ing to the 70 closest stations with phase picks. Based on
our experience, this ensures high-quality locations and
adequate azimuthal coverage in densely instrumented
regions. PhaseNet was employed for phase picking, al-
though EQTransformer yielded comparable results on
our dataset.
Phase association using PyOcto reduced false detec-

tions and selected the correct phases when multiple
events occurred close in time. In such cases, the phase
picks associated with the PyOcto solution whose ori-
gin time was closest to that in the AD-Detector message
were retained, and phases associated with other solu-

tions were discarded. However, for events only a few
seconds apart (e.g. during seismic swarms), the phase
pickers struggled to detect correct phases for the later
events, particularly at greater distances where the later
P-wave arrivals were obscured by the earlier event’s
coda waves.
For hypocenter estimation, we employed EdB’s stan-

dard 1D layer-over-half-space velocity model for events
outside the dedicated regions outlined by red boxes in
Figure 2. In the present tests, the manual-catalog epi-
centers were used to select the appropriate local ve-
locity model automatically; in real-time operation the
same selection will be driven by the AD-Detector’s pre-
liminary epicenter (see Figure 2 for more details). In-
terestingly, automatic locations in the West Bohemi-
a/Vogtland region resulted in locations with smaller
root-mean-square (RMS) values and uncertainties with
the simplified model for Germany than with the local
WB2005 andWB2012 models (Málek et al., 2005; Růžek
and Horálek, 2013).

4.3 Location Quality Score
Given the heterogeneous quality of automatic locations
throughout our catalog region, we define the Location
Quality Score (LQS) to quantitatively evaluate automatic
location reliability using a single comprehensive met-
ric. The LQS combines eight normalized parameters,
each closely related to location quality:

1. (Primary) azimuthal gap (◦): Largest angle sep-
arating two adjacent stations, measured from the
epicenter.

2. Distance to nearest station (km): Epicentral dis-
tance to closest station with phase picks.

3. Station density (stations/km2): Number of sta-
tions per area (πR2, where R is the epicentral dis-
tance that contains 80% of the stations).

4. Secondary azimuthal gap (◦): Largest gap filled by
one station, measured from the epicenter.
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Figure 3 Pairwise dependency of the eight parameters used to define the Location Quality Score.

5. Azimuthal uniformity (◦): Standard deviation of
azimuthal gaps between consecutive stations.

6. det(Cov[X]) (km6): Determinant of hypocentral lo-
cation covariance matrix.

7. RMS(s): Root-mean-square of travel-time residuals
at the maximum-likelihood hypocenter.

8. Number of picks: Total number of P- and S-phase
picks used.

A well-distributed station network is key for accurate
event locations (e.g., Bondár et al., 2004; Bondár and
McLaughlin, 2009;Havskov et al., 2012; Tiira et al., 2016;
Theunissen et al., 2018). However, traditional mea-
sures such as the primary azimuthal gap and distance
to the nearest station alone are insufficient to compre-
hensively evaluate station geometry. Thus, we include
three additional network-related parameters. The first
is the station density, which penalizes e.g., configura-
tions where, despite a very close station, the next clos-
est station is considerably distant. The secondary az-
imuthal gap further enhances robustness, providing a
more reliable measure of network geometry (Bondár
et al., 2004). Additionally, azimuthal uniformity quan-
tifies the deviation of the station distribution from an
ideal, evenly spaced arrangement with gaps of 360◦/N ,
where N is the number of stations. Larger deviations
from this optimal azimuthal geometry increase sus-
ceptibility to location biases (Bondár and McLaughlin,
2009).
The covariance matrix determinant combines all un-

certainties of the hypocentral parameters. The diagonal
elements represent the location variance, while the off-
diagonal elements describe the orientation and shape
of the error ellipse (Havskov et al., 2012). The RMS cap-
tures phase pick accuracy and the overall travel-timefit,
assessing simultaneously the suitability of the velocity

model. Finally, although a higher number of picks typ-
ically improves the solutions, their spatial distribution
is critical—uneven distributionsmayweaken the contri-
bution of the number of picks to location quality.
Figure 3 illustrates pairwise relationships among the

eight LQS parameters, revealing strong interdependen-
cies (e.g., between station density and number of picks,
or azimuthal uniformity and azimuthal gaps). Notably,
parameters like nearest station and azimuthal gaps
alone show limited influence on the covariance deter-
minant (location uncertainties). The figure also reveals
outliers, whichwe accounted for during parameter nor-
malization (see Supplemental Figure S1 for parame-
ter histograms). Strongly skewed parameters (covari-
ancedeterminant, stationdensity, nearest station, RMS,
number of picks) were logarithmically transformed be-
fore normalization to manage their skewness. Such
transformation compresses the extreme high values
and spreads out the lower range. Normalization fol-
lowed robust statistics (Equation 1):

Xlog,Norm = Xlog − Xlog,5th

Xlog,95th − Xlog,5th
, (1)

where Xlog = log(X + ε) and ε is a small constant
that avoids taking the logarithm of very small values
of X. Outliers were clipped at the 5th and 95th per-
centiles. This ensured that each normalized parame-
ter XNorm ranges between 0 and 1, thus contributing
equally to the LQS. A variation was applied during the
normalization of the RMS parameter. In our dataset, we
observed anomalously small RMS values that paradoxi-
cally corresponded to poor-quality locations, which had
a very small number of picks (see Figure 3). This appar-
ent contradiction arises because RMS primarily reflects
the travel-time residual fit rather than overall location
quality. Consequently, a small number of picks can arti-
ficially produce extremely lowRMS valueswithout indi-
cating a better location solution (Husen andHardebeck,
2010). Such anomalously small RMS values overlapped
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Figure 4 LocationQuality Score (LQS) for the 594 automatically located events, averagedwithin a 20′ ×20′ grid. Event loca-
tions are color-coded by automatically estimated depths (values clipped at 30 km). Black triangles denote seismic stations,
including temporary deployments, used for phase picking during automatic location.

with genuinely good low-RMS solutions but tended to
cluster around very low stationdensities, which allowed
us to identify and exclude them prior to normalization.
After normalizing the RMS, these identified anomalous
outliers were clipped to a value of 1. This same ap-
proach against spuriously low RMS is applied in the
near-real-time system. Guardrail thresholds, derived
from the event dataset used in this study, are presently
fixed but will be periodically re-evaluated—and, if war-
ranted, regionally adapted—to maintain conservative
behavior as more automatic locations accumulate. An-
other exception is the nearest station parameter, for
which we explicitly set the lower and upper normaliza-
tion bounds at 10 and 30 km, respectively, guided by
the Ground Truth (GT) criteria in Bondár et al. (2004);
Bondár and McLaughlin (2009). These criteria define
standards commonly used in global and regional bul-
letins to classify the reliability of event locations.
Primary and secondary azimuthal gaps and az-

imuthal uniformity exhibited less skewed distributions.
The parameter spread was not extreme for these three
parameters and their scales remainedmanageable. For
this reason, we normalized these parameters directly
without logarithmic transformation. For the azimuthal
gap, meaningful values existed above the 95th per-
centile (approximately 92◦). For instance, events in the
West Bohemia/Vogtland region often exhibit relatively
large azimuthal gaps of about 130◦ due to sparser station
coverage on the Czech side, yet these locations main-
tain high quality. The epicenter accuracy criteria for
local networks established by Bondár et al. (2004) rec-

ommend primary azimuthal gaps less than 110◦ and
secondary azimuthal gaps less than 160◦. Such strict
criteria aim to prevent contamination of their high-
quality location sets (Bondár and McLaughlin, 2009).
Based on our practical monitoring experience andwell-
documented practices, however, we heuristically set a
more lenient upper boundary of 140◦ for the primary
azimuthal gap. For the secondary azimuthal gap, we ad-
hered to the recommended 160◦ upper limit.
We computed the LQS as a weighted sum of our eight

normalized parameters (Equation 2):

LQS = 0.35(1 − Det.Cov.XNorm) + 0.125 Sta.DensNorm
+ 0.125(1 − Az.UnifNorm) + 0.05(1 − Az.GapNorm)
+ 0.1(1 − Sec.Az.GapNorm) + 0.1(1 − RMSNorm)
+ 0.1(1 − Near.StaNorm) + 0.05 N.PicksNorm (2)

By construction, LQS ranges from 0 to 1; higher val-
ues indicate better location quality. Weights assigned
to each parameter reflect empirical considerations: the
highest weight (0.35) is assigned to the covariance de-
terminant, as low uncertainty implicitly indicates good
station geometry and phase-pick quality. Station dis-
tribution received the next highest weight (0.25 total),
equally split between station density and azimuthal uni-
formity (0.125 each). Secondary azimuthal gap received
more weight (0.1) than primary gap (0.05) due to its ro-
bustness. RMS and nearest station were weighted mod-
erately (0.1 each), while the number of picks received
the lowestweight (0.05), being indirectly represented by
other parameters.
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4.4 Results
Figure 4 illustrates the automatic event locations com-
puted with TieBeNN and their corresponding LQS val-
ues, averagedwithin a 20′×20′ grid. Areas characterized
by dense seismic station networks, such as northern
Switzerland, southwestern Germany, the West Bohemi-
a/Vogtland region, western Germany, and the Upper
Rhine Graben, clearly exhibit high LQS values. These
high scores highlight regions where automatic detec-
tions, including focal depth estimations, are expected to
be highly reliable due to favorable network geometry.
Conversely, sparse station coverage—notably in north-
ernGermany and in Rhineland-Palatinate (westernGer-
many, along the German–French border)—adversely af-
fects automatic location quality.
The West Bohemia/Vogtland region is known for re-

current seismic swarms of relatively small magnitudes.
During such swarms, events occurring only a few sec-
onds apart pose a particular difficulty for automatic
detection workflows. The coda waves of preceding
events decrease the signal-to-noise ratio for subsequent
events, complicating P-wave detections at greater dis-
tances. This frequently leads to missed phase picks
or incorrect phase associations, where phases belong-
ing to an earlier event are incorrectly associated with a
later event. Consequently, even with an otherwise ex-
cellent station distribution and waveform data quality,
automatic locations in this region occasionally exhibit
higher uncertainties and increased RMS values, which
significantly reduces the LQS.
Waveform data from the temporary AlpArray seis-

mic network (AlpArray Seismic Network, 2015; Hetényi
et al., 2018), publicly available via EIDA since April 2022,
notably improved station coverage for events located in
southern Germany and Austria, thereby positively im-
pacting their respective LQS values.

4.5 Visualizing automatic location quality
using the LQSmetric

Figure 5 shows two illustrative examples of automatic
event locations extracted from our results. Each row
corresponds to one event, clearly contrasting in terms
of LQS and location quality. The upper row illustrates a
high-quality automatic location for an event in theWest
Bohemia/Vogtland region. The event attains an LQS of
0.83 because of its overall favorable station distribution
and correspondingly low locationuncertainties. In con-
trast, the lower row shows an event from the Eifel Vol-
canic Field in western Germany, which receives a sig-
nificantly lower LQS of 0.19. This low score is mainly
attributed to a combination of suboptimal station ge-
ometry, higher RMS values, and higher uncertainties
compared to the upper-row example in the hypocenter
estimation. It is noteworthy that the event’s automati-
cally determined focal depth (35.5 km) is atypically deep
compared to most seismic events in Germany. How-
ever, this deeper depth is corroborated by manual loca-
tions reported by local seismic agencies (e.g., Depart-
ment of Geosciences, Bensberg Observatory, Univer-
sity of Cologne, 2016; Erdbebendienst Südwest Baden-
Württemberg and Rheinland-Pfalz, 2009; Federal Insti-

tute for Geosciences and Natural Resources, 1976). A
detailed discussion regarding the relationship between
automatically estimated depth uncertainties and actual
event depths is provided in subsequent sections.

5 Cross-validating automatic focal
depth estimation and the LQS met-
ric

5.1 Comparison of automatic vs. manual fo-
cal depths

To cross-validate the automatic depth estimations ob-
tained with TieBeNN, we first compared them to manu-
ally determined depths for events not included in our
primary test catalog of 594 events (Section 4.1). The
events used previously served to define the LQS metric
and normalization boundaries for the eight parameters
described in Section 4.3. The primary objective of this
validation was to assess whether the LQS effectively re-
flects the quality of automatic locations beyond the ini-
tial dataset by comparing them with manually derived
solutions.
For this validation, we retrieved event catalogs from

three German seismic agencies: the Southwestern Ger-
man Earthquake Service (EDSW, Erdbebendienst Süd-
west), the Seismological Network of Thuringia (TSN,
Thüringer SeismologischesNetz), and theBensbergObser-
vatory (BENS). Additionally, events from the Swiss Seis-
mological Service (SED, Schweizerischer Erdbebendienst)
were also included. From each catalog, we randomly
selected 50 manually located local tectonic events from
the year 2024, all with magnitudes ≥1 and without fixed
focal depths. Figures 6 and 7 show the epicenters of the
events in the left panels and the automatic versus man-
ual focal depths in the right panels.
For the EDSW catalog (Figure 6a), the automatic

depth estimates generally align well with the manual
depths. Events in areas with poorer station coverage
(e.g., near the German–French border) received below-
average LQS values of approximately 0.4. Some events
along the Upper Rhine Graben, despite excellent sta-
tion coverage, displayed elevated RMS values around
0.4 s, resulting in increased depth uncertainties. This
could indicate that a simple 1Dvelocitymodelmay inad-
equately explain observed travel-times in that area. No-
tably, two deeper events in Baden-Württemberg, man-
ually located at 30 km depth, were automatically lo-
cated at approximately 37 km depth, each with uncer-
tainties around 3 km. Due to the uncertainties and lim-
ited station coverage, these events received low LQS
values (<0.2), despite being in reasonable agreement
with manual locations. Thus, our results suggest that
LQS provides a more reliable quality assessment for
shallower crustal events. Additionally, some events in
the EDSW catalog overlapped spatially with the BENS
catalog region (Figure 6b). In these cases (not explic-
itly shown), the EDSW manual depths better matched
our automatic estimates compared to the depths of the
same events from the BENS catalog.
Most automatic depth estimates for events in the

BENS catalog (Figure 6b) were concentrated within
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Figure 5 TieBeNN automatic location results for two contrasting events from the test catalog. Left: Event time, hypocenter,
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a narrow depth interval (8–12 km), whereas manual
depths spread more uniformly across 2–14 km. To
broaden the depth range for validation, five deeper
events with depth >15 kmwere included. Automatic lo-
cations with high-quality picks and good station cover-
age achieved LQS values around 0.7. However, due to
discrepancies in depth ranges between automatic and
manual results, good LQS values did not always imply
close depth agreement. Events with poor station geom-
etry and higher uncertainties received LQS values <0.3,
and events with extremely sparse coverage and very
large uncertainties (> 3 km) were correctly assigned
very low LQS values (<0.1). A notable temporal vari-
ation in station coverage affected the BENS catalog re-
gion, causing older events to achieve higher LQS values
compared to themore recent events in 2024. This appro-
priately reflects decreased automatic location quality as
station coverage deteriorated over time.
The automatic and manual focal depths showed no-

tably good agreement for events in the SED catalog (Fig-
ure 6c). The dense seismic network in this region,
coupled with the local velocity model by Diehl et al.
(2021), resulted in highly reliable automatic depth esti-
mates with correspondingly low uncertainties and con-
sistently high LQS values (>0.7). A recurring observa-
tion, also noted in other catalogs, is that events manu-
ally located at shallow depths (<5 km) were often auto-
matically located close to the surface (near 0 km depth).
The LQS correctly identified events with sparser sta-
tion networks (such as in parts of France and near the
German–Swiss border) or those with higher RMS values
due to significant discrepancies between observed and
theoretical travel times, assigning them lower-quality
scores.
Automatic locations for the TSN catalog events, de-

spite sparse station coverage on the Czech side, gen-
erally showed very low depth uncertainties (Figure 7).
However, the larger azimuthal gaps and lower station
densities negatively influenced LQS values. Events from
this catalog were located automatically using two ve-
locitymodels: the standard layer-over-half-spacemodel
utilized at EdB (Figure 7a) and the 1D approximation of
the 3D velocity modelWB2012 from Růžek and Horálek
(2013) (Figure 7b). The EdB model consistently pro-
duced automatic localizations with lower RMS values
(average 0.12 s versus 0.33 s) and lower depth uncertain-
ties compared toWB2012 (average 0.49 km vs. 0.65 km),
resulting in higher LQS values. However, for an un-
usual seismic swarmnearNový Kostel—unusual in both
its duration and northern location, partially extending
into German territory—automatic locations using the
WB2012 model better matched TSN manual depth es-
timates. The EdB model systematically overestimated
depths for these swarm events, maintaining a consis-
tent “depth excess” across all swarm events. Compar-
isons with the West Bohemia Local Seismic Network
(WEBNET) catalog (Institute of Geophysics, Academy of
Sciences of the Czech Republic, 1991) showed that their
manually determined depths generally fell between the
automatic results from the EdB model and the WB2012
model (Supplemental Figure S2). For events outside the
swarm region, the EdB model provided better overall

depth agreementwith themanual catalog, coupledwith
lower uncertainties, compared toWB2012.

5.2 Robustness of LQSmetric

In this section, we quantitatively assess how reliably the
LQS metric represents the quality of automatically lo-
cated events by evaluating the relative importance of
each of the eight parameters comprising the score. For
this purpose, we plotted the LQS values against each
parameter, using the full set of 594 events described
in Section 4.1. We compute Pearson and Spearman
correlation coefficients. Both coefficients range from
−1 to +1 (0 indicates no association; ±1 indicates per-
fect negative/positive association). Pearson’s coefficient
quantifies the strength of a linear relationship for near-
normally distributed variables, whereas Spearman’s co-
efficient is rank-based, less sensitive to non-normality,
and detects monotonic (not necessarily linear) trends.
We report both because LQS–parameter relations can
be skewed andnon-linear, so the twomeasures are com-
plementary (e.g., Schober et al., 2018). Scatterplots of
the LQS versus each contributing parameter, along with
correlation coefficients, are shown in Figure 8.
These analyses confirm the expected behavior of the

LQSmetric. As demonstrated repeatedly in Sections 4.5
and 5.1, events manually classified as well-located gen-
erally received high LQS values, whereas events with
greater uncertainties and poorer station coverage re-
ceived lower scores. Other parameters directly associ-
atedwith improved depth constraints—such as a greater
number of picks, low RMS residuals, and higher station
density—show strong correlations with the LQS. How-
ever, we observed some spread within each scatterplot,
indicating that no single parameter fully captures the
complexity of event location quality.
The determinant of the location covariance matrix

displayed an interesting relationship with LQS: a very
low Pearson correlation coefficient (-0.13) contrasted
with a high negative Spearman coefficient (-0.89). This
indicates a strong nonlinear relationship, confirming
that events with larger uncertainties are consistently
ranked among those with lower LQS values. Thus, the
covariance determinant is confirmed as a critical pa-
rameter within the LQS formulation.
A robust positive correlation (Pearson: 0.73) was ob-

served between the LQS and the number of picks. Since
this parameter is closely related to station density (Pear-
son: 0.67), these two parameters collectively reinforce
the conclusion that higher-quality locations generally
involve a greater number of reliable phase picks. Nev-
ertheless, the observed scatter partly reflects scenarios
with station networks that have many stations concen-
trated in small areas, such as dense arrays, leading to
high pick counts without necessarily improving overall
azimuthal coverage or location accuracy.
Both primary and secondary azimuthal gaps demon-

strated moderate correlations with the LQS. Generally,
smaller azimuthal gaps correlate with improved loca-
tion quality, but several exceptions were apparent. No-
tably, a subset of events with moderate-to-high LQS val-
ues (around 0.5 or greater) occurs at large primary az-
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Figure 8 Correlation between the LQSmetric and each of its eight contributing parameters (described in Section 4.3). Pear-
son and Spearman correlation coefficients are provided in each panel.

imuthal gaps of approximately 100–130◦, many of them
in the West Bohemia/Vogtland region. Despite rela-
tively large azimuthal gaps due to sparser station cov-
erage on the Czech side, these events achieved high-
quality locations due to very low RMS residuals and
small uncertainties. Compared to both azimuthal gaps,
the azimuthal uniformity index showed a stronger neg-
ative correlation (Pearson: -0.58) and less spread, cor-
rectly reflecting its significant contribution to location
accuracy, since uniformly distributed stations are es-
sential for minimizing location biases.
The distance to the nearest station negatively corre-

lated strongly with LQS (Pearson: -0.63), confirming

that greater distances typically result in poorer loca-
tions. Nevertheless, someoutliers illustrate that a single
close station (less than 10 km away), though favorable
according to criteria by Bondár and McLaughlin (2009),
does not always guarantee high-quality locations if the
next station is substantially farther away.
The RMS residual parameter negatively correlated

strongly with LQS, emphasizing that smaller RMS val-
ues generally indicate better location quality. HighRMS
values are associated with poor automatic phase picks
or inadequate velocity models that fail to explain travel
times in complex geological settings. However, several
noteworthy outliers appeared, primarily related to ex-
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Figure 9 (a) Depth uncertainty of synthetic event locations under varying distances to the nearest station (top row) and
primary azimuthal gaps (bottom row) for five synthetic focal depths (0.5, 5, 10, 20, and 30 km). Left panels show results
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estimated focal depths. (b) Effect of varying the distance to the nearest station (top) and primary azimuthal gap (bottom) on
the LQSmetric for the same five synthetic events. The layout and coloring follow the same scheme as described in (a).

tremely low RMS values. As discussed in Section 4.3,
events with very few picks (approximately 25 or fewer)
can misleadingly yield extremely low RMS values due
to insufficient constraints. In these cases, identified by
low station densities, we corrected the RMS parameter
by assigning its maximum normalized value, prevent-
ing artificial inflation of the LQS. Conversely, two events
with RMS values greater than 1 s corresponded to seis-
mic swarm events occurring a few seconds after a pre-
vious event. Here, automatic phase pickers erroneously
selected arrivals from the preceding event due to over-
lapping waveforms. These high RMS values reflect a
recognized challenge in machine learning–based auto-
matic picking rather than a flaw in the LQS metric. In
such instances, the automatic locations remained accu-
rate, resulting in relatively high LQS scores despite ele-
vated RMS values.

5.3 Cross-validation of TieBeNN hypocenters
and LQSwith synthetic data

Since ground-truth tectonic events are unavailable
within the German catalog, we tested TieBeNN’s fo-
cal depth estimation and evaluated the behavior of the

LQS metric using synthetic events, where the true fo-
cal depth is precisely known. Our main objectives were
to determine how accurately TieBeNN could recover
known depths under varying station coverage condi-
tions and travel-time picking errors, and to examine
whether our LQS metric sensitively reflects these vari-
ations. To achieve this, we created five synthetic events
located in western Germany at 50.35◦N, 7.38◦E, with
predefined focal depths of 0.5, 5, 10, 20, and 30 km. This
region was selected due to its dense seismic station net-
work, enabling us to systematically test different station
configurations and coverage scenarios.
We used NonLinLoc to compute synthetic travel

times, simulating seismic wave propagation from each
synthetic hypocenter through the crust, modeled us-
ing the 1D seismic velocity profile from Reamer and
Hinzen (2004). These travel times were calculated to
real station locations, supplemented by additional syn-
thetic stations randomly positioned to generate various
realistic station coverage scenarios. Supplemental Fig-
ure S3 shows the epicenter and spatial distribution of
real and synthetic stations used in this analysis.
Figure 9a presents the depth uncertainties for the au-

tomatically located synthetic events under various sta-
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tion configurations and phase-picking errors. Our anal-
ysis demonstrates that the accuracy and uncertainty
of focal depth estimations depend not only on station
coverage and picking errors but also significantly on
the true focal depth itself. Very shallow events typi-
cally show higher sensitivity to travel-time variations at
similar epicentral distances compared to deeper events
(Havskov et al., 2012). Our tests generally reveal larger
uncertainties andgreater differences between synthetic
(true) and estimated focal depths for the shallowest
synthetic event (0.5 km), while uncertainties are low-
est for events between approximately 5 and 20 km
depth. As expected, scenarios characterized by dense
station coverage, proximity of stations to the epicen-
ter, and low phase-picking errors produce depth esti-
mations with minimal uncertainty and depth discrep-
ancies across all tested focal depths. Although abso-
lute depth differences between the synthetic and au-
tomatically estimated depths typically remained below
2 km—partially because our simulation retained a rela-
tively dense station network despite selectively remov-
ing nearby stations—there is a consistent and gradual
increase in depth uncertainty as the distance to the
nearest station and primary azimuthal gap increase.
Events at 30 km depth appear particularly sensitive to
both poor station coverage and elevated picking errors,
likely due to seismic wave raypaths becoming increas-
ingly horizontal at greater depths, thus reducing depth
sensitivity.
Regarding the behavior of the LQS metric, Figure 9b

consistently captures the impact of the various tested
station configurations and travel-time errors on auto-
matic location quality. Scenarios characterized by ro-
bust station coverage and accurate phase picks con-
sistently yield higher-quality automatic locations, in-
dependent of focal depth. Conversely, increased pick-
ing errors, greater distances to the nearest station,
and larger azimuthal gaps systematically degrade lo-
cation quality, resulting in reduced LQS values. No-
tably, our synthetic test results provide insight into
why event locations in the West Bohemia/Vogtland re-
gion, despite having relatively large azimuthal gaps
around 120◦, maintain good-quality scores (LQS around
0.6). This is attributed primarily to excellent automatic
phase picks—enabled by high signal-to-noise ratios—
and dense station coverage on the German side of the
border, factors that compensate effectively for the sub-
optimal azimuthal gap.
Furthermore, depth constraint inherently depends

on ray coverage and directions at the hypocenter; thus,
automatically located events at focal depths near or be-
yond 30 km inherently exhibit lower LQS values due to
unfavorable ray geometry. Given the scarcity of seis-
mic events at depths greater than approximately 30 km
in Germany compared to shallower seismicity, our LQS
metric and normalization parameters were primarily
calibrated on shallower crustal earthquakes, reflecting
the majority of the German seismic catalog. Conse-
quently, for events deeper than around 30 km, our re-
sults suggest that either the interpretation of the LQS
must be reconsidered—acknowledging it is optimized
for shallower crustal events—or that deeper automatic

locations should be flagged as inherently less reliable,
recognizing the primary calibration of the LQS for typi-
cal shallow crustal seismicity.

6 Discussion
By leveraging community-standard, community-
supported, and state-of-the-art seismic monitoring
tools, including advanced machine learning–based
models, we enhanced the capabilities of the automatic
real-time local earthquake monitoring system at EdB.
Previously, the system provided sensitive detections,
but locations were limited to fixed grid-point coordi-
nates without depth estimations. The enhanced system
presented here delivers more precise probabilistic
hypocenter estimations, allows the use of dedicated
local velocity models during the location process,
and introduces the Location Quality Score (LQS) as a
visually intuitive and quantitative metric. This met-
ric provides valuable support for analysts in rapidly
assessing the reliability of automatic locations.

6.1 Automaticprobabilisticdepthestimation
To evaluate the automatic hypocenter estimation sys-
tem, we computed focal depths for 594 local tectonic
events. Wherever available, we utilized local 1D veloc-
ity models during event location to reduce discrepan-
cies between observed and theoretical travel times. Sev-
eral high-resolution 3D velocity models exist for spe-
cific regions of Germany and neighboring countries,
and TieBeNN readily supports their use in automatic lo-
calization with NonLinLoc. Examples include the 3D
velocity model by Diehl et al. (2021) for events in the
Central Alps region, the WB2012 model by Růžek and
Horálek (2013) for the seismically active West Bohemi-
a/Vogtland region, and the model by Lengliné et al.
(2023) for the Upper Rhine Graben. While robustly con-
structed 3D velocity models typically result in more ac-
curate depth estimations due to properly resolved lat-
eral velocity variations, their applicability to real-time
monitoring must be carefully evaluated. Travel-time
calculations in NonLinLoc significantly increase com-
putational requirements when employing 3D models,
potentially extending computation time from a few sec-
onds (using 1D models) to several minutes, depend-
ing on the number of phase picks involved. Given
this practical limitation, our results suggest that ade-
quately dense station coverage coupled with suitable
1D velocity models usually suffices to achieve accu-
rate hypocenter estimations for most crustal seismic-
ity monitored by EdB. Nonetheless, dedicated 3D ve-
locity models have demonstrated substantial benefits
for monitoring shallow induced seismicity associated
with geothermal reservoirs or hydrocarbon extraction
sites, significantly reducing hypocentral uncertainties
compared to simpler 1D or regional velocity models, as
reported, for example, by Uta (2017) in northern Ger-
many.
In this study, pre-trained phase-picking models pro-

vided by SeisBench performed well in detecting local
seismic phases within our dataset; thus, we did not
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Figure 10 (a) Comparison of manually estimated (unfixed) focal depths at EdB versus automatically estimated depths for
events in our 594-event catalog, with points colored according to their respective LQS values. (b) Comparison of automatic
versus manual depth estimations for events from the same catalog located within Switzerland. Circles indicate depths from
EdB manual locations, including fixed-depth estimations visible as round-number depths (e.g., 10 or 20 km). A minimum
absolute difference of 5 km exists betweenmanual and automatic estimations. Inverted triangles show depths for the same
events extracted from the SED catalog. Pairs of EdB and SED locations for the same event can be identified by their identical
automatic depth (y-axis) and LQS color.

re-train PhaseNet specifically for our region. How-
ever, one significant challenge encountered during au-
tomatic phase picking was handling closely spaced
overlapping events, a scenario frequently observed dur-
ing seismic swarms, particularly in the West Bohemi-
a/Vogtland region. Recent internal tests at EdB in-
dicate that re-training PhaseNet on local phase picks
from events recorded by the German Regional Seis-
mic Network (GRSN) significantly enhances the num-
ber of correct detections, especially for S-wave picks (A.
Steinberg, pers. comm., 2025). Future improvements
to a specialized phase picker for German seismicity
could potentially employ data augmentation methods
similar to those described by Armstrong et al. (2023).
Their approach synthesizes waveforms with nearly co-
incident P-wave arrivals to improve automatic phase-
picking performance during periods of intense seismic
activity in theYellowstone volcanic plateau. While these
enhancements represent promising directions for fur-
ther research, they extend beyond the immediate scope
of the current study.
A comparison between manually and automatically

estimated focal depths for the subset of events in our
test catalog with non-fixed manual depths is presented
in Figure 10a. To complement the scatter, a histogram
of signed depth differences is provided in Supplemen-
tary Figure S4. Overall, a clear agreement is observed
between the two sets of depths, but several noteworthy
exceptions exist. Events with very low LQS values occa-
sionally still show good depth agreement. To examine
whether epicentral uncertainty contributes to reduced
LQS in such cases, we analyzed LQS as a function of
the absolute depth misfit, ∆z = |zauto − zmanual|, and
the vertical uncertainty (Supplementary Figure S5). The
few small-∆z cases with low LQS exhibit elevated hor-
izontal and/or vertical uncertainties, consistent with
weaker epicentral constraint. However, because sparse
station coverage usually inflates horizontal and verti-

cal uncertainties jointly, LQS—through the covariance
determinant—primarily reflects this combined effect
rather than cleanly separating horizontal from verti-
cal uncertainties. In some instances, a weakly peaked
posterior probability distribution can also yield a depth
close to the reference by chance while the overall un-
certainty (and thus LQS) remains large. Additionally,
our automatic depth estimations sometimes show re-
duced accuracy for events manually located at shal-
low depths (up to ∼10 km), despite relatively good LQS
scores (>0.5). Moreover, events manually located at
depths greater than 20 km generally exhibit higher dis-
crepancies relative to automatic depths. These events
are typically assigned significantly shallower depths by
our automatic system and receive consistently low LQS
scores (<0.4). Such discrepancies likely occur due to
limited station coverage around these event epicenters.
If the true focal depth indeed exceeds 20 km, greater
uncertainties—and correspondingly lower LQS values—
are expected, as demonstrated by our synthetic tests in
Section 5.3. It is important to emphasize that our 594-
event catalog lacks ground-truth events. Consequently,
event depths often differ across local seismic catalogs
for the same events. An illustrative example is shown
in Figure 10b, comparing automatic depths with manu-
ally determined depths from EdB and the Swiss Seismo-
logical Service (SED) for the same set of events located
within Switzerland. For completeness, a comparison
that includes events with fixed manual depths is pro-
vided in Supplementary Figure S6. As expected, most
fixed-depth cases cluster at the cataloged fixed value
(commonly 10 km) and correspond to automatic loca-
tions tending toward lower LQS, although a subset at-
tains high LQS where network coverage was improved
in the automatic location (e.g., by adding stations such
as those from the Raspberry Shake Seismic Network;
Raspberry Shake, S.A., 2016). In a few cases, strong re-
gional prior information can also yield good agreement
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between automatic and fixed depths (e.g., the event lo-
cated at >30 km depth noted in Figure 5).

6.2 Location quality assessment using the
LQSmetric

The Location Quality Score (LQS), defined as a weighted
sum of eight normalized parameters, is conceptually
similar to the Ground Truth (GT) criteria established by
Bondár et al. (2004); Bondár and McLaughlin (2009). It
was specifically designed to facilitate rapid evaluation
of location quality during real-time monitoring of local
tectonic seismicity by the EdB. We established the nor-
malization of the individual parameters using robust
statistics derived from 594 automatically located events
spanning a period of three years, with only a few ex-
ceptions based on established literature values. To vi-
sually convey the automatic event localization quality to
the analysts on duty, we implemented a radar plot as il-
lustrated in Figure 5. This intuitive visualization imme-
diately identifies the parameters driving either high or
low scores, such as small uncertainties, suboptimal sta-
tion coverage, or poor travel-time fits between observed
and theoretical phases.
Despite our parameter weighting being heuristic and

grounded in empirical experience, the LQS clearly cap-
tures the critical role of station distribution in achieving
accurate automatic event locations (see Figure 4). Ar-
eas with dense and well-distributed seismic networks
typically yield accurate hypocenter estimations with
low uncertainties and correspondingly high LQS values
(≥0.7). Under these conditions, automatic localizations
considerably reduce the daily monitoring load for ana-
lysts. A practical example of this benefit is evident in the
automatic localization of seismic swarms in the West
Bohemia/Vogtland region, provided the events do not
significantly overlap in time.
Some regions with apparently good station coverage

and reliable automatic phase picks occasionally pro-
duce nevertheless slightly lower LQS scores (between
approximately 0.6 and 0.7). In these instances, el-
evated RMS values (typically around 0.3–0.4 s) indi-
cate poor agreement between observed and theoretical
travel times. Such cases were frequently identified in
events located along theUpper RhineGraben. Here, the
LQS accurately reflects and clearly communicates the
specific factor that adversely affects the quality of auto-
matic localizations.
Regions characterized by sparse station coverage,

such as northern Germany, pose a different scenario.
Automatic localizations in these areas might yield fo-
cal depths similar to manually derived estimations, but
with great depth uncertainties. The LQS correctly iden-
tifies these cases as inherently unreliable by assigning
correspondingly low scores, often as low as approxi-
mately 0.2.
A recent revision of the GT event list criteria (Gal-

lacher et al., 2025) relaxes the requirement of a near-
est station within 10 km when sufficient P–S pairs are
available. It also replaces the azimuthal-gap proxy for
azimuthal coverage with the Cyclic Polygon Quotient
(CPQ), a normalized measure computed from event–

station azimuths on the unit circle. Our current LQS
already downweights the nearest-station distance rela-
tive to station density and azimuthal uniformity, so it
is consistent in spirit with the relaxed near-station rule.
Because the azimuthal-gap parameter showed compar-
atively weak correlation with LQS in our tests (see Fig-
ure 8), CPQ appears to be a promising compatible en-
hancement to characterize azimuthal coverage more
comprehensively. In the same spirit, and given the role
of S phases for depth resolution, wewill evaluate replac-
ing the “number of picks” parameter with the “num-
ber of stations carrying both P- and S-picks.” Total pick
count already shows strong correlation with LQS (see
Figure 8), but a P–S-pair measure may better capture
depth-resolving power and reduce redundancywith sta-
tion density. We plan to assess this variant togetherwith
CPQ in future work.
Most local seismicity in Germany occurs at crustal

depths ranging roughly from 2 to 20 km, with an av-
erage Moho depth beneath Germany lying between 27
and 30 km (Grad and Tiira, 2009; Michailos et al., 2023).
Despite this, some automatic localizations in our study
produced depths exceeding 30 km (e.g., Figures 5b
and 6a). Even deeper seismic events, reaching depths
around 40 km and thus clearly below the Moho discon-
tinuity, are reported in relocated seismicity catalogs for
the Northern Rhine area (Hinzen et al., 2021). In our
dataset of 594 events, only one event was located be-
low 30 km depth, occurring in the Eifel region, a well-
documented location for deep, low-frequency earth-
quakes (Hensch et al., 2019). While the automatic depth
estimation of this specific event aligned well with man-
ual depth estimations at both EdB and other local seis-
mic agencies, such as the Seismological Station Bens-
berg, it received a low LQS value of only 0.19. Given that
the parameter normalization boundaries defining our
metric primarily represent shallow crustal events due
to their prevalence in the German catalog, our results
suggest that the LQS performs best when describing the
quality of shallower seismic events.
Our synthetic tests presented in Section 5.3 further

illustrate this point, showing how depth uncertainties
and the resulting LQS for events deeper than approx-
imately 30 km are particularly sensitive to inadequate
station coverage—much more so than for shallower
events under identical network configurations. Poor
phase-pick accuracy further exacerbates this effect, re-
sulting in large depth uncertainties and correspond-
ingly reduced LQS values. Fundamentally, these results
reflect the inherent decrease in depth resolution for
seismic events located near or below the Moho bound-
ary. In Germany, where deep events represent statis-
tical outliers and reliable ground-truth depth data are
scarce, this limitation is particularly relevant. While
developing an alternative metric specifically for deep
seismic events might seem desirable, the absence of ro-
bust reference data for calibration at such depths com-
plicates this approach. Practically, we therefore rec-
ommend flagging automatic locations deeper than ap-
proximately 30 km as inherently less reliable, explicitly
acknowledging that the current LQS calibration targets
predominantly shallow crustal seismicity.
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Ideally, defining clear LQS thresholds to distinguish
reliably versus poorly located events would allow ana-
lysts at EdB to rapidly prioritize events requiring man-
ual verification, while confidently relying on automatic
reports for high-quality locations in real-time monitor-
ing. However, establishing fixed thresholds for the LQS
metric is problematic for several reasons. Firstly, ex-
treme LQS values—approximately above 0.8 or below
0.2—clearly indicate good-quality locations or events
requiring careful manual scrutiny, respectively. Yet,
statistically, even locations with low LQS values may
occasionally yield focal depths coincidentally close to
manually derived estimates, albeit with large uncer-
tainties. Conversely, events with seemingly good LQS
scores can sometimes significantly differ from manual
depths. Secondly, as demonstrated in synthetic tests,
the LQS’s sensitivity to depth varies significantly de-
pending on the specific network geometry and depth
of the event. Any fixed threshold would likely re-
quire adjustments for deeper events, or these deeper
events could instead be automatically flagged as requir-
ing additional scrutiny. Finally, any potential thresh-
olds should be viewed as provisional guidelines rather
than rigid boundaries. Analysts might consider adap-
tive thresholds, dynamically adjusted according to real-
timenetwork conditions or region-specific calibrations,
especially if significant variations occur in station ge-
ometry or ambient seismic noise. Such adaptive strate-
gies would enhance operational flexibility and accuracy
over time, allowing the automaticmonitoring system to
respond appropriately to evolving conditions and data
availability.

7 Conclusions
We expanded the capabilities of the German Fed-
eral Seismological Survey’s automatic local earthquake
monitoring by integrating TieBeNN into the real-time
workflow. TieBeNN leverages community-supported,
state-of-the-art machine-learning tools to provide au-
tomatic probabilistic depth estimation for local seis-
mic events, introducing the Location Quality Score
(LQS) metric for quick assessment of location reliabil-
ity. This integration augments the existing system, en-
abling near-manual performance while operating con-
tinuously and rapidly.
Tests on a catalog of 594 tectonic events show that

TieBeNN’s automatic locations closely match those de-
termined by human analysts in well-instrumented ar-
eas with dense, uniform station coverage. In such re-
gions, most hypocenters were located within a small
distance of their manually derived locations, while no-
table discrepancies appeared in regions with sparse
station networks or unmodeled velocity complexities.
These cases are readily identified by low LQS values,
which reflect the higher travel-time residuals and un-
certainties, alerting analysts to interpret such results
with caution.
Cross-validation against independent events and ex-

ternal catalogs further confirms TieBeNN’s reliabil-
ity. Overall, automatic focal depths generally dif-
fer from manual solutions by only a few kilometers

for typical crustal earthquakes. The LQS correlates
strongly with key quality indicators—such as the num-
ber of phase picks, station density, location uncertain-
ties and travel-time residuals—consistently highlighting
well-constrained solutions versus those with large un-
certainties or poor station geometry.
Despite these positive results, certain scenarios re-

main challenging. Earthquake swarmswith events only
seconds apart can confuse phase-picking and associ-
ation algorithms, occasionally producing mislocated
events and higher residuals despite otherwise good cov-
erage. Additionally, the location quality of events be-
low theMoho depth (deeper than approximately 30 km)
tends to be underestimated, yielding low LQS values,
despite a good agreement with diverse independent
manual locations. These outcomes align with synthetic
tests that show how deeper hypocenters are more sen-
sitive to errors in velocity models or station geometry.
Integrating TieBeNN into routine operations offers

significant practical benefits. Beyond epicenter and ori-
gin time, the system automatically generates a depth
estimate and quality score, substantially reducing the
daily workload of on-duty seismologists. Events with
high LQS can be trusted and reported automatically, al-
lowing analysts to concentrate on lower-scoring (and
likely lower-quality) solutions. In effect, the LQS pro-
vides rapid triage of automatic results, guiding which
events need human intervention.
Looking ahead, targeted improvements could fur-

ther boost accuracy and robustness at EdB. Although
current 1D velocity models generally suffice for most
local events, incorporating high-resolution 3D mod-
els in complex regions (e.g., the Alps or the Upper
Rhine Graben) may reduce depth biases, although with
higher computational cost. Similarly, retraining or fine-
tuning the phase-picking models on region-specific
data could enhance performance during earthquake
swarms or overlapping sequences. Finally, the LQS it-
self may be refined asmore events—particularly deeper
earthquakes—are recorded, potentially adopting depth-
dependent scoring or region-specific calibration to bet-
ter evaluate atypical scenarios.
In summary, the upgraded monitoring system with

TieBeNN markedly improves near-real-time detection
and analysis of local seismic events in Germany. It nar-
rows the gap between automated processing and expert
analysis, providing faster, high-quality earthquake in-
formation to decision-makers while maintaining a ro-
bust standard of accuracy and reliability.

Acknowledgements
The authors thank the Editor Hongyu Sun and two
anonymous reviewers for their constructive comments,
which helped improve the clarity and quality of this
manuscript. The authors gratefully acknowledge the
waveform data retrieved from seismic networks acces-
sible via FDSN and EIDA web services. The complete
list of networks used in this study is provided below.
Figures were created using Matplotlib (Hunter, 2007),
Seaborn (Waskom, 2021) and theGenericMappingTools
(GMT; Wessel et al., 2019; Tian et al., 2024).

17 SEISMICA | volume 5.1 | 2026



SEISMICA | SOFTWARE REPORT | Automatic local event monitoring in Germany

Data and code availability
TieBeNN is available at https://doi.org/10.5281/
zenodo.15825093 for reproducible citation, and at
https://github.com/Cthuulhaa/tiebenn.git for installa-
tion instructions and issue reporting. The catalog
of 594 events automatically located by TieBeNN
between 2021–2023, as well as the automatic lo-
cations shown in Figures 6 and 7, are available at
https://doi.org/10.5281/zenodo.17684466. The internal
EdB event catalog, which includes events with mag-
nitudes M < 2 used to test TieBeNN, is currently not
publicly accessible (an FDSN event service is under
development). We retrieved additional event data from
the following sources:

• EDSW catalog from https://www.lgb-
rlp.de/fachthemen-des-amtes/projekte/
landeserdbebendienst-rheinland-pfalz/
erdbebenereignisse-lokal

• TSN catalog from https://antares.thueringen.de/
cadenza/index.xhtml

• BENS catalog from https://www.seismo.uni-
koeln.de/catalog/2024.htm

• SED catalog from http://www.seismo.ethz.ch/en/
earthquakes/switzerland/all-earthquakes

Waveform data used for testing and validation were re-
trieved via the European IntegratedData Archive (EIDA)
and the GEOFON Data Center, from the following seis-
mic networks: 1D (https://doi.org/10.14470/6Q705117);
2D (https://www.fdsn.org/networks/detail/2D_2021);
4C (https://doi.org/10.14470/9P982225); 8D
(https://doi.org/10.12686/sed/networks/8d); 9E
(https://doi.org/10.12686/sed/networks/9e); 9S
(https://doi.org/10.12686/SED/NETWORKS/XP);
AM (https://doi.org/10.7914/SN/AM); BE (https:
//doi.org/10.7914/SN/BE); BQ (https://doi.org/10.7914/
SN/BQ); BW (https://doi.org/10.7914/SN/BW); C4
(https://doi.org/10.12686/sed/networks/c4); CH
(https://doi.org/10.12686/sed/networks/ch); CZ (https:
//doi.org/10.7914/SN/CZ); FO (https://doi.org/10.15778/
resif.fo); FR (https://doi.org/10.15778/RESIF.FR);
G (https://doi.org/10.18715/GEOSCOPE.G); G2
(https://doi.org/10.12686/SED/NETWORKS/G2); GE
(https://doi.org/10.14470/TR560404); GQ (https:
//www.fdsn.org/networks/detail/GQ); GR (https://
doi.org/10.25928/mbx6-hr74); GX (https://www.fdsn.org/
networks/detail/GX); HS (https://doi.org/10.7914/SN/HS);
HU (https://doi.org/10.14470/UH028726); IV
(https://doi.org/10.13127/sd/x0fxnh7qfy); LE (https:
//doi.org/10.7914/SN/LE); MN (https://doi.org/10.13127/
sd/fbbbtdtd6q); NI (https://doi.org/10.7914/SN/NI); NL
(https://doi.org/10.21944/e970fd34-23b9-3411-b366-
e4f72877d2c5); OE (https://doi.org/10.7914/SN/OE);
OX (https://doi.org/10.7914/SN/OX); RD (https:
//doi.org/10.15778/RESIF.RD); RF (https://doi.org/
10.7914/SN/RF); RN (https://doi.org/10.7914/SN/RN);
S (https://doi.org/10.12686/SED/NETWORKS/S); SI
(https://www.fdsn.org/networks/detail/SI/); SL (https:
//doi.org/10.7914/SN/SL); ST (https://doi.org/10.7914/

SN/ST); SX (https://doi.org/10.7914/SN/SX); TH (https:
//doi.org/10.7914/SN/TH); YD (https://doi.org/10.7914/
SN/YD_2020); YV (https://doi.org/10.7914/brb1-cf34);
Z3 (https://doi.org/10.12686/alparray/z3_2015); ZB
(https://doi.org/10.14470/MO7576467356).
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