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Submarine seismicity monitoring with distributed
acoustic sensing near Santorini and Kolumbo Volcano
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Abstract submarine volcanoes and faults pose hazards to nearby populated islands, yet their inacces- Production Editor:
sibility limits monitoring efforts. The Christiana-Santorini-Kolumbo volcanic field is capable of generating Hﬁ?,q‘ria‘:si"(li'lo‘s
devastating eruptions, earthquakes and tsunamis. The 2025 earthquake swarm near Kolumbo, causing the kLiée R;t;i’llé’a‘u
evacuation of thousands from their homes, underlines the need for accurate and real-time monitoring. We Copy & Layout Editor:
interrogate a 45 km dark fibre that extended from Santorini past the submarine volcano Kolumbo for two ~ OliverLamb
months in 2021, comparing the performance of the fibre with the existing monitoring network for earthquake

detection and location. The detected quakes originated all over Greece, coming from any azimuth. We can Jul;ll\‘20L25

reliably identify events, doubling the number of detections in the vicinity of the fibre and Kolumbo. For event
location, the azimuthal coverage of the existing seismometer network outperforms the fibre, emphasising
the importance of a nonlinear fibre layout. Our findings suggest that while the higher detection sensitivity
of DAS leads to an information gain, the data analysis remains challenging. The data quality may be insuffi-
cient for automated workflows. The need for human input limits the potential of DAS for real-time monitoring,
although the enhanced detection sensitivity in remote areas justifies the continued research of DAS for sub-
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marine volcano monitoring.

1 Introduction

Submarine hazards, such as earthquakes, landslides
and volcanoes, pose risks to coastal populations, and
early-warning systems may prevent the loss of human
life. Off-shore industries, such as carbon capture and
storage sites, oil rigs and wind farms, require constant
monitoring to ensure profitable and safe operations.
While ocean-bottom seismometers can record the seis-
mic activity of these sites, their deployment and main-
tenance are expensive and laborious, and they are often
unable to analyse data in real time.

Distributed acoustic sensing (DAS) is an emerging
technology that may fill a gap as a continuous real-time
submarine monitoring tool with a dense spatial net-
work. DAS samples the wavefield along a fibre-optic ca-
ble that can extend up to a hundred kilometres, with
a spatial resolution down to the sub-metre scale, and
a broadband response with sampling rates up to the
kHz range (e.g., Mateeva et al., 2014; Hartog, 2017; Lind-
sey and Martin, 2021; Jousset et al., 2018; Paitz et al.,
2021). The ability of DAS to sample “dark” fibres, namely
telecommunication fibres that are not in use, is espe-
cially beneficial in the submarine environment. Exist-
ing fibre-optic networks between islands or off-shore in-
dustries have the potential to transform into large seis-
mic networks at no additional cost.

*Corresponding author: sara.klaasen@eaps.ethz.ch

DAS has been applied in a wide range of environ-
ments to monitor earthquakes (e.g., Wang et al., 2018;
Li and Zhan, 2018; Nayak et al., 2021; Li et al., 2023,
Gou et al., 2025), landslides (e.g., Xie et al., 2024; Ouel-
let et al., 2024), volcanoes (e.g., Klaasen et al., 2021,
Nishimura et al., 2021; Currenti et al., 2021; Jousset
et al., 2022; Biagioli et al., 2024), geothermal experi-
ments (e.g., Lellouch et al., 2020; Azzola et al., 2023;
Cheng et al., 2023; Martuganova et al., 2022; Tuinstra
et al., 2024), wind farms (e.g., Trafford et al., 2022) and
carbon capture and storage sites (e.g., Grandi et al.,
2017; Joe et al., 2020; Pevzner et al., 2021). Subma-
rine applications show that DAS is able to detect micro-
seisms and teleseisms with dark fibres and characterise
the subsurface (e.g., Williams et al., 2019; Spica et al.,
2020; Lior et al., 2021; Cheng et al., 2021).

This experiment uses a dark fibre to monitor the sub-
marine volcano Kolumbo in Greece. Kolumbo is part of
the Christiana-Santorini-Kolumbo volcanic field and is
currently the most active and hazardous submarine vol-
cano in the Aegean Sea (Nomikou et al., 2019). An erup-
tion in 1650 caused the death of 70 people and thousands
of animals on the nearby island of Santorini, due to the
tsunami and toxic gas release (Cantner et al., 2014; Ul-
vrova et al., 2016). The region is seismically active and
generated the largest earthquake in Greece in 1956 (Ms
7.5) (Okal et al., 2009; Briistle et al., 2014). Its most re-
cent period of seismic unrest in 2025 with ~200 earth-
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quakes over M4.0 led to the evacuation of thousands
of residents from Santorini. Continuous monitoring is
necessary to mitigate the devastating impacts of vol-
canic eruptions and earthquakes on densely populated
islands.

This work assesses the potential and challenges of
DAS as a submarine monitoring tool, by examining its
ability to detect and locate seismicity compared to the
existing earthquake catalogue from the National Obser-
vatory of Athens (NOA) (Evangelidis and Melis, 2012),
which is created with seismic stations located through-
out the mainland and islands of Greece (e.g., Univer-
sity of Athens, 2008; Technological Educational Institute
of Crete, 2006; (ITSAK) Institute of Engineering Seimol-
ogy Earthquake Engineering, 1981; Aristotle University
of Thessaloniki, 1981). In order to complement existing
monitoring networks, the combination of DAS and seis-
mometers needs to locally lower the detection thresh-
old and accurately locate the seismicity. We detect seis-
mic events using an image-processing algorithm and
we locate them with travel times. We detect earth-
quakes throughout Greece, which arrive at the fibre
coming from any azimuth. DAS seems to have a con-
sistent detection threshold given the distance and mag-
nitude of events, although this threshold is lowered for
seismic clusters in line with the fibre. Additionally,
we detect hundreds of events that the existing network
misses, and we hypothesise that these events originate
in the vicinity of Kolumbo and the fibre. However, even
though the spatial density of DAS data has advantages
for earthquake detection, the data quality of DAS can
make travel time picking, phase identification and fur-
ther analysis challenging. In the end, we manually pick
the first arrivals for a selection of events, as the data
is too incoherent for automated algorithms. Addition-
ally, the spatial coverage of the existing network out-
performs the spatial density of DAS for event location.
This implies that while fibre-optic networks can lower
the detection threshold, the earthquake analysis can
be challenging and requires significant manual input.
Even so, fibre-optic networks with a larger azimuthal
coverage can contribute to targeted monitoring, as long
as the data quality is carefully controlled and manual ef-
fort might need to be incorporated in the data analysis.

2 Experiment & Data

We interrogated a 45 km long fibre-optic cable that ex-
tends from the island of Santorini, to the island of Tos be-
tween 18 October 2021 and 15 December in 2021. Figure
1a shows the fibre layout with respect to the islands of
Santorini and Ios, and the submarine volcano Kolumbo.
The first 11 km of fibre follow the roads on Santorini,
where we could use tap tests to geolocate the data. The
fibre then extends into the Aegean Sea, where we have
unknown cable coupling conditions and no exact loca-
tions for the fibre. The fibre ends at Ios. Unfortunately,
the data quality at the end of the fibre was too low for
tap tests. This means that we get location uncertainties
on the order of 100 m for the submarine section of the
fibre.

We used a Silixa iDAS v2 interrogator to sample the

seismic wavefield every 8 m along the fibre with a gauge
length of 10 m and a sampling rate of a 1000 Hz. This
resulted in a data volume over 50 TB, which we down-
sampled to 40 Hz for the analysis in this paper. For this
research, we did not have access to an anti-vibration
plate. Instead, the interrogator was placed on the con-
crete floor to minimise vibrations of the interrogator it-
self. This does affect the data quality, although we can
partly mitigate this by filtering the data prior to analysis.

The data shows clear anthropogenic signals from cars
on the section on Santorini, and the section near the
boundary between the land and sea is always noisy with
the primary microseism. The submarine section till ap-
proximately 25 km shows clear signals, and the coda
from earthquakes lasts much longer there than at any
other section of the fibre, see Figure 1c. This is likely
due to a sedimentary layer that vanishes after 25 km
(Heath etal., 2019). Additionally, the instrumental noise
increases with the fibre length, as the optical intensity
naturally declines. Figures 1c-e show that small events
are measured up to 25 km, while the M6.0 earthquake
is visible till 35 km along the fibre. While the data show
clear signals from anthropogenic and natural sources, it
is challenging to identify distinct arrivals or reflections.
The data lacks coherency in space and time, which lim-
its the analysis of the data.

3 Methods

3.1 Event Detection

We detect the local seismicity with an automated im-
age processing algorithm (Thrastarson et al., 2021). The
algorithm analyses the entire dataset without requir-
ing manual effort, except for the initial fine-tuning of
the parameters and the verification of the results. We
verify the results through visualising all detections and
manually removing the false positives. The algorithm
treats the 2-dimensional data (space & time) as an im-
age and uses image processing to reduce the noise and
enhance the features that correspond to local seismic-
ity (Thrastarson et al., 2021). We convert the strain rate
data into binary amplitudes with brightness threshold-
ing, which is based on the intensity of the strain rate
amplitudes (Otsu, 1979). Regions of True pixels corre-
spond to sections in the data with increased and coher-
ent amplitudes in space and time. Small clusters of True
pixels are removed from the data, as well as purely hor-
izontal and vertical patterns affecting single channels,
which correspond to instrumental noise. Larger clus-
ters of True regions are retained and classified as seis-
mic events. The algorithm is fully accessible and ex-
plained in detail in Thrastarson et al. (2021) and applied
in Klaasen et al. (2023).

We adapt the processing steps prior to deploying
the algorithm to optimise detections for this specific
dataset. First, we only run the detection algorithm on
a submarine section of the cable with all channels be-
tween 14 and 23 km. This automatically excludes all an-
thropogenic signals on Santorini and local microseism
noise of the coastline, while the data quality of channels
beyond 23 km is not sufficient to detect small events. We
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process the data by detrending, tapering and applying a
bandpass filter between 5 and 19 Hz. The upper bound-
ary is chosen as we run the algorithm on the dataset
with a sampling rate of 40 Hz, and the lower bound-
ary is chosen through trial-and-error to optimise de-
tections. The sta-lta algorithm (Allen, 1978) calculates
the 2-dimensional characteristic function of the data,
which serves to normalise the amplitudes caused by the
increasing noise level along the cable. The detection al-
gorithm is then run on this pre-processed data with a
moving window of 7.5 s. The size of the moving window
allows for separate detections of smaller events that oc-
cur with a short time interval in between them. How-
ever, the P and S waves of larger, distant events can trig-
ger separate detections. We have manually verified the
results, removed false positives and merged separate P
and S detections into single events.

The signal-to-noise ratio (SNR) gives a first charac-
terisation of the detected events which can give clues
about their origins without requiring accurate locations
or magnitudes. We determine the power during the
event, and during the 2 s prior to the event with

c
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where N, is the total number of data points in time, N,
the number of channels, and y;; the amplitude of the
sample at time ; and channel ;. The ratio between the
powers in the time windows before and during the event
is taken as the SNR of an event.

To compare the event detections of the DAS fibre with
the NOA catalogue, we calculate the theoretical P and S
arrival times with IASP91 (Beyreuther et al., 2010; Ken-
nett and Engdahl, 1991) of each earthquake in the NOA
catalogue to the fibre. We automatically match detec-
tions using the time frame of theoretical arrivals with
a broad margin of a few seconds. Then, we manually
verify whether the DAS detection is likely to correspond
to the event in the NOA catalogue, given its distance
and magnitude. With this subset of matched events that
have alocation and magnitude in the NOA catalogue, we
can investigate the detection threshold of the fibre dur-
ing the acquisition period.

3.2 First-arrival time picking

The first step to locate the events consists of first-arrival
time picking, which is challenging for this experiment,
due to a lack of “coherency” in the waveforms. We de-
fine coherency as a consistency in the polarity of the
amplitudes of the waveforms as they are recorded along
the fibre. This facilitates the identification of seismic
phases in the data. Figure 2b visualises the lack of co-
herency in the observed data of this experiment. Even
though the event has relatively high amplitudes, we can
not identify any distinct phase after the onset of the
event.

We first attempted to use an automated algorithm
that is based on cross-correlations between neighbour-
ing channels with an SNR above a certain threshold,
exploiting the coherency of DAS data (Klaasen et al.,

3

2023). This algorithm iteratively refines these relative
arrival times by using increasingly small data windows
centred around the first arrivals. This methodology
worked well for the DAS experiment on Grimsvétn, a
subglacial volcano in Iceland where we trenched an op-
tical fibre into the snow (Klaasen et al., 2022, 2023).
The fibre was frozen into the snow layer, which re-
sulted in a high data quality. In contrast, the data from
this submarine experiment does not show sufficient co-
herency between channels for an automated picking
workflow. Figure 2 compares the data from both ex-
periments, showing coherent waveforms at Grimsvoétn,
and a lack of coherency for the data in this experiment,
even though synthetic simulations would predict coher-
ent waveforms. Both experiments have complex envi-
ronments, as the submarine fibre likely crosses a sub-
surface with strong shallow heterogeneities (Capdeville
and Sladen, 2024), and the subglacial volcano Grimsvotn
has topography, an ice layer, snow and a subglacial lake.
Yet at Grimsvétn, the data are more coherent.

In the end, we manually pick the arrival times be-
cause (i) there is no clear onset of the events, limiting
methods such as the short-term average/long-term aver-
age (STA/LTA) algorithm (Withers et al., 1998), (ii) there
is no coherence or repetitive pattern in the data, lim-
iting correlation- and template-based approaches, and
(iii) the effort of manually picking the arrival times is,
for this experiment with only 2 months of data, com-
parable or less than the effort required to (re-)train
a machine learning (ML) algorithm. For DAS experi-
ments with longer temporal durations, we expect that
(re-)training ML algorithms would be a sustainable so-
lution for picking. However, existing ML approaches,
such as PhaseNet-DAS (Zhu et al., 2023), also depend
spatial coherence in the data.

We manually picked the first arrival times by plotting
the data and visually selecting a few first arrivals. Con-
sequently, we picked the arrivals times of 5 to 15 chan-
nels for each event, depending on the complexity of
the waveform. In between the picked arrival times, we
linearly interpolated the picks to ensure we have picks
along an entire section of the cable. This workflow re-
quired a few hours of consistent picking for all events
combined.

We only pick one phase for each event, the first visible
arrivals, as most events do not have multiple arrivals. If
multiple arrivals were visible, such as in Figure 1c or 5a,
we preferentially picked the P wave. However, for most
events we only observe one emergent arrival, such as
the events in Figure 1d, le or 2b. For those events, we
cannot determine with certainty which phase is picked.
Most likely, such arrivals correspond to S waves, surface
waves or converted waves as they have lower apparent
velocities (Daley et al., 2016; Lior et al., 2021). Conse-
quently, we do not have a phase allocation for the events
in our catalogue, and the picked seismic phase will vary
between events. Unfortunately, the unknown seismic
phase of the picked first arrivals will affect the uncer-
tainty of further analysis, such as the event location.
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a) map of the fibre, b) SNR of all events on a
Santorini and Kolumbo log-log scale
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Figure1l The 45 km long fibre-optic cable extends from Santorini to los and can detect events with SNRs varying over four
orders of magnitude. a) The fibre connects the two islands following the bathymetry and topography (Ryan et al., 2009), and
the highlighted section is the primary section used for event detection and location in this study. b) The SNR distribution of
all detected events reveals that the events are likely of natural origin. c) The largest recorded earthquake has a magnitude
of 6.0 (National Observatory of Athens, Institute of Geodynamics, 1975). The cable section on Santorini shows signals from
cars driving along the roads where the fibre is deployed (diagonal patterns). The earthquake signal continues to resonate at
thefibre section between 12 and 21 km due to a layer of sediments characterised by low seismic wave speeds. In general, the
SNR drops after 25 km due to the vanishing sedimentary layer and worse cable coupling (Heath et al., 2019; Igel et al., 2024)
and keeps decreasing with the fibre length due to the natural decline in optical power. d) Many small events are clearly visible
along the highlighted submarine section of the fibre. For such events we can pick first arrival times and locate the event. e)
Many quakes are too small and have wavefields too incoherent to pick first arrival times and locate, but we can still detect
them even though their amplitudes are comparable to the amplitudes of the ambient noise due to the spatial density of the
fibre-optic measurements.

3.3 Event Location the QuakeMigrate package (Hudson et al., 2025). The

manually picked and look-up travel times were com-
In order to quantify the ability of this DAS experiment pared in a grid search over three parameters: longitude,
to locate events and estimate the location uncertainty, latitude and depth. The misfit between the picked and
we had to try several location algorithms. First, we look-up travel times was given by

attempted to locate the events with the Hamiltonian

Monte Carlo algorithm (Zunino et al., 2023), as imple- 1L (t9hs — 5 — to)2

mented in Klaasen et al. (2023). While the data fits X~ 9N Z 2 ) (2)
seemed satisfactory, we noticed a heavy dependence of =0

the final location on the initial random starting posi- where Y is the misfit, N the number of travel times, t°%*
tion. To have more intuition about this outcome and the manually picked travel times, ¢*¥" the travel times
the fine-tuning parameters, we implemented a simu- from the look-up table, € the data and model uncer-

lated annealing algorithm. Again, we noticed sufficient

! ° 1€ tainty, and ¢, the origin time, which is determined by
data fits while the dependence on the starting position

remained, as well as a trend that all events were located 1 <
near the submarine section of the fibre. Since this was o=y Z £ =" (3)
. N T
physically unlikely, we decided to locate the events with =0
a grid search approach, to quantify the event location The data and model uncertainty e was determined a pos-
and uncertainty exactly. teriori to ensure that the mean normalised misfit con-
We created a 1-dimensional velocity model from the verges to 1.
3-dimensional heterogeneous velocity model of Heath To verify the outcomes, we conducted a synthetic
etal. (2021) asimplemented in Igel et al. (2024) by taking study. We simulated ten different synthetic events with
the mean velocity of each 200 m layer. We then created the spectral-element solver Salvus (Afanasiev et al.,

a travel time look-up table with this velocity model and 2019) and a velocity model that includes topography,
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Figure2 We visualise the "incoherency” in the waveforms of this experiment, in contrast to synthetic data and data from a
different DAS experiment that do show seismic arrivals with consistent polarities. The lack of coherent waveforms recorded
during this experiment hinders the data analysis. a) We can simulate synthetic data with an earthquake near Kolumbo using a
spectral-element solver to model the topography, bathymetry, and heterogeneous subsurface between 0.01 - 3 Hz (Afanasiev
et al.,, 2019; Igel et al., 2024). b) While the synthetic data capture the first arrival of the earthquake, we cannot match any
other arrival. The observed data does not show any reflections, refractions or reverberations. There is no coherent waveform
along the fibre. 1) The coupling conditions change along the fibre, as a slow sedimentary layer vanishes beyond 25 km of
the fibre (Heath et al., 2019; Igel et al., 2024). Most detected quakes are no longer visible beyond 25 km. 2) This also affects
the complex coda of the earthquakes, as the signal resonates in the section with the slow sedimentary deposits. 3) The
horizontal lines are noisy sections of the fibre near the boundary between the island and sea. 4) There is no clear onset
that is consistent in polarity with distance along the fibre. The polarity of the amplitudes appear randomly, and we cannot
identify any individual seismic phase. ¢ = 0 corresponds to 2021.10.23 16:49:34 UTC. c) We simulate synthetic data for the
DAS experiment at Grimsvotn for a nearby quake with topography, a homogeneous bedrock velocity and the glacier with
varying thickness between 1.5 - 3 Hz. d) Due to the coherent polarities at Grimsvétn, we can match the waveforms between
the synthetic and observed data. The observed data shows coherent move-outs along the fibre. The coupling conditions of
the fibre frozen into the snow are ideal for seismic sensing. ¢ = 0 corresponds to 2021.4.14 11:36:57 UTC.
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bathymetry, a water layer, and heterogeneous subsur-
face velocities (Heath et al., 2021). The model setup and
simulation details are explained in detail in Igel et al.
(2024). The synthetic events were located at different
angles and depths with respect to the cable, which were
then simulated for our exact fibre layout. We then man-
ually picked the first-arrival times of the synthetic data
and located them through the grid search approach to
ensure consistency with the process of the observed
events.

4 Results & Discussion

The analysis of this experiment initially followed the
same methodology as Klaasen et al. (2023). The goal was
to detect events with the image-processing algorithm,
pick arrival times with an automated workflow, and lo-
cate the seismicity with the Hamiltonian Monte Carlo
algorithm. However, the data quality and fibre layout of
this experiment differ significantly from the Grimsvétn
experiment (Klaasen et al., 2023). This forced us to
adapt our methodologies, and it revealed some of the
challenges that submarine DAS experiments may face.
Figure 2 compares the data quality of both experi-
ments for a local quake. At Grimsvotn, we can sim-
ulate synthetic waveforms that match the waveforms
of the observed data. For this submarine experiment
we can only match the first-arrival times, even though
both experiments produced data in complex environ-
ments. This emphasises the importance of the cable
coupling conditions for telecommunication fibres. At
Grimsvotn, the fibre was trenched 50 cm into the snow,
resulting in a high data quality. Unfortunately, the ex-
act fibre type, protections of the fibre, fibre location and
the installation conditions of the fibre near Santorini
are unknown to us. Another possible cause for the lack
of onsets that are consistent in polarity with distance
along the fibre are shallow subsurface heterogeneities
at scales below the earthquake wavelengths (Capdeville
and Sladen, 2024). Additionally, we observe most earth-
quakes only along the first 13 km of the submarine sec-
tion of the fibre due the data quality, and this section of
the fibre is too straight to accurately locate the events.

4.1 Detections

Even though the data lacks coherent waveforms along
the fibre, the seismic amplitudes suffice to detect earth-
quakes. In total, we detect 976 events between 20 Oc-
tober 2021 and 15 December 2021 with the fibre-optic
cable. Figure 1 shows the layout of this fibre and a
few data examples of the recorded earthquakes. The
SNR of the events varies over four orders of magni-
tude, highlighting the ability of DAS to detect a wide
range of events. Figure 1b shows the cumulative distri-
bution of the SNR of each event on a logarithmic plot,
with a quasi-b-value for the straight-line fit. This quasi-
b-value is comparable to the b-value in a Gutenberg-
Richter plot, if all earthquakes were at a similar epicen-
tral distance. We do not observe a clustering of events
around some specific SNR values, which hints that the
events are predominantly natural in origin, rather than

6

anthropogenic as anthropogenic events tend to repeat
with similar energies. The other Figure 1 panels con-
tain different event examples. Panel c shows the largest
recorded earthquake, an M6.0 on 19 October 2021,
south-east of Crete. Panel d has an example of a small
event that the existing catalogue misses and for which
we can pick the first-arrival times. Panel e is the de-
tected event with the lowest SNR for which we have no
arrival times or location. Due to the spatial density of
DAS measurements, we are able to detect events with
amplitudes similar to the noise level.

The number of detected events varies over time, as
shown in Figure 3, and we observe an anti-correlation
between the number of detected events and the wind
speed. While the submarine fibre is shielded from the
wind directly, the higher wind speeds lead to higher
secondary microseism noise levels in the data, which
is shown in Igel et al. (2024). Consequently, we detect
fewer earthquakes when the wind speed is high, com-
parable to the on-land seismic stations.

Figure 4a reveals that the subset of events that are de-
tected by DAS and present in the NOA catalogue origi-
nate throughout Greece, meaning that the fibre can de-
tect events coming from any azimuth despite its rela-
tively linear layout. We can confirm this by calculating
the theoretical sensitivity of the fibre layout to P and S
waves coming from any direction, as is visible in Figure
S1in the supplementary information.

4.2 Locations

We pick arrival times for 386 (39%) events, whereas the
onsets of the other events were not clear enough to be
picked manually. Even manually, the first arrivals of
most events were too incoherent to pick with a mean-
ingful level of uncertainty. While this highlights the
ability of DAS to detect regional seismicity, it also em-
phasises the challenge for automating workflows and
exploiting the increase in information that DAS offers.
The examples in Figure 1 show that the onsets of the dif-
ferent arrivals may be challenging to pick, even though
we are able to detect the event. This may be due to the
fibre’s sensitivity, varying noise levels, source mecha-
nisms, local velocity structure, specific phase conver-
sions or coupling conditions.

An additional challenge of picking the arrival times is
the uncertainty in the picked phase. For larger events
with multiple arrivals, we can confidently pick the P
wave as the first arrival. However, for most events the
seismic phase of the arrival times is unknown. Yet,
without additional information we have to assume the
arrivals correspond to P waves to locate the events,
which affects the uncertainty in the resulting event lo-
cations.

In the end, we attempt to locate every event using a
grid search approach and travel times. The resulting
misfits of the events vary, and we normalise them to en-
sure that the mean value (1) converges to 1. This nor-
malisation factor corresponds to the total error from the
data and theory, ¢ in Equation 2, which is 0.069 s. The
distribution of normalised misfits has a standard devi-
ation (o) of 0.62. The locations have to be interpreted
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Figure3 The number of detected events with DAS varies per day. We divide the detected events into three categories: the
events that we can locate even though their location is likely inaccurate (x < p+0), the events that we cannot locate with this
setup (x > p + o) and the events that are detected but without arrival times (’detected with DAS’). The events that are both
detected with DAS and recorded in the NOA catalogue (orange line) correspond mostly to the number of higher quality events,
and the average wind speed (Hersbach et al., 2023) (dark blue line) shows an anti-correlation with the recorded events.
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Figure 4 A comparison with the entire catalogue from NOA reveals that DAS can detect events throughout Greece. a) All
earthquakes in the NOA catalogue (grey and orange) and the subset of events that are also detected with DAS (orange) are
shown with respect to the fibre-optic cable (red-white line) and the Greek islands (black lines). b) The epicentral distance,
azimuth and magnitude of the events from panel a with respect to the fibre, as recorded in the NOA catalogue, show which
events DAS can detect (coloured) and which events DAS misses (white circle with black edge). The red line symbolises a
detection threshold and is manually drawn into the figure. c) 290 events detected with DAS and a misfit below 1.62 (x < u+0o)
are located in the vicinity of the fibre (red-white line), and their location uncertainty is approximated as a circle (grey).
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with care. Firstly, we refrain from interpreting the event
locations when the synthetic travel times do not suf-
ficiently fit the observed data with a misfit above 1.62
(u+0). This may occur when i) the observed data are af-
fected by local velocity structures that are not explained
by the 1-dimensional model, ii) the picked arrival times
do not correspond to P waves but to different phase ar-
rivals, e.g. surface waves, or iii) the grid search resolu-
tion is not high enough as this resolution has been kept
low to minimise the computational costs. Secondly, we
are in principle able to locate the events with misfits be-
low 1.62. However, in this experiment, the submarine
section of the fibre is too straight for the events to con-
verge at the correct epicentral location. For example, if
we locate an earthquake from Kolumbo using as much
of the fibre as possible, we converge at the correct epi-
central location, as shown in Figures 5a and c. If we
locate the same earthquake using only the submarine
section of the fibre as highlighted in Figure 1a, then we
do not converge at the correct epicentral location. Fig-
ure S2 in the supplementary information shows that the
event is then located near the start of the submarine
section of the fibre instead of its true epicentral loca-
tion. Unfortunately, the vast majority of the detected
events are only visible along this relatively straight sub-
marine section of the fibre, meaning that our locations
are likely inaccurate. Figure 4c shows our locations of
the events with a misfit below 1.62, which are all near
the start of the submarine fibre section. The grid-like
pattern of the locations is due to the gridsearch reso-
lution. The approximate location uncertainty is repre-
sented as a circle with a radius equal to that of the sur-
face containing the horizontal 2-dimensional misfit vol-
ume that is calculated with one error deviation (¢) of
0.069 s.

We conduct synthetic tests to verify our ability to lo-
cate events. Figure S3 in the supplementary informa-
tion shows that we approximate the correct epicentral
location when we use the entire fibre, but not the cor-
rect depth. For a correct depth resolution, we would
need both P and S wave picks or a larger vertical pro-
file of the fibre. Picking both P and S waves is often
impossible for the many small events that DAS detects
that are underneath the detection threshold of existing
networks, such as the event in Figure 1d. In order to
refine the resolved epicentral location of an event, we
add a second hypothetical fibre, connecting the island
of Santorini with Anafi. Figure S4 shows that using mul-
tiple fibres with different azimuthal directions improves
the event location and lowers the uncertainty. If a pre-
existing fibre is too linear for event location, a network
of fibres can be interrogated to increase the azimuthal
coverage.

4.3 Comparison with the existing catalogue

In order to compare the performance of DAS with the
existing network from NOA, we consider the number of
events that are detected and their locations. Figure 3 re-
veals the number of detected events per day with DAS,
subdivided into three categories that correspond to the
quality of the event; events that are located with a misfit

below the mean and one standard deviation (x < p+o0),
events that have manually picked arrival times but can-
not be located (x > p + o) and events that are detected
but have no arrival times (‘detected with DAS’). In to-
tal, 243 events are recorded both by DAS and in the NOA
catalogue (orange line), which largely correspond to the
higher quality events detected with DAS. Both the earth-
quake detections recorded in the NOA and DAS cata-
logues show an anti-correlation with the wind speed,
as few earthquakes are detected during periods with
higher wind speeds.

Figure 4 compares the earthquake locations from
the NOA catalogue and the DAS experiment. Panel
a shows all earthquakes in the NOA catalogue during
this experiment’s acquisition period, and the subset
of events that are both recorded with DAS and in the
NOA catalogue. DAS is able to detect events through-
out Greece, which means that it is sensitive to events
coming from any direction despite its relatively straight
layout and single-component measurements. Panel b
shows the epicentral distance, magnitude and azimuth
of the earthquakes from panel a with respect to the fi-
bre, as recorded in the NOA catalogue. For this subset
of events, we can investigate the detection threshold of
the DAS experiment through a general relationship be-
tween the magnitude M and the epicentral distance R
(Aki and Richards, 2002),

M =1log,,(A) + r log,,(R) + C, (4)

where A is the recorded amplitude and C a constant.
If we rearrange the equation and assume the minimum
recorded amplitude of A,, the detection threshold is in-
fluenced by

M — k log,(R) > log,,(A,) + C, (5)

where the constant « links the detected magnitude with
the distance. We can manually draw a straight line
through Figure 4b to determine the value of k, which
symbolises the detection threshold of the fibre com-
pared to the distance and magnitude of these earth-
quakes. There are outliers on each side of the line.
There are two distinct clusters of seismic activity ori-
ented favourably relative to the fibre, north of Ikaria
and beneath Crete, that cross the line where DAS detects
events down to smaller magnitudes relative to their dis-
tance.

A direct comparison of the ability of the networks to
locate one earthquake from Kolumbo reveals that the
Greek network outperforms the DAS experiment for lo-
cation accuracy and uncertainty. For this comparison,
we retrieve the arrival times from the national network
for the stations shown in Figure 5d and we repeat the
process of event locations for the DAS channels (Figure
5c), the Greek stations (Figure 5d), and both simultane-
ously (Figure 5b). The epicentral location is most accu-
rate and has the lowest uncertainty when we only con-
sider the Greek seismic stations. The joint inversion im-
proves upon the results compared to the inversion using
only the fibre-optic cable. However, it is dominated by
the DAS channels as each station has a similar weight
during the inversion. A careful weighing scheme would
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Figure 5 The comparison between event locations with DAS and the NOA catalogue reveals that a wider spatial coverage
is more important for accurate locations than spatially dense stations. a) An earthquake from Kolumbo is recorded both by
the fibre and the seismic stations on Santorini. The manually picked arrival times (black line) are matched with synthetic
travel times (the red dashed line gives the synthetic travel times from the location with the lowest misfit). b) The result using
both DAS channels and seismic stations shows an accurate epicentral location with a slightly smaller location uncertainty
compared to the result in ¢, which uses only the DAS channels. c) The inversion using as many DAS channels as possible
converges at the correct epicentral location. If we use fewer channels for this inversion, e.g. only the submarine section,
then the event is located incorrectly, near the start of the submarine section of the fibre. d) The lowest location uncertainty
is achieved when only the seismic stations on Santorini are used in the inversion. For a correct depth resolution, we require
S wave picks or a larger vertical profile of the networks.
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benecessaryto ensure that the larger coverage of sparse
networks is not lost in the inversion.

5 Conclusions

Fibre-optic networks have the potential to augment ex-
isting seismic monitoring networks for targeted earth-
quake and volcano monitoring on a local scale. The en-
hanced spatial density leads to a lower detection thresh-
old and significant information gain in areas that may
otherwise remain inaccessible for real-time monitor-
ing, such as the submarine environment. However, the
earthquake detections in the submarine environment
are also limited by the wind-driven oceanic wave noise.
Higher wind speeds lead to higher levels of secondary
microseism noise, which can obscure smaller events.

At the same time, submarine DAS experiments may
face challenges. The largest challenges we identify for
DAS experiments with telecommunication fibres are
the unknown cable coupling conditions that may lower
the data quality, shallow subsurface effects that perturb
the strain wavefield, and the fibre layout. The data qual-
ity might not suffice for automated workflows, which
limits the potential of DAS for real-time monitoring.
This research required significant manual input to pick
the first arrival times of the earthquakes. Even manu-
ally, the first arrivals of the majority of the events were
not distinct enough to pick. In order to accurately locate
seismicity, the fibre needs to have a sufficient azimuthal
coverage. However, the exact conditions of telecommu-
nication fibres are generally outside the control of the
researcher.

The joint operation of fibre-optic networks with seis-
mic stations would increase the azimuthal coverage and
lead to more accurate event locations, as long as the dif-
ferent measurements are carefully integrated into joint
inversions. For small-scale monitoring, a single fibre-
optic array may suffice if its layout is specifically de-
signed with the target area in mind. For Kolumbo,
a network of existing fibre-optic cables that connects
the surrounding islands may potentially lead to a real-
time and high-resolution submarine monitoring net-
work that can detect and locate small volcano-tectonic
events.
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7 Additional Information

The event detection algorithm is available at https:
//github.com/solvithrastar/DAS_Auto. A Jupyter note-
book that shows the manual travel time picking
with the Kolumbo earthquake from Figure 5 is avail-
able at https://github.com/saraklaasen/manual_picking_
DAS. The QuakeMigrate package, used to create travel
time look-up tables and the sensitivity plots in Fig-
ure S1, is available at https://github.com/QuakeMigrate/
QuakeMigrate. All figures are created with scientific
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colour maps (Crameri, 2018). The earthquake catalogue
that we, for simplicity, refer to as “the NOA catalogue”
was retrieved from http://www.geophysics.geol.uoa.gr/
stations/gmapv3_db/index.php?lang=en on 22 January
2024. The data from the stations in Figure 5 are part
of the seismic networks HL, HT and HA (National Ob-
servatory of Athens, Institute of Geodynamics, 1975;
Aristotle University of Thessaloniki, 1981; University of
Athens, 2008).

8 Data Availability

The earthquake catalogue created during this study is
available in the supplementary information. The com-
plete DAS dataset is over 50 TB and stored on tape at ETH
Ziirich. The decimated dataset is still 7.7 TB, which can
be shared upon request.
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