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Abstract Campi Flegrei is a large active volcanic caldera in southern Italy, currently undergoing a pro-
longed phase of unrest that began in 2005, characterized by ground uplift and an increase in seismicity. Clas-
sical short-term seismicity models, such as the temporal Epidemic Type Aftershock Sequence (ETAS) model,
rely exclusively on earthquake catalog data and do not incorporate external forcing mechanisms like crustal
deformation. In this study, we extend the ETAS model by integrating strain rate information derived from
GNSS measurements, allowing the background rate to vary in time through a data-driven convolution with
an empirically estimated response kernel. Using eleven years of observations (2013-2024), we compare the
forecasting performance of the classical and deformation-driven ETAS models. Our results show that includ-
ing strain rate significantly improves forecasting ability, as evidenced by a lower Akaike Information Criterion
(AIC). This finding suggests that incorporating geodetic signals into seismicitymodels enhances their physical
realism and predictive skill, providing a promising path toward Operational Earthquake Forecasting in active
volcanic regions.

1 Introduction
Forecasting seismicity at short time scales is a crucial
yet challenging task, particularly in volcanic environ-
ments where the crustal stress field is modulated by
transient and often poorly understood processes. Un-
like tectonic regions, where long-term stressing is rel-
atively uniform, volcanoes may exhibit rapid, local-
ized, and nonlinear changes in stress due tomagmami-
gration, fluid injection, thermal expansion, and other
aseismic processes (Chouet, 1996; Toda et al., 2002;
Hainzl, 2003; Tramelli et al., 2021; Glazner and McNutt,
2021; Convertito et al., 2025). These processes generate
strain that can, in turn, modulate seismic activity.
In recent years, theCampi Flegrei caldera in southern

Italy has emerged as a key case for investigating such
coupling. The area has been undergoing a long-term
episode of uplift and seismic unrest since 2005, part of
a broader bradyseismic cycle (Bevilacqua et al., 2024;
De Martino et al., 2021; Godano et al., 2025). A notable
feature of this unrest is the increase in both deforma-
tion and seismicity rates in Campi Flegrei during the
last decade, with several events felt by the local pop-
ulation since 2020 (Iervolino et al., 2024). Despite its
importance, the physicalmechanisms linking deforma-
tion and seismicity remain unclear, and forecasting re-
mains largely empirical.
Most short-term forecasting models, such as the Epi-

demic Type Aftershock Sequence (ETAS) model (Ogata,
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1988, 1998; Console et al., 2003; Petrillo and Lippiello,
2021, 2023; Petrillo and Zhuang, 2024), are based solely
on seismicity catalogs. These models treat the seismic
background rate µ as stationary, or at best as a step-
wise function to account for nonstationarities (Hainzl
and Ogata, 2005). Some extensions, such as the nonsta-
tionary ETASmodels proposed by Kumazawa and Ogata
(2013, 2014) and successfully applied in tectonic region
(Petrillo et al., 2024), allow the background rate to vary
continuously in time by introducing time-varying pa-
rameters or spline functions. However, these models
often suffer from possible overfitting and lack physical
interpretability: the inferred variations in µ(t) may fit
the data well but offer limited insight into the underly-
ing geophysical processes driving the changes in seis-
micity rate.
While ETAS has proven successful in tectonic set-

tings, its ability to capture externally modulated seis-
micity, such as that observed at Campi Flegrei, is lim-
ited. In volcanic or geothermal systems, where de-
formation and fluid migration can transiently alter
the stress field, there is a growing interest in extend-
ing ETAS-like models by incorporating geophysical or
geodetic information to better account for the nonsta-
tionary nature of the background seismicity.
Some recent works have proposed the inclusion of

fluid injection rates or stress perturbations as external
forcings in seismicity models (Shcherbakov, 2024; Kim
and Avouac, 2023). However, there remains a gap in
applying these ideas to natural volcanic systems where
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Figure 1 Seismicity and deformation data at Campi Flegrei caldera (2013–2024). (A) Map of the study area (red polygon)
showing theepicentersof earthquakes (blackdots) and theGNSSRITEstationused in this study (bluecircle). (B)Timeseriesof
earthquakemagnitudes (Md ≥ 1)within the study area. (C) Cumulative number of events over the sameperiod, highlighting
the acceleration of seismicity after 2020. (D) Vertical ground deformation (in meters) recorded at the RITE GNSS station,
expressed as cumulative uplift, showing a continuous increase.

strain rate, measured via Global Positioning System
(GPS) or Interferometric Synthetic Aperture Radar (In-
SAR), may act as a proxy for stress buildup and release.

In this work, we propose a deformation-driven ETAS
model for the Campi Flegrei caldera. Our approach al-
lows the background rate µ(t) to vary in time as a convo-
lution of the observed strain ratewith an empirically es-
timated response kernel. This formulation aims to cap-
ture the delayed and distributed effect of deformation
on seismicity, consistent with the viscoelastic behavior
of volcanic crust. Using 11 years of seismic and GNSS
data, we demonstrate that incorporating strain rate in-
formation leads to improved forecasting performance,
as quantified by the Akaike Information Criterion (AIC)
(Akaike, 1973).

Our study highlights how coupling seismicity models
with geodetic observations can provide a more physi-
cally grounded framework for earthquake forecasting
in volcanic environments, and it lays the groundwork
for potential applications in Operational Earthquake
Forecasting systems, i.e., the use of probabilistic mod-
els to provide time-dependent earthquake occurrence
probabilities for decision making and risk mitigation
(Mizrahi et al., 2024). It is important to emphasize that
this study represents a preliminary proof-of-concept,
focusedon theCampi Flegrei case study. Further valida-
tion on independent datasets and in different volcanic
or tectonic settingswill be required before the proposed
approach can be generalized or operationalized.

2 Data
In this work, we use two different datasets: a seis-
mic catalog and a GNSS daily deformation dataset, both
starting from 2013-01-01 to 2024-04-30. The complete
part of the seismic catalog includes 925 events from
magnitudeMd = 1.0 inside the caldera andwith amaxi-
mum depth of 4 km, since the largemajority of the seis-
micity is concentrated in this area (see Fig. 1). The Md
magnitude, or duration magnitude, is a scale used to
measure the size of smaller, local earthquakes; it is the
standard in the Campi Flegrei seismic catalog (Bevilac-
qua et al., 2024) The magnitude of completeness of 1.0
is computed using the exponentiality test approach (Lil-
liefors test, Herrmann and Marzocchi (2021)). Then, a
check for a possible short-term incompleteness is per-
formed using the Zhuang et al. (2017) method. For
the deformation data, we use the GNSS RITE station
(De Martino et al., 2021), located in the center of the
caldera, similarly to other studies (Bevilacqua et al.,
2024; Giudicepietro et al., 2025). To account for the tem-
poral variability of the deformation (Bevilacqua et al.,
2024), we computed a monthly averaged strain rate, us-
ing the same occurrence time of the events in our cata-
log (see Fig. 1).

3 The Deformation ETAS Model
The ETASmodel (Ogata, 1985, 1988, 1998; Console et al.,
2003) is a point process model widely used in statisti-
cal seismology to describe the clustered nature of earth-
quake occurrences. In its classical formulation, the
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conditional intensity function λ(t), which describes the
expected rate of earthquakes at time t given the past his-
toryHt, is defined as:

(1)λ(t|Ht) = µ +
∑
ti<t

K eα(mi−M0)(t− ti + c)−p,

where: µ is the background rate of spontaneous
events, K controls the productivity of aftershocks, α
quantifies the increase in triggering ability with mag-
nitude, M0 is the lower magnitude threshold for trig-
gering, c is the onset of the Omori Law, p governs the
temporal decay of aftershock productivity, following
Omori’s law andHt is the past history.
Equation (1) represents a self-exciting process: each

earthquake can generate its own aftershock sequence,
which in turn can trigger additional events, thus form-
ing a branching process. The model captures two main
features of seismicity: (i) a stationary background rate
due to tectonic loading, and (ii) clustering in time due
to earthquake-to-earthquake triggering.
However, in volcanic and geothermal environments,

such as the Campi Flegrei caldera, the assumption of
a stationary background rate µ may be too simplistic.
In such systems, transient physical processes (e.g., de-
formation, magma migration, pore pressure diffusion,
thermal stresses) can modulate the crustal stress field,
leading to time-dependent variations in the seismicity
rate that are not solely caused by earthquake interac-
tions.

3.1 Incorporating Non-seismic Forcing via
Deformation

Wemodify the ETASmodel by allowing the background
rate µ(t) to depend explicitly on external aseismic pro-
cesses, such as deformation. We speculate that µ(t) re-
sponds to the history of the strain rate ε̇(t) via a convo-
lution:

(2)µ(t) = µ0

∫ ∞

0
G(s)ε̇(t− s) ds,

where µ0 is a scaling factor that converts strain rate into
seismicity rate, G(s) is a causal response kernel encod-
ing the delay and attenuation of the deformation effect
and s is the time lag variable (in days).
To obtain the strain rate from the GNSS displacement

time series, we computed a monthly averaged value us-
ing a backward 31 day window:

(3)ε̇(t) = D(t)−D(t−∆t)
∆t

,

where D(t) is the cumulative deformation measured at
time t, and ∆t = 31 days. This definition smooths
short term fluctuations in the GNSS data and provides
a strain-rate time series expressed in units of m/yr. The
convolution structure in Eq. (2) reflects the assumption
that the crust behaves as a viscoelastic medium, re-
sponding to past stress perturbations with characteris-
tic timescales (Hasselmann et al., 1997; Livi et al., 2017;
Lucarini, 2018). The kernel G(τ) thus acts as a Green’s
function for the medium, translating external stress in-
puts into observable seismicity rates.

In our implementation, the kernel G(τ) is con-
structed empirically by correlating cumulative seismic
energy release with observed strain. For each shift τ in
a windowed correlation analysis, we compute:

(4)G(τ) = ρ(τ)− ρmin

ρmax − ρmin
.

where ρ(τ) is the Pearson correlation coefficient be-
tween the strain rate ε̇(t) and the cumulative seismic
energy E(t) (computed as Ei = 101.5mi , where mi is
the event magnitude) in a sliding window shifted by τ
days. Here, ρmin = minτ ρ(τ) and ρmax = maxτ ρ(τ) de-
note, respectively, the minimum and maximum corre-
lation values obtained over the entire range of time lags
considered. The normalization ensures G(τ) ∈ [0, 1],
yielding a unitless empirical kernel. It is important to
note that G(τ) is estimated here as a single, stationary
kernel depending only on the lag τ . In principle, one
could define a time-varying kernel G(τ, tj) recalculated
locally at each reference time tj , but in this study we
adopt a global kernel to ensure statistical robustness
and to maintain a simple formulation directly compa-
rable to the classical ETAS model. This choice provides
stable estimates by pooling the entire dataset, while a
local kernel would require additional parameters and
may suffer from poor constraints due to limited data in
each window.
This construction does not assume a specific func-

tional form (e.g., exponential or power-lawdecay),mak-
ing it adaptable to the rheological complexity of vol-
canic environments. The final background rate be-
comes:

(5)µ(t) = µ0

Nτ∑
i=1

G(τi) ε̇(t− τi) ∆t,

where ∆t = 1 day and Nτ is the number of shift values.
Here, µ0 provides the baseline level of the background
rate, while the convolution with G(τ) introduces fluctu-
ations around this baseline according to the strain-rate
history.
The deformation-driven ETASmodel thus defines the

conditional intensity as:

(6)

λ(t) = µ(t) +
∑
ti<t

K eα(mi−M0)(t− ti + c)−p

= µ0

Nτ∑
i=1

G(τi) ε̇(t− τi) ∆t

+
∑
ti<t

K eα(mi−M0)(t− ti + c)−p,

recovering the classical ETAS model when µ(t) = µ =
const. The novelty of this approach lies in the time de-
pendence of the background term, now informed by an
empirical convolution with geodetic data. This allows
themodel to account for seismicity modulated by aseis-
mic deformation, which is especially relevant in vol-
canic areas.

3.2 Numerical Implementation
We now describe the numerical implementation of the
deformation-driven ETAS model in detail. The algo-
rithm consists of the following main steps: (i) reading
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Figure 2 Pearson correlation between strain rate and cumulative seismic energy as a function of time lag τ . Blue symbols
show ρ(τ) with 95% confidence intervals estimated using Fisher r-to-z transformation. Red circles mark correlations signifi-
cant at p < 0.01, while black circles indicate 0.01 ≤ p < 0.05. The analysis is performed using a 30-day backward window,
with the correlation at each lag computedonly ifmore than 10 valid pairs are available. Themaximumcorrelation is observed
at lags of about 7− 12 days, suggesting a delayed response of seismicity to deformation.

and preprocessing of seismic and deformation data; (ii)
construction of the empirical response kernel; (iii) com-
putation of the time-dependent background rate µ(t);
(iv) evaluation of the log-likelihood; and (v) optimiza-
tion of the ETAS parameters.

(i) Data preprocessing. Wediscard the seismic events
below a completeness threshold Mth and each magni-
tude mi is converted into seismic energy via the empir-
ical relation

(7)Ei = 101.5mi ,

where the additive constant in the original formu-
lation is omitted since only relative variations are re-
quired in our analysis. In our catalog, magnitudes
are reported in the duration scale Md. We note that
Md was originally calibrated to be consistent with ML

(Lee et al., 1972), and ML is widely accepted as a good
proxy for Mw for small to moderate events (M < 4.5),
with differences typically below 0.2 units (Hanks and
Kanamori, 1979). Therefore, the use ofMd in Eq. 7 is ap-
propriate as a relative proxy for seismic energy release
in our dataset.

(ii) Empirical kernel estimation. The response ker-
nel G(τ) is computed empirically by correlating strain
rate data with cumulative seismic energy. For each time
shift τ in the range [0, 40] days, we define a sliding win-
dow of fixed length (30 days), and for each window cen-
tered at tj in the deformation time series, we compute:

1. the cumulative seismic energy released in the win-
dow [tj − (30− τ), tj + τ ];

2. the Pearson correlation ρ(τ) between the cumula-
tive energy time series and the strain data;

The final kernel is obtained by normalizing ρ(τ) as in
Equation 4. This provides a unitless empirical kernel
with support on a 41-day discrete lag grid spanning lags
from 0 to 40 days, with each correlation computed over
a 30 day sliding window of seismic energy.
In practice, we evaluate ρ(τ) for lags τ ∈ [0, 40]

days, which represents a physically plausible range for
the delayed response of volcanic systems, where pro-
cesses such as pore-pressure diffusion, fluid migration,
and viscoelastic stress adjustment typically operate on
timescales of days to weeks. Empirically, the correla-
tion decays to negligible values for τ > 40 days (Fig-
ure 2), so extending the lag range further does not pro-
vide additional information. A sliding window of 30
days is adopted in order to ensure statistical robustness
of the correlation estimates: shorter windowswould of-
ten contain very few small events (M < 4), resulting
in unstable values, whereas a 30-day window smooths
high-frequency noise while still capturing the month-
scale variability of the strain-seismicity coupling.
It is important to note that the adopted backward-

sliding scheme implies that for τ = 0 the cumulative en-
ergy is evaluated in the interval [tj−30, tj ], while for in-
creasing values of τ the window progressively shifts for-
ward. For τ ≥ 30, the window lies entirely after tj , e.g.,
[tj , tj + 30] for τ = 30. This design is adopted in order
to capturepossible synchronous, delayed, or slightly an-
ticipatory relationships between deformation and seis-
micity. In volcanic systems, the relative timing between
deformation and earthquakes is not strictly causal and
can vary depending on the underlying process (e.g.,
pore-pressure diffusion, fluid migration, or viscoelastic
stress adjustment). The 30 day window length provides
enough events for a stable correlation estimate, while
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the lag parameter τ explores the range of possible tem-
poral relationships between the two signals.

(iii) Time-dependent background rate. Given the
empirical kernel G(τ) and the averaged strain rate ε̇(t),
we define a dimensionless background shape function
µ(t) by summing theweighted strain contributions over
a finite causal window:

(8)µ(t) =
Nτ∑
i=0

G(τi) ε̇(t− τi) ∆t,

where τi ∈ {0, 1, . . . , 40} days are the discrete lags, and
∆t = 1 day is the discretization step. Note that the case
τ = 0 is included only as a diagnostic to test for an in-
stantaneous coupling; for actual forecasting the formu-
lation is causal and uses only τ ≥ 1.
This shape function is normalized via min-max

rescaling to the interval [0.1, 1.1], ensuring numerical
stability and positivity:

µ(t)← µ(t)−mint µ(t)
maxt µ(t)−mint µ(t) + δ, δ = 0.1.

The actual background rate used in the ETAS condi-
tional intensity is then defined as:

(9)µeff(t) = µ0 · µ(t),

where µ0 (in units of events/day) is a constant free pa-
rameter estimated during the likelihood maximization.
It controls the overall amplitude of the background rate,
whileµ(t)provides its timemodulation based on the ob-
served deformation history.
To evaluate µ(t) at arbitrary event times ti, we first

compute µ(t) at discrete points (corresponding to the
catalog event times), and then interpolate these values
with a spline function. This provides a continuous rep-
resentation of µ(t), which is required for the evaluation
of λ(t) during the likelihood optimization.

(iv) Log-likelihood function. The log-likelihood L(θ)
is written as:

(10)L(θ) =
N∑

i=1
log λ(ti)−

∫ TN

T1

λ(t) dt,

with the conditional intensity given by:

(11)λ(t)

=
{

µ0µ(t) (background)
+

∑
tj<t K0 eα(mj−M0) (t− tj + c)−p (triggering)

The first term of L is computed directly by evaluating
λ(ti) for each observed event.
The second term, the time integral of λ(t) over the

observation interval, has two components: the back-
ground integral:

∫ TN

T1
µ0µ(t) dt and the triggering inte-

gral
∑N

j=1
∫ TN

tj
K0 eα(mj−M0) (t − tj + c)−pdt. The tem-

poral integral is computed analytically:

(12)
∫ TN

tj

dt

(t− tj + c)p
=


(TN −tj+c)1−p−c1−p

1−p , p 6= 1,

log
(

TN −tj+c
c

)
, p = 1,

Thus, the total triggering integral is:

(13)
N∑

j =1
K0 eα(mj−M0) Aj ,

where Aj is the analytical expression Eq.(12).

(v) Optimization and parameter bounds. We define
the parameter vector as θ = (µ0, K0, c, α, p), and
perform numerical minimization of −L(θ) via quasi-
Newton algorithm. Parameter bounds are imposed to
ensure physical plausibility:

µ0 > 0, K0 > 0, c ≥ 10−5, α ≥ 10−3, p ∈ [0.5, 2.5].

Initial guesses are set to:

µ0 = 0.01, K0 = 0.02, c = 0.001, α = 1.0, p = 1.1.

Convergence is declared when the relative change in
the objective function and the gradient norm fall below
10−6. In order to verify the robustness of themaximum
likelihood solution, we repeated the optimization using
several different sets of initial parameter values. The
results were consistent across runs, indicating that the
estimated parameters are not sensitive to the choice of
initial conditions.

4 Results
To quantify the empirical response of seismicity to de-
formation, we estimate the kernel G(τ) via the Pearson
correlation between the strain rate ε̇(t) and the cumula-
tive seismic energy released in the following time win-
dow. For each lag τ , we compute the correlation be-
tween ε̇(t) and the energy released between t + τ and
t + τ + 30 days. The resulting kernel is normalized be-
tween 0 and 1 and shown in Figure 2. Before normaliza-
tion, the correlation coefficient ρ(τ) varies in the stan-
dard range [-1,1], with values peaking around τ ≈ 8−12
days. In our case, themaximumcorrelation is about 0.6.
The kernel displays a clear peak at approximately τ =

10 days, suggesting that deformation has the strongest
influence on seismicity roughly ten days later. This
supports the hypothesis of a delayed triggering mech-
anism mediated by stress diffusion or fluid migration
processes.
Based on the estimated kernel G(τ), we compute a

time-dependent background rate µ(t) as a convolution
of ε̇(t) with the empirical kernel. This background rate
enters the ETASmodel as a modulating term that varies
with time according to the strain rate history.
We compare two models:

1. A stationary ETAS model, where the background
rate µ0 is constant.

2. A deformation-driven ETAS model, where the
background rate is µeff(t) = µ0 ·µ(t), with µ(t) com-
puted from strain rate as described above.

The optimal parameters obtained from maximum like-
lihood estimation are summarized in Table 1.
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Table 1 EstimatedETASparameters for the stationary and
deformation-driven models.

Parameter Stationary Model Deformation-
Driven Model

µ0 [events/day] 0.0084 0.026
K0 0.057 0.055
c [days] 2.8 ×10−4 3.0 ×10−4

α 0.47 0.48
p 0.94 0.95
AIC 638 634

The deformation-driven model achieves a lower AIC
compared to the stationary model, indicating a better
trade-off between model complexity and goodness of
fit. According to the AIC comparison (∆AIC ' 4), the
deformation dependent ETAS model provides a better
fit than the stationary version, in line with the guide-
lines of Burnham and Anderson (2002), which consider
such differences as providing considerable support for
the better model.
Table 1 shows that while the short-term triggering pa-
rameters (K0, α, c, p) are broadly consistent between
the stationary and deformation driven ETAS models,
the background rate differs. In the stationary case, µ0
is constant, whereas in the deformation driven model
the effective background rate is modulated by the strain
rate, leading to a smaller estimated µ0. This redistri-
bution of seismicity between background and triggered
components highlights the impact of including defor-
mation in the model.
Figure 3 illustrates the temporal evolution of the

background rate µ(t) estimated in the deformation
driven model. Compared to the stationary estimate
(µ0 = 0.0084), the background rate exhibits strong
time variability, reaching values more than two orders
of magnitude larger during periods of enhanced strain
rate.
We observe that the peaks in µ(t) align with periods

of elevated strain rate. Conversely, during intervals of
low strain rate, the background rate falls. This indicates
a positive correlation between deformation and seismic
productivity, consistentwith the results of the empirical
kernel analysis.

5 Dicussions and Conclusions
We introduced a deformation-driven ETAS model that
incorporates geodetic observations into thebackground
rate term of the classical ETAS formulation. The back-
ground rate µ(t) is no longer assumed to be constant,
but instead varies as a convolution of the strain rate ε̇(t)
with an empirically derived response kernel. This ap-
proach allows for a flexible, data-driven way to couple
aseismic processes to seismicity rates.
The empirical kernel estimated in this study shows

a clear peak at a lag of approximately 10 days, indicat-
ing that seismic energy release is maximally correlated
with strain rate occurring 10 days earlier. We stress
that this lag is an empirical feature of the Campi Flegrei
dataset, rather than a universal constant. While such
a delay could be qualitatively consistent with mecha-

nisms such as viscoelastic relaxation or fluid migra-
tion, we emphasize that this interpretation remains a
working hypothesis and not direct evidence of a specific
physical process.
Comparison with a standard stationary ETAS model

demonstrates that incorporating deformation leads to
positive evidence of improvement in model perfor-
mance, as measured by the Akaike Information Crite-
rion (AIC). The difference in AIC supports the hypoth-
esis that time-dependent deformation processes mod-
ulate the background seismicity in the Campi Flegrei
caldera.
In addition, the temporal evolution of µ(t) aligns well

with periods of elevated strain rate, further confirming
the physical relevance of the coupling.
The deformation ETAS model is conceptually simple

and can be adapted to any geodetic signal that can be
related to strain or stress (e.g., GPS, InSAR, tiltmeters).
It does not require prior assumptions about the shape
of the kernel, making it suitable for complex, heteroge-
neous environments such as calderas and geothermal
fields.
However, several limitations remain. First, the em-

pirical kernel estimation assumes a linear response and
may not fully capture nonlinear or threshold behav-
iors in the deformation–seismicity coupling. Second,
the model relies on high-quality, high-frequency strain
data, which may not be available in all regions and in
real-time. Third, the normalization of µ(t) introduces
some arbitrariness in the amplitude of the background
rate, although this is partially mitigated by estimating
a global scaling factor µ0. Fourth, in this study we re-
lied on the RITE GNSS station to compute the strain
rate. This choice is motivated by the fact that Campi
Flegrei deformation is largely characterized by a radi-
ally symmetric uplift centered beneath Pozzuoli (DeNa-
tale et al., 2006), for which RITE provides a represen-
tative proxy. Nevertheless, we acknowledge that spa-
tial heterogeneity of seismic clusters may not be fully
captured by a single station, and future developments
should consider a multi-station or spatially distributed
approach to reduce potential biases.
From a physical perspective, the deformation term

µ(t) can be interpreted as the seismic response of a
nonequilibrium crustal system to an external pertur-
bation. Following linear response theory, the system’s
state (here, the earthquake rate) reacts linearly to weak,
time-dependent forcing, with the kernel G(τ) reflect-
ing the viscoelastic properties of the medium. A fast-
decayingG(τ) implies rapid stress dissipation (e.g., brit-
tle behavior), whereas a slowly decaying or broad kernel
corresponds to delayed triggering due to fluid diffusion
or ductile flow.
This formulation is consistent with studies on fluid-

induced seismicity, where the rate of earthquakes fol-
lows a convolution between the fluid injection rate and
a response kernel (Kim andAvouac, 2023; Shcherbakov,
2024). In our case, the forcing is not injection but natu-
ral strain accumulation, and the method generalizes to
tectonic or volcanic deformation patterns.
Future work could address these issues by testing al-

ternative kernel estimation techniques (e.g., deconvolu-
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Figure 3 Temporal evolution of the deformation-driven background rate µ(t) (green circles), compared with the observed
strain rate ε̇(t) (gray dots). The red dashed line indicates the stationary background rate obtained in the stationary ETAS
model.

tion or regularized inversion), exploring spatially vary-
ing background rates, or combining multiple geophys-
ical observables. The deformation ETAS framework
could also be extended to forecast seismicity in real-
time, provided that continuous strain data are available.
To move into an Operational Earthquake Forecasting
system, a pseudo-prospective test using independent
data is needed to ensure the robustness of our findings.
Overall, our results highlight the value of incorpo-

rating geodetic information into statistical seismology
models and provide a step toward more physically in-
formed earthquake forecasting frameworks in active
volcanic systems. Nonetheless, our findings should be
considered preliminary. They provide a first empirical
indication that GNSS-based strain rates can inform the
background rate in ETAS models, but further work is
needed to test the robustness of this framework under
pseudo-prospective conditions and across different vol-
canic environments.
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