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Overview My purpose in this commentary is to provide further context to Christensen (2026)
in this issue of Seismica in order to fill some gaps so that readers better understand how the mea-
surements are made, know what the analyses are based on, and know where the pitfalls in em-
ploying these results might lie. My experiences in reviewing and editing have revealed that many
papers that focus on elastic or seismic anisotropy err as they arewritten oftenwithout understand-
ing the basic principles. This problem is aggravated because somemodernmethods, such as Elec-
tronBackscatter Diffraction (EBSD), havemade calculationof the anisotropyofmetamorphic rocks
readily accessible andproductionof figures perhaps too easy. I hope toboth amplify and clarify the
results archived in Christensen (2026) so they are not similarlymisused and to provide readerswith
some tutorial background and more in-depth sources in order that they can avoid overinterpreta-
tion of anisotropy results more generally.

1 Metamorphic Rock Symmetries
Symmetry is one important aspect mentioned in Christensen (2026) that is often overlooked elsewhere. Any discus-
sion of anisotropy relies on the understanding of a givenmaterial’s structural symmetry that is generally classified on
the basis of symmetry operations which when applied leave the material’s properties unchanged. Symmetry opera-
tions consist of various n-fold rotations, reflections in a plane, or their combinations. The details of such operations
and descriptions of symmetry are beyond the scope here but are found in numerous classic texts on crystallography
and mineralogy (e.g., Klein et al., 1993; Nye, 1985). The symmetries of mineral crystals fall within 7 crystal systems
named in order of decreasing symmetry as cubic, hexagonal, trigonal, tetragonal, orthorhombic, monoclinic, and
triclinic derived from 32-point groups. However, Brugger (1965) notes that wave propagation is centrosymmetric
(i.e., velocities depend on direction but not sense of propagation) and hence an anisotropic material is categorized
within 11 Laue groups that now further include isotropic.

Paterson andWeiss (1961), cited in Christensen (2026), extensively review these concepts in detail and discuss re-
lationships to physical properties. They also provide a thorough analysis of metamorphic rock textural symmetries
that they assert arise in a statistical sense from the orientation distributions of crystallographic axes, inequant grain
shapes, lineations, bedding or foliation planes, fold axes, compositional layering, pores, and cracks (see their Ta-
ble 5). Such orientational statistics are usually quantified via contouring in stereographic projections. For tectonites,
they list the possible symmetries to be spherical (isotropic), axial (also referred to as transversely isotropic, radial,
or hexagonal with this last designation used in Christensen (2026) and hereafter), orthorhombic, monoclinic, and
triclinic that they support with illustrative stereographic projections of crystal orientations in various rocks. Pater-
son and Weiss (1961) make an important point that the overall bulk material symmetry cannot be greater than the
‘subsymmetries’ of the components. It may be also useful to note that the spherical fabric (which we would now
more usually refer to as isotropic) is not a crystal system as are the less symmetric fabrics. One key point made in
Christensen (2026) is that many metamorphic rocks may be characterized by hexagonal or orthorhombic symme-
tries as illustrated from sets of three orthogonal thin sections of metasediments from the Annabel Lake shear zone,
Saskatchewan with hexagonal (Figure 1a) and orthorhombic (Figure 1b) symmetries. Readers are directed to Win-
terstein (1990) and Crampin (1984) for more detailed but clear discussions of elasticity and symmetry in the context
of seismic anisotropy.
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There is one practical problem that is difficult to overcome for experimentalists whoworkwith anisotropic rocks.
Unlike single crystals, the degree of symmetry and subsequent orientation of a sample within an XYZ co-ordinate
system is often subjective. It is often challenging to assign the foliation plane or lineation direction exactly, and in
some cases these visible features may not correlate with less obvious structural features such as lattice preferred
orientations. Coring or machining of samples is with respect to the assigned co-ordinate system can also be chal-
lenging. This ambiguity of thematerial orientationwill lead to some error in the analysis of anisotropy that as shown
below assumes velocity measurements are made in prescribed directions with respect to the symmetry.

Figure 1 a) Orthogonal thin sections cut from deformed metavolcanics sample 93-1. Co-ordinate system is defined with
respect to the visible fabric elements of foliation with principal axes X and Y defining the foliation plane. No lineated texture
is seen in the X-Y plane indicating that thematerial has hexagonal symmetry as supported by the corresponding wave speed
measurements. b) Orthogonal thin sections cut from deformedmetavolcanic sample 93-7. Co-ordinate system defined with
respect to the foliation plane (X-Y) andwith the lineationwithin the XZ plane indicating orthorhombic symmetry. Wave speed
measurements in the X, Y, and Z directions agree with these symmetries. Adapted from (Cholach et al., 2005) according to
author use guidelines.
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2 Relations Between Symmetry, Elasticity, Wave Speeds, and Polarizations

Knowing a material’s symmetry is key to understanding its elastic properties. To add further context to Christensen
(2026), it is worthwhile delving briefly into some of the underlyingmathematical principles that the relationships that
the manuscript relies on but does not explicitly include. This is done only superficially here to better link symmetry
to the seismic properties and elasticity startingwith the simplerVoigt reduced representation ofHooke’s relationship
between stress and strain:
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where the σij and ǫij are the components of the stress and strain tensors, respectively, given in a convenient vector
format and the Cij are the elastic stiffnesses of which there are at most 21 independent values (due to the symmetry
of the C matrix with Cij = Cji). Christensen (2026) focuses exclusively on wave speeds, but it is important to realize
that it is the underlying elastic stiffnesses together with the material density that are more fundamental. The full 21
stiffnesses are required for the least symmetrical triclinic case, but most tectonites will likely not be so complicated
and can be described with fewer stiffnesses as illustrated in Figure 2 for isotropic, hexagonal, orthorhombic, mono-
clinic (for which there are two kinds), and triclinic. The point of this figure is to demonstrate both how the number
of elastic constants decreases with increasing symmetry with only 2 for isotropic to the full 21 for triclinic.

As indicated in Christensen (2026), with knowledge of the material’s bulk density ρ, the phase wave speeds (i.e.
those for a hypothetical plane wave) in any direction through the material may be calculated using the Christoffel
equation as described in many textbooks (e.g., Auld, 1973) but need not be presented here. Numerous codes are
publicly available tomake these calculations (Jaeken and Cottenier, 2016; Walker andWookey, 2012; Yalameha et al.,
2022). What solving the Christoffel equation reveals, however, is that for any given direction through the material
the solution gives three different wave speeds and their associated particle motions (or polarizations). The three
polarizations are orthogonal to one another. That associated with the fastest wave is polarized nearly parallel to the
wave propagation direction. The remaining two are polarized nearly transversely to the direction of propagation;
the speeds of these two generally differ leading to birefringence commonly referred to as ‘shear wave splitting’ in the
geophysical community.

Often, and as noted in the manuscript, the prefix ‘quasi’ is used to describe the wave modes. In an isotropic
material the P- and S-wave polarizations are perfectly parallel and perpendicular to the wave propagation direction,
respectively. In an anisotropic material, these polarizations deviate from the propagation direction and so the waves
are almost but not quite pure P- and S-wave modes. Interestingly, in a hexagonal material one of the S-wave modes
is always polarized in the plane perpendicular to the material’s axis of symmetry and that is why Christensen (2026)
retains for it the term ‘S-wave’. The other S-wave mode, however, is not generally polarized with the propagation
direction and is hence referred to as a quasi-S wave.

There are two additional related complications that are not generally recognized but ignoring them can lead to
difficulties in interpreting seismic observations. First, the Christoffel equation provides phase-velocity solutions for
plane waves propagating through the material. This can differ significantly from the group velocity that is associated
with the propagation of energy along a ray from a point source as is what normally is expected in many field seismic
observations. Tsvankin (2001) provides a useful review of this topic which is mentioned primarily to warn readers of
some of the problems that could be encounteredwhenworkingwith anisotropy between the field and the laboratory.
Li et al. (2020) further describes some of the unexpected phenomena associated stemming from this in the context
of laboratory measurements. All the results shown in Christensen (2026) are phase velocities.

In special directions the speeds of the two shear wave polarizations will be the same (the shear wave ‘kiss’ sin-
gularity mentioned in Christensen, 2026); this occurs for any direction in an isotropic material and along the line of
axial rotational symmetry for hexagonal material. In these cases, the shear wave polarizations lie in the plane per-
pendicular to the axis of symmetry but are otherwise unconstrained. More usually, however, the polarization of the
two shear waves is forced into certain directions dictated by the material properties. For example, of the two ‘split’
shear waves propagating within the plane perpendicular to the axis of rotation of a hexagonal material, one will be
polarized within the plane and the other polarized perpendicular to it.

I am emphasizing this critical point about shear wave polarizations because it must be respected in order tomake
physically meaningful shear wave velocity measurements. Indeed, Christensen (2026) states that
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Figure 2 Illustrative Voigt stiffness matrices arranged as shown in Eqn. (1) for the fabric symmetries expected in metamor-
phic rocks. Empty light circles indicate Cij = 0. Symbols of the same shape indicate equal magnitudes of Cij . Circles with
twohalf shades indicate those dependent stiffnesses calculated from the independentCij represented by the corresponding
solid filled circles. The number of independent stiffnesses required is listed in the title for each symmetry.

‘The P-wave and S-wave anisotropies were calculated from velocities measured from 3 orthogonal cores cut from each rock.
Two cores were cut with axes parallel to cleavage, foliation, or layering. To obtain information on S-wave splitting in rocks
with planar fabrics and/or lineations, two S- velocity pressure runs were made for each core.’

Omitted from this statement is a further key point that hemade the two shearwavemeasurementswith the S-wave
transducers oriented such that their polarizations are orthogonal to each other and, critically, aligned with the fabric
elements. For example, on a sample aligned with the Y-axis in Figure 1b above, one must measure the shear wave
speed both with a shear transducer polarized in the X-direction parallel to the foliation and then in the Z-direction
perpendicular to the foliation. If this is not done properly then one will still observe a waveform, but it may not be
clear how to properly interpret it as over the small sample lengths (a few centimeters) and transit times (~10’s of
microseconds) the split waves must interfere. Not properly aligning the shear wave polarizations to the rock texture
in laboratory measurements is an unrecognized error that appears often in the literature.

3 Converting Velocities to Elastic Moduli

Figures 3 and 8 of Christensen (2026) show several phase velocity surface cross-sections but aside from indicating
that they were calculated using the Christoffel equation there were no further details provided. These are calculated
using values of themeasured elastic stiffnessesCij that are determined directly from the wave speedmeasurements,
and this aspect needs to be addressed to allow for a full understanding of Christensen (2026). Some of the first
applications of ultrasonic wave speed measurements were in the determination of the elastic constants of single
crystals (e.g., Huntington, 1947; Neighbours and Schacher, 1967) that prior to these developments were performed
using laborious static deformations (see review by Hearmon, 1946). Formulae linking velocities to stiffnesses are
complicated, but serendipitously they collapse to simple expressions in certain principal symmetry directions (Auld,
1973; Mah and Schmitt, 2003a,b).
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In his Figure 3, the hexagonal case Christensen (2026) provides links to the various wave speed measurements
to given directions with simplified expressions. To assist the readers in understanding his Figure 3, is it important
to point out that the blue, red, and green cross sections of the wave surfaces correspond to the qP mode, the pure
S mode polarized within the XY plane, and the qS mode polarized within the XZ plane. One need not consider the
YZ plane due to the rotational symmetry of the hexagonal case. The observed velocities for the hexagonal symmetry
rocks are provided in his Tables 2 and 3 and again some explanation will help readers understand better what was
measured and tabulated with P being the confining pressure that the rock was subject to in MPa, with the velocities
being given in km/s, and with the stiffnesses given in GPa. Also, the angle δ is measured from the rotational axis of
symmetry. Finally, from his Figure 3 the linkage between the measured velocities at different angles and the elastic
constants are:

Table 2, 3 Designation Figure 3 Ray Direct Stiffness
VP(0°) 1© C33
VP(90°)avg 2© C11
VP(45°) 5© See Eqn. 2 below for C13
VSH(90°) 4© C66
VSVavg (i.e. at 0°) 3© C44

Note that the subscript ‘avg’ refers to the average of orthogonal measurements arising from the fact that Chris-
tensen (2026)mademeasurements on at least 3 samples in each direction. Examination of the expressions in Figure 3
shows that four of the stiffnesses are determined directly from the observed wave speeds. Note that Tables 2 and 3
do not provide the stiffness C66 directly measured using VSH(90°); but instead the value C12 = C11 − 2C66 is reported.
Tables 2 and 3 also report values of C13. As indicated in Figure 3, C13 is in a multiterm expression but it can be
calculated with knowledge of the more easily derived stiffnesses according to (see also Ong et al., 2016)

C13 = −C44 +
√

4ρ2V 4
p (45◦) − 2ρV 2

p (45◦)(C11 + C33 + 2C44) + (C11 + C44)(C33 + C44) (2)

Propagation of errors through Eqn. 2 severely limit the accuracy of ultrasonically determined measures of C13;
this has been one recurring issue in determining the full set of elastic stiffnesses for axial symmetry rocks. More
usually this is discussed in the context of the large uncertainty of the Thomsen (1986) anisotropic ‘delta’ parameter.

Figure 8 of Christensen (2026) shows a set of 2D profiles of the velocity surfaces for one of the mica schists dis-
cussed in themanuscript. Table 4 of themanuscript provides 9 differentmeasured velocities that lie within the three
symmetry planes of the orthorhombic rock, and the table below better indicates the linkages between themeasured
velocities and the illustration of his Figure 8.

Table 4 Velocities Figure 8 Rays Direct Stiffnesses
VPx 1© C11
VPy 2© C22
VPz 3© C33
VPxz 8© See Eqn. 3 below for C13
VPyz 9© See Eqn. 4 below for C23
VPxy 7© See Eqn. 5 below for C12
VSzy 4© C44
VSxz 5© C55
VSyx 6© C66

The nomenclature of the wave speeds employed in Christensen (2026) for the orthorhombic case of Table 4 in the
manuscript needs some clarification. VPx, VPy, VPz are the pure P-wave modes that propagate only along the three
axes of symmetry of the orthorhombic material, respectively. VPxz, VPyz, VPxy indicate qP modes that are propagating
within the XZ, YZ, and XY symmetry planes at 45° from either one of the symmetry axes in the plane; and the 45° has
been indicated in the equations below for clarity. The designations for the pure shear waves VSzy, VSxz, and VSyx are
not as straightforward to interpret particularly as C44, C55, and C66 can bemeasured in different directions. I expect
that the subscripts indicate the symmetry plane within which the given measurement was made.

C13 = −C55 +
√

4ρ2V 4
pxz(45◦) − 2ρV 2

pxz(45◦) (C11 + C33 + 2C55) + (C11 + C55) (C33 + C55) (3)
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C23 = −C44 +
√

4ρ2V 4
pyz(45◦) − 2ρV 2

pyz(45◦) (C22 + C33 + 2C44) + (C22 + C44) (C33 + C44) (4)

C12 = −C66 +
√

4ρ2V 4
pxy(45◦) − 2ρy(45◦) (C11 + C22 + 2C66) + (C11 + C66) (C22 + C66) (5)

Similar expressions but cast in terms of different wave speeds are provided by Cheadle et al. (1991) for arbitrary
angles of propagation.

4 Wave Phase Velocity Surfaces
The manuscript shows a number of 2-D phase velocity surfaces (Figures 3 and 8), and it is proper to note that these
figures borrow from the figure style that Auld (1973) developed to similarly illustrate phase slowness surfaces (i.e.,
reciprocal of velocity) including the relationships between the elastic stiffnesses and the wave speeds. Christensen
(2026) notes that the Christoffel equation may be used to calculate these surfaces. However, it is perhaps also likely
that Figures 3 and 8 were created using the simpler (but cumbersome) analytic full expressions that relate phase
wave speed to the angle of propagation for axial symmetry (e.g., Thomsen, 1986) or within the three XY, XZ, and YZ
symmetry planes for orthorhombic material (e.g., Auld, 1973).

For the sake of completeness, these analytic expressions are worth repeating here as it is likely these equations
were used to calculate the wave surfaces in Figures 3 and 8 (Araujo et al., 2018).

The equations for the wave speeds in the 2 different symmetry planes of an axial metamorphic rock (Auld, 1973;
Thomsen, 1986) are given below:

4.1 Axial Foliation Plane XY
The XY plane in a hexagonal (transversely isotropic) material is also often referred to as the isotropic plane because
the three waves speeds to not vary azimuthally. In any direction within the XY plane there will be:

• A pure S wave mode polarized in the XY plane:

V XY
SXY =

√

C66

ρ
(6)

• A second pure S wave mode polarized in the Z direction:

V XY
Sz =

√

C44

ρ
=

√

C55

ρ
(7)

A pure P wave mode polarized in the XY plane:

V XY
P xy =

√

C11

ρ
=

√

C22

ρ
(8)

4.2 Axial Rotationally Symmetric Plane XZ
In the XZ plane the phase propagation direction is given by the angle β measured from the Z-axis. (perpendicular to
the foliation plane). Note that these equations will apply for waves the propagate in any plane that is perpendicular
to the foliations XY plane.

• Pure S wave mode polarized normal to the plane containing the propagation direction

V XZ
Sx =

√

C44 cos2 β + C66 sin2 β

ρ
(9)

• qS wave mode polarized in the XY plane:

V XZ
Sxz =

√

BXZ − DXZ

2ρ
(10)
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• qP wave mode polarized in the XY plane:

V Y Z
Syz =

√

BXZ + DXZ

2ρ
(11)

where:

BXZ = C44 + C33 cos2 β + C11 sin2 β (12)

and

DXZ =

√

[

(C11 − C44) sin2 β + (C44 − C33) cos2 β
]2

+ (C13 + C44)
2

sin2 2β (13)

The equations for wave speeds in the three different symmetry planes of an orthorhombic material are given in
Auld (1973). It must be stressed that these equations are valid only within the symmetry planes of the material; they
should not be used to determine the phase speeds in other directions where the full Christoffel equation solution
must be employed.

4.3 Orthorhombic Foliation Plane XY
In the XY plane the phase propagation direction is given by angle φ measured from the X-axis (lineation direction).

• Pure S wave mode polarized in the Z direction:

V XY
Sz =

√

C44 cos2 ϕ + C55 sin2 ϕ

ρ
(14)

• qS wave mode polarized in the XY plane:

V XY
Sxy =

√

√

√

√

AXY −

√

(AXY )
2

− 4CXY

2ρ
(15)

• qP wave mode polarized in the XY plane:

V XY
P xy =

√

√

√

√

AXY +

√

(AXY )
2

− 4CXY

2ρ
(16)

where:

AXY = C66 + C11 cos2 ϕ + C22 sin2 ϕ (17)

and

CXY =
(

C11 cos2 ϕ + C66 sin2 ϕ
) (

C66 cos2 ϕ + C22 sin2 ϕ
)

− (C12 + C66)
2

cos2 ϕ sin2 ϕ (18)

4.4 Orthorhombic Lineation Plane XZ
In the XZ plane the phase propagation direction is given by the angle β measured from the Z-axis (perpendicular to
the foliation plane).

• Pure S wave mode polarized in the Y direction:

V XZ
Sy =

√

C66 cos2 β + C44 sin2 β

ρ
(19)
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• qS wave mode polarized in the XY plane:

V XY
Sxz =

√

√

√

√

AXZ −

√

(AXZ)
2

− 4CXZ

2ρ
(20)

• qP wave mode polarized in the XY plane:

V XY
P xz =

√

√

√

√

AXZ +

√

(AXZ)
2

− 4CXZ

2ρ
(21)

where:

AXZ = C55 + C33 cos2 β + C11 sin2 β (22)

and

CXZ =
(

C55 cos2 β + C11 sin2 β
) (

C33 cos2 β + C55 sin2 β
)

− (C13 + C55)
2

cos2 β sin2 β (23)

4.5 Orthorhombic Orthogonal Plane YZ
In theXZ plane the phase propagation direction is also given by the angle β measured from the Z-axis (perpendicular
to the foliation plane).

• Pure S wave mode polarized in the X direction:

V Y Z
Sx =

√

C55 cos2 β + C66 sin2 β

ρ
(24)

• qS wave mode polarized in the XY plane:

V Y Z
Syz =

√

√

√

√

AY Z −

√

(AY Z)
2

− 4CY Z

2ρ
(25)

• qP wave mode polarized in the XY plane:

V Y Z
P yz =

√

√

√

√

AY Z +

√

(AY Z)
2

− 4CY Z

2ρ
(26)

where:

AXZ = C44 + C33 cos2 β + C22 sin2 β (27)

and

CXZ =
(

C44 cos2 β + C22 sin2 β
) (

C44 cos2 β + C33 sin2 β
)

− (C23 + C44)
2

cos2 β sin2 β (28)

5 Concluding Comments
I hope that the material above will help readers better appreciate the utility of the Christensen (2026) compilation.
Although it is easily obvious by examination that foliated and lineated metamorphic rocks must have orthorhombic
symmetry, there still are exceedingly few measurements of the full set of 9 elastic constants for an orthorhombic
metamorphic rock and as such the compilation of previously unpublished results is yet another important contribu-
tion by Nikolas Christensen.
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