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Abstract Flexure and extension of ice shelves in response to incident ocean surface gravity waves have
been linked to iceberg calving, rift growth, and even disintegration of ice shelves. Most modeling studies uti-
lize a plate bending model for the ice, focusing exclusively on flexural gravity waves. Ross Ice Shelf seismic
data shownot only flexural gravity waves, with dominantly vertical displacements, but also extensional Lamb
waves, which propagatemuch fasterwith dominantly horizontal displacements. Our objective is tomodel the
full-wave responseof ice shelves, including ocean compressibility, ice elasticity, and gravity. Ourmodel is a 2D
vertical cross-section of the ice shelf and sub-shelf ocean cavity. We quantify the frequency-dependent exci-
tation of flexural gravity and extensional Lambwaves and provide a quantitative theory for extensional Lamb
wave generationby the horizontal force impartedbypressure changes on the vertical ice shelf edge exertedby
gravity waves. Our model predicts a horizontal to vertical displacement ratio that increases with decreasing
frequency, with ratio equal to unity at ∼0.001 Hz. Furthermore, in the very long period band (< 0.003 Hz),
tilt from flexural gravity waves provides an order of magnitude larger contribution to seismometer horizontal
components than horizontal displacements from extensional Lamb waves.

Non-technical summary In the past three decades, we have seen ice shelves catastrophically
weaken and break apart. In some cases, large calving events or ice shelf disintegration is correlated with the
arrival of ocean waves and tsunamis. This has prompted the deployment of seismometers on ice shelves to
study the ice shelf response to ocean wave impacts. Ocean waves convert to several other wavemodes in the
ice shelf and ocean layer beneath the ice shelf. In our study, we present computer simulations of the ocean
and ice shelf system toquantify thewavemotionswithin andon the surfaceof the ice shelf, therebypermitting
comparison to seismic data. Our results help guide interpretation of seismic data and in understandingwhich
wave modes are most likely to contribute to calving and fracture of ice shelves.

1 Introduction

Ice shelf stability and strength play an important role in
understanding and predicting sea level rise (Bromwich
and Nicolas, 2010). Ice shelves buttress ice sheets and
following ice shelf collapse, ice streams have been ob-
served to accelerate (Dupont and Alley, 2005; Pritchard
et al., 2012). In the past three decades, we have seen ice
shelves catastrophically weaken and break apart (Rott
et al., 1996; De Angelis and Skvarca, 2003; Scambos
et al., 2004; Brunt et al., 2011; Banwell et al., 2017; Mas-
som et al., 2018). As the climate continues to warm,
thinning and collapse of ice shelves is likely to occur at
a more rapid rate.
Weakening of ice shelves has been associated with

wave-induced flexure (Holdsworth and Glynn, 1978) as
well as basal and surface melting (Paolo et al., 2015).

∗Corresponding author: labrahams813@gmail.com

Basal melting is facilitated through influx (into the sub-
ice shelf cavity) of warm seasonal seawater and circum-
polar deepwater (Walker et al., 2008; Rignot et al., 2013).
During the summermonths, surfacemelting increases,
creating supraglacial lakes, further thinning the ice
shelves and possibly contributing to hydro-fracturing
into the ice shelf (Banwell et al., 2013).
Melting and thinning weaken ice shelves, but what

creates fractures and finally triggers the collapse of ice
shelves is poorly determined. Possible processes in-
clude ocean surface gravity wave forcing (Holdsworth
and Glynn, 1978; Bromirski et al., 2010; Brunt et al.,
2011; Banwell et al., 2017; Massom et al., 2018). In-
cident ocean waves are partially transmitted into the
ice shelf as flexural gravity waves (similar to ocean sur-
face gravity waves but with additional inertia and elas-
tic resistance to bending from the ice) and other elas-
tic waves bearing more similarity to traditional seismic
waves. The ability of waves to transmit through the ice
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shelf and the magnitude of wave-induced stresses de-
pend on the ice shelf structure (ice thickness, elastic
moduli, density), depth of water in the sub-shelf cav-
ity, and the properties of the incident wave (frequency,
incidence angle, amplitude). Incident waves include
ocean swell, storm-generated infragravity waves, tides,
and tsunamis (MacAyeal et al., 2006). Low frequency
waves penetrate the sub-shelf cavities more efficiently,
causing flexure (Sergienko, 2013). This flexural stress
can open cracks, drive rift growth, and initiate collapse
events. Bromirski et al. (2010) concluded that both of
the breakup events on the Wilkins Ice shelf in 2008
matched with arrivals of infragravity waves from large
stormevents on the Patagonian coast. Brunt et al. (2011)
suggested that tsunami arrivals from the 2011 Tohoku-
Oki, Japan, earthquake caused a massive calving event
on the Sulzberger Ice Shelf. Massom et al. (2018) linked
storm-generated swell to calving and break-up of the
Larsen A and B andWilkins ice shelves. Icequake activ-
ity near the front of the Ross Ice Shelf is also correlated
with ocean wave arrivals (Chen et al., 2019; Aster et al.,
2021), though other factors such as tidal and thermal
stresses contribute as well (Olinger et al., 2019). Flexu-
ral gravity waves are also excited by abrupt rift opening
and can be used to track and monitor the expansion of
rifts (Olinger et al., 2022).
Most models of the wave response of ice shelves have

focused exclusively on the flexural response. How-
ever, the Ross Ice Shelf data shows other wave modes,
including the fundamental mode extensional Lamb
wave that propagates close to the plane stress P-wave
speed of ice and has dominantly horizontal displace-
ments (Bromirski et al., 2017; Chen et al., 2018, 2019).
These observations motivate us to examine how inci-
dent ocean waves convert to flexural gravity and exten-
sional Lambwaves. Chen et al. (2018) suggest thatwave-
induced pressure changes on the shelf front, which ex-
ert a net horizontal force on the ice shelf, are respon-
sible for excitation of extensional Lamb wave. We con-
firm this hypothesis with our modeling.
Before introducing our model, we remark on the

many studies that have focused on the flexural grav-
ity wave response of ice shelves and sea ice. Most
work utilizes a bending plate model to describe the ice
response, recognizing that horizontal wavelengths are
much larger than ice thickness at frequencies of in-
terest. The frequency-domain reflection/transmission
problem of gravity waves in open water coupled to flex-
ural gravity waves in ice-covered water was solved by
Fox and Squire (1990, 1991). The earlier history of the
field is reviewed by Squire et al. (1995); Squire (2007).
While much of this work focused on sea ice, atten-
tion has shifted recently to ice shelves (Sergienko, 2010,
2013). Lipovsky (2018) provides a methodology to es-
timate wave-induced bending stresses from measured
ice shelf motions. Finite element (Ilyas et al., 2018;
Sergienko, 2017) and finite difference (Mattsson et al.,
2018) methods can be used to solve to the potential flow
problem in sub-shelf cavity. These studies show how
the shallow water approximation breaks down at swell
frequencies (0.03-0.1 Hz) (Kalyanaraman et al., 2019)
and how ice shelves affect the shoaling process aswaves

advance into shallowerwater (Meylan et al., 2021). Solu-
tion of the full elasticity problem in the ice shelf can be
used to determine the validity of the plate approxima-
tion (Sergienko, 2010, 2017; Kalyanaraman et al., 2020).
While most efforts focus on 2D vertical cross-section
models, some 3D or 2Dmap-viewmodels have been de-
veloped to account for the complex geometries and vari-
able ice thickness and water depth of real ice shelves
(Sergienko, 2017; Tazhimbetov et al., 2022). However,
use of a bending plate model for the ice shelf precludes
study of extensional Lamb waves and other ice shelf
wave modes.
Our objective is to model the full-wave response of

ice shelves, including ocean compressibility, ice elas-
ticity and inertia, and gravity. We do this for a 2D ver-
tical cross-section of the ice shelf and sub-shelf ocean
cavity, coupled to an open-water region. The ice and
ocean obey the elastic and acoustic wave equations, re-
spectively, andgravity is addedusing anextensionof the
fully coupled method introduced by Lotto and Dunham
(2015). This allows us tomodel extensional Lambwaves
in addition to flexural gravity waves. A similar model
was utilized by Kalyanaraman et al. (2020) to study wave
reflection/transmission and resonance modes of finite
length ice shelves. They note the existence of exten-
sional wave resonancemodes, but do not perform a sys-
tematic investigation of extensional Lamb wave excita-
tion by incident surface gravity waves. This is the pri-
mary focus of our study and we anticipate results to
be of use when interpreting data from ice shelves and
understanding which wave modes might contribute to
fracture and calving.
Our paper is organized as follows. We begin with

a statement of the model (governing equations and
boundary/interface conditions) and review of relevant
wave modes for open water and ice-covered water, in
the frequency domain, in section 2. This provides
the mathematical basis for the reflection/transmission
analysis that occupies the remainder of the paper.
While the reflection/transmission problem is best for-
mulated and analyzed in the frequency domain, we
utilize a time-domain finite difference code for wave
propagation to perform the required numerical simula-
tions. Thus we must introduce a procedure, described
in section 3, to extract frequency-dependent reflection/-
transmission coefficients from our time-domain sim-
ulations. The reflection/transmission coefficients are
also defined in this section. We verify this procedure
against known results for surface gravity wave propa-
gation across a step change in water depth (section 4).
Then we proceed to study wave reflection/transmission
from an ice shelf (section 5), which contains the novel
contributions of our study.

2 Model and wavemodes
We study wave propagation in a 2D vertical cross-
section of the ice shelf and sub-shelf ocean cavity, con-
nected to an open-water region (Figure 1a). We use a
coordinate system inwhich x is horizontal and z is verti-
cal, positive upwith the sea surface at z = 0 and seafloor
at z = −H1. An incident surface gravity wave is im-
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posed in the open-water region (x < 0) and arrives at
the ice shelf edge (x = 0), where it is both reflected and
transmitted into the ice shelf and sub-shelf cavity. In the
open water (x < 0) the water depth is H1. For x > 0, an
ice shelf of thickness Hi floats on the water. Given the
ice and water densities, ρi and ρw, respectively, hydro-
static balance requires the water depth in the sub-shelf
cavity to be H2 = H1 − (ρi/ρw)Hi. The top of the ice
shelf is located at z = (1−ρi/ρw)Hi. The ice-water inter-
face is located z = −(ρi/ρw)Hi and the sub-shelf ocean
cavity extends to z = −H1. When deriving dispersion
relations involving the ice, it is convenient to introduce
the half-thickness h = Hi/2.
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Figure 1 a) An incident surface gravity wave, propagat-
ing to the right, reaches the ice shelf edge at x = 0, cre-
ating reflected surface gravity waves and transmitted flexu-
ral gravity and extensional Lamb waves. The ice shelf is of
thickness Hi and the ocean is of depth H1 in open water
and H2 beneath the shelf. b) Step change in water depth
at x = 0 that causes reflection and transmission of sur-
face gravity waves, used to verify our procedure for calcu-
lating frequency-dependent reflection/transmission coeffi-
cients from time-domain simulations.

The ice and compressible ocean obey the elastic and
acoustic wave equations, respectively, and gravity is
added using an extension of the method introduced by
Lotto and Dunham (2015), which assumes small pertur-
bations about an initial hydrostatic equilibrium state in
the water.
The governing equations in the water are

(1)
1

Kw

∂p

∂t
+ ∂vx

∂x
+ ∂vz

∂z
= 0,

obtained by combining the linearized mass balance
with a linearized equation of state; and the momentum
balance equations,

(2)ρw
∂vx

∂t
+ ∂p

∂x
= 0,

and
(3)ρw

∂vz

∂t
+ ∂p

∂z
= 0,

for particle velocities vi, pressure perturbation p, bulk
modulus Kw, and density ρw. The sound speed is c0 =√

Kw/ρw. Gravity acts as a restoring force, entering the
open-water problem only through linearization of the
free surface boundary condition,

(4)p − ρwgη = 0, at x < 0, z = 0,

where wave height η is governed by the linearized kine-
matic condition on the sea surface,

(5)
∂η

∂t
= vz, at x < 0, z = 0.

At the bottom of the ocean, we assume a rigid wall con-
dition,

(6)vz = 0, at z = −H1.

The ice obeys the elastic wave equation for an
isotropic solid with spatially uniform material proper-
ties:

ρi
∂2ux

∂t2 = (λ + µ)
(

∂2ux

∂x2 + ∂2uz

∂x∂z

)
+ µ

(
∂2ux

∂x2 + ∂2ux

∂z2

)
,

(7)

ρi
∂2uz

∂t2 = (λ + µ)
(

∂2ux

∂x∂z
+ ∂2uz

∂z2

)
+ µ

(
∂2uz

∂x2 + ∂2uz

∂z2

)
,

(8)

for particle displacements ui, density ρ, Lamé parame-
ters λ and µ. The associated P- and S-wave speeds are
cp =

√
(λ + 2µ)/ρ and cs =

√
µ/ρ, respectively. The

elastic wave equation is derived from the momentum
balance equation, Hooke’s law,

(9)σij = λεkkδij + 2µεij ,

where δij is the Kronecker delta, and the strain-
displacement relation,

(10)εij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
.

The top of the ice is a free surface,

(11)
σxz = 0,

σzz = 0,

at z = (1 − ρi/ρw)Hi.

At the ice-water interface along the base of the ice shelf,
we balance tractions and enforce continuity of normal
velocity:

σxz = 0, (12)
−σzz = p − ρwgη, ∂η/∂t = vz, (13)

∂uz/∂t = vz, at x > 0, z = −(ρi/ρw)Hi, (14)

where fields on the left side are evaluated at the bot-
tom of the ice and fields on the right side are evaluated
at the top of the water. Here the treatment of gravity in
the water is identical to that in the open water region,
with η again being the vertical displacement at the top
of the water. We are therefore accounting for pressure
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changes in response to perturbations about the back-
ground hydrostatic state in the water, but neglecting
prestress within the ice.
Along the submerged portion of the vertical ice shelf

edge, we again balance tractions and enforce continuity
of normal velocity:

σxz = 0, (15)
−σxx = p, (16)

∂ux/∂t = vx, at x = 0, −(ρi/ρw)Hi < z < 0. (17)

The portion of the shelf edge abovewater is a free sur-
face:

σxz = 0, (18)
σxx = 0, at x = 0, 0 < z < (1 − ρi/ρw)Hi. (19)

Our goal is to study the reflection and transmission
of incident surface gravity waves. Reflection and trans-
mission coefficients of various wave modes can be de-
fined in terms of the amplitude of propagating plane
wave solutions in the frequency domain, which are
derived in the following sections. However, we will
extract these reflection and transmission coefficients
from time-domain simulations using a procedure de-
scribed subsequently (section 3).

2.1 Wavemodes in openwater
We first consider the problem of wave propagation in
open water. We solve equations (1-3) with boundary
conditions (4-6), assuming ei(kx−ωt) dependence of all
fields, where k is the horizontal wavenumber and ω
is the angular frequency. For notational simplicity,
ei(kx−ωt) is implied and we denote the water depth as
H. The solution for a wave of amplitude A (i.e., η =
Aei(kx−ωt)) is

(20)p = Aω2ρw

κ sinh (κH) cosh (κ(z + H)),

(21)vx = Akω
cosh (κ(z + H))

κ sinh (κH) ,

(22)vz = −iAω
sinh (κ(z + H))

sinh (Hκ) ,

where

(23)κ =

√
k2 − ω2

c2
0

,

and ω and k are related by the dispersion relation

(24)ω2 = gκ tanh(Hκ).

The solutions to (24) include surface gravity waves (with
slight corrections due to water compressibility) and
acoustic waves (with slight corrections due to gravity)
and have be discussed in many previous studies (Sells,
1965; Yamamoto, 1982; Lotto and Dunham, 2015). In
this study, we are exclusively interested in the surface
gravity wave mode.

2.2 Wavemodes in ice-covered water
In Appendix A, we solve the corresponding problem in
ice-covered water. For notational simplicity, we denote
the water layer thickness as H and the ice thickness as
2h. The dispersion relation is

(25)
ωρwD0

κ sinh(κH) = 2ρic
4
s

ω3pF
,

where
(26)D0 = cosh(κH) − gκ

ω2 sinh(κH),

(27)F = sinh(αh) sinh(βh)
DS

+ cosh(αh) cosh(βh)
DA

,

(28)DS = 4k2αβ sinh(αh) cosh(βh)
−

(
k2 + β2)2 cosh(αh) sinh(βh)

(29)DA = 4k2αβ cosh(αh) sinh(βh)
−

(
k2 + β2)2 sinh(αh) cosh(βh),

with
(30)α =

√
k2 − ω2/c2

p,

(31)β =
√

k2 − ω2/c2
s.

Note that D0 = 0 provides the dispersion relation for
surface gravity waves in openwater, given previously as
(24). Similarly, DS = 0 and DA = 0 provide the disper-
sion relations for symmetric and antisymmetric modes
of an elastic layer bounded by free surfaces.
Next we examine limits appropriate for long-

wavelength extensional Lambwave and flexural gravity
wave modes. For the fundamental symmetric mode
(extensional Lamb wave), assume kh � 1, such that
αh � 1 and βh � 1. In this limit,

(32)DS ≈ −ω2βh

c4
s

(
ω2 − k2c2

ps

)
,

where the plane stress P-wave speed cps is defined via

(33)c2
ps = 4c2

s

(
1 − c2

s

c2
p

)
.

Thus for an elastic plate bounded by free surfaces, solu-
tions of DS = 0, in this long-wavelength limit, describe
nondispersive extensional Lamb waves propagating at
cps.
For the fundamental antisymmetric mode (flexural

wave), in addition to kh � 1, αh � 1, and qh � 1, we
also assume ω/kcp � 1 and ω/kcs � 1 (phase velocity
less than both the P- and S-wave speeds). In this limit,
the dispersion relation for flexural waves in an elastic
plate bounded by free surfaces, DA = 0, can be written
as

(34)ω2 ≈ 4
3c2

s

(
1 − c2

s

c2
p

)
h2k4,
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or equivalently
(35)ω2 = B

m
k4,

where

(36)
B = 2Eh3

3(1 − ν2) ,

m = 2hρi,

are the bending stiffness B (written in terms of Young’s
modulus E and Poisson ratio ν) and the ice mass per
horizontal unit area m. Note that

(37)
B

m
= 4

3c2
s

(
1 − c2

s

c2
p

)
h2.

The approximate dispersion relation (35) matches that
of flexural waves obeying the Euler-Bernoulli plate
model,

(38)−mω2w + B
d4w

dx4 = 0,

where w is the vertical displacement (assumed to be
uniform with depth).
Continuing with these approximations (which re-

stricts focus to the flexural wave), but now accounting
for the interaction of the ice shelf and water to study
flexural gravity waves, we write (27) as

(39)F ≈ − c4
s

khω2
(
ω2 − B

m k4
) ,

such that the dispersion relation (25) becomes

(40)
iωρw

[
cosh(kH) − gk

ω2 sinh(kH)
]

k sinh(kH) = mω2 − Bk4

iω
,

or equivalently,

(41)
ρwω2

k tanh(kH) = Bk4 + ρwg − mω2.

This can be solved for ω as

(42)ω2 = ρwg + Bk4

ρw/k tanh(kH) + m
,

matching expressions given in many previous stud-
ies on flexural gravity waves (Ewing and Crary, 1934;
Fox and Squire, 1990; Squire et al., 1995; Squire, 2007),
thereby confirming the consistency of our model with
known solutions in this limit.
Figure 2 shows the phase velocity (c = ω/k) and group

velocity (U = dω/dk) for the surface gravity wave, ex-
tensional Lamb wave, and flexural gravity wave modes.
Parameter values are given in Table 1 and we use the
open-water depth H = H1 for the surface gravity wave
and the sub-shelf depth H = H2 for the extensional
Lamb wave and flexural gravity wave solutions. We fo-
cus on frequencies up to 0.02 Hz, corresponding to the
very long period (< 0.003 Hz) and infragravity (0.003 −
0.02 Hz) bands. We do not consider higher frequency
swell in this study.
Surface gravity waves are normally dispersed, with

phase and group velocity reaching a maximum wave

speed of
√

gH in the long wavelength limit (figure 2a).
Extensional Lamb waves exhibit no significant disper-
sion over the frequency band of interest (figure 2b). In
addition to gravity, the elastic restoring force causes the
flexural gravity waves to propagate faster than surface
gravitywaves, and shorterwavelengths propagate faster
than longer wavelengths. Therefore, flexural gravity
waves are anomalously dispersed,withphase andgroup
velocity reaching aminimumwave speed of

√
gH in the

longwavelength limit (figure 2c). Additionally plotted in
figure 2c are the group and phase velocity for the flexu-
ral gravity wave using the plate approximation (42), ver-
ifying the validity of the plate model at the frequencies
of interest. Beamforming and seismic modeling for the
Ross Ice Shelf indicate that the dominant flexural grav-
ity wave energy travels at phase speeds of about 70 m/s,
consistent with the long wavelength limit (Bromirski
et al., 2017).
Finally, we remark that while our model results for

the ice shelf response are discussed primarily in terms
ofwave amplitude (specifically, displacements of the ice
surface), the horizontal normal stress σxx is also of in-
terest because this stress component acts to open and
close vertical fractures and rifts. The stresses can be
calculated immediately from the surface displacements
using the frequency-domain transfer functions given by
Lipovsky (2018). For flexural gravity waves, which carry
the largest stresses, the stress σxx can be obtained from
the vertical displacement w, in the long wavelength
plate theory limit, as (Timoshenko and Goodier, 1970)

(43)σxx ≈ −6Bk2

H2
i

w.

3 Procedure to extract reflection and
transmission coefficients from time-
domain simulations

In this section we describe a procedure to extract
frequency-dependent reflection and transmission coef-
ficients from our time-domain simulations. The proce-
dure will utilize Fourier transforms in both space and
time with the following notation:

(44)
f̃(k, t) =

∫ ∞

−∞
f(x, t)e−ikx dx ,

f(x, t) = 1
2π

∫ ∞

−∞
f̃(k, t)eikx dk ,

(45)
f̂(x, ω) =

∫ ∞

−∞
f(x, t)eiωt dt ,

f(x, t) = 1
2π

∫ ∞

−∞
f̂(x, ω)e−iωt dω .

3.1 Surface gravity wave reflection/trans-
mission for a step change in water depth

We begin with the simpler problem of surface gravity
wave reflection/transmission from a step change in wa-
ter depth. There is no ice shelf in this problem. Let
H1 and H2 be the water depths in x < 0 and x > 0,
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Figure 2 Group and phase velocity for the surface gravity wave, extensional Lamb wave, and flexural gravity wave.

respectively (Figure 1b). The problem is posed in the
frequency domain. Define k1 and k2 as the wavenum-
bers of the surface gravity wave mode in x < 0 and
x > 0, respectively, obtained by solving the open-water
dispersion relation (24). The wavefield solution in the
frequency domain, for an incident wave of spectral am-
plitude A(ω), is given by

η̂(x, ω)

=
{

A(ω)
[
eik1x + R(ω)e−ik1x

]
+ other modes, x < 0,

A(ω)T (ω)eik2x + other modes, x > 0,

(46)

where R and T are the frequency-dependent reflec-
tion and transmission coefficients, respectively, for the
propagating surface gravity wave mode. In addition, it
is well known that except in the shallow water limit,
there are additional evanescent surface gravity wave
mode solutions to (24), which are confined to the vicin-
ity of the step change in water depth at x = 0 (New-
man, 1965;Miles, 1967;Dingemans, 1997). Thesemodes
can be safely ignored at locations x sufficiently removed
from x = 0. Furthermore, because we account for wa-
ter compressibility, there are also acoustic modes. The
acoustic modes exist as propagating waves only above
some cut-off frequency (approximately c0/4H for the
first mode, or 0.375 Hz for H = 1000 m), which is much
higher than the frequencies of interest to us. Thus these
modes are also evanescent and can be neglected in the
following procedure to determine R and T .
Our goal now is to set up a problem in the time do-

main fromwhichwe can extractR and T . To do this, we
set initial conditions at t = 0 corresponding to a broad-
band incident wave packet propagating only in the +x
direction. Define η(x, 0) = η0(x) and its spatial Fourier
transform η̃0(k). The wavefield at some later time t,
η̃(k, t), is obtainedbymultiplying η̃0(k)by the phase fac-
tor e−iω1t, where ω1 = ω1(k) is obtained from solving
the dispersion relation (24) for the surface gravity wave
mode inwater of depthH1. We select the sign ofω1 such
that ω1/k > 0 so that the wave propagates in the +x di-
rection.

Next we switch between ω and k Fourier transforms
using a change of variable based on the dispersion rela-
tion. Note that dω = Udk, where U is the group veloc-
ity, which can be viewed as either a function of k or ω,
as desired, provided that these are evaluated using the
solution to the dispersion relation corresponding to the
desired surface gravity wave mode. This procedure is
illustrated for the incident wave:

ηI(x, t) = 1
2π

∫
η̃0(k)ei(kx−ω1t)dk (47)

= 1
2π

∫
η̃0(k1)
U(k1) ei(k1x−ωt)dω, (48)

where k1 = k1(ω) is evaluated for the surface gravity
wave mode in water of depth H1. It follows that

(49)η̂I(x, ω) =
∫

ηI(x, t)eiωtdt

(50)= η̃0(k1)
U(k1) eik1x,

from which we identify the spectral amplitude of the
incident wave in (46) as

(51)A(ω) = η̃0(k1)/U(k1).

Initial conditions on pressure and particle velocity are
obtained by evaluating (20)-(22) times the surface dis-
placement spectral amplitude A(ω).
To solve for the reflection coefficientR fromour time-

domain simulation, we Fourier transform the time se-
ries of η at some point x < 0 to obtain η̂(x, ω). Then
solve (46), neglecting the evanescent surface gravity and
acoustic modes, to obtain

(52)R(ω) =
[

η̂(x, ω)
A(ω) − eik1x

]
eik1x.

The procedure can be simplified even further by select-
ing the x location to be to the left of the initial wave
packet, so that only the reflected wave contributes to
the time series. In this case, the incident wave in (52),
namely the −eik1x term in brackets, can be ignored.
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Extracting the transmission coefficient is similar. We
select some point x > 0 sufficiently far from x = 0, ex-
tract the time series of η, and Fourier transform it in
time to obtain η̂(x, ω). Neglecting evanescent surface
gravity and acoustic modes, we solve (46) for the trans-
mission coefficient

(53)T (ω) = η̂(x, ω)
A(ω) e−ik2x.

While the procedure above is stated for a single x, in
our implementation we average the resulting R and T
overmultiple x, whichwe find improves the accuracy at
high frequencies. With a grid spacing of 200 m, R was
averaged over x = −100 km to −50 km and T was aver-
aged over x = −100 km to −50 km.
The procedure above does require neglecting evanes-

cent surface gravity and acoustic wave modes, which
might introduce a small error in the calculated R and
T . This error could be eliminated using a more sophis-
ticated procedure that isolates a specific wave mode.
For example, it is well known that the eigenfunctions of
wavemodes in layeredmedia obey orthogonality condi-
tions (Aki andRichards, 2002). The orthogonality condi-
tions require evaluation of integrals of particle velocity
and stress fields over depth z at fixed x. We defer this
extension to future work.

3.2 Reflection/transmission with an ice shelf

The procedure for extracting reflection/transmission
coefficients for the ice shelf problem (Figure 1a) ismore
complex, as we are interested in multiple wave modes,
not all of which are well expressed in the water sur-
face vertical displacement η. Furthermore, wenote that
seismometers placed on the ice shelf surface are the pri-
mary means of measuring wave motions. Thus we de-
fine u(x, t) and w(x, t) as the horizontal and vertical dis-
placements of the top surface of the ice shelf.
The incident and reflected wavefield in the open-

water region (x < 0) is identical to that in (46). The sur-
face displacements of the transmitted wavefield can be
written as

(54)û(x, ω) = A(ω)
[
Tx,f (ω)eikf x+Tx,e(ω)eikex

]
+ other modes,

(55)ŵ(x, ω) = A(ω)
[
Tz,f (ω)eikf x + Tz,e(ω)eikex

]
+ other modes,

where the subscript x or z on the transmission coef-
ficients T refers to the displacement direction and the
subscripts f and e refer to the flexural gravity and exten-
sional Lamb wave modes, respectively. The wavenum-
bers kf and ke are obtained from the flexural grav-
ity and extensional Lamb wave solutions of the disper-
sion equation (25). We note that the ratios Tx,f /Tz,f

and Tx,e/Tz,e are independent of the reflection/trans-
mission process and can be determined from the eigen-
functions given in Appendix A. Thus we need only con-
sider onedisplacement directionwhenextracting trans-
mission coefficients for each wave mode. Because flex-
ural gravitywaves have dominantly vertical particlemo-
tions, we focus on Tf,z. Similarly, because extensional

Lamb waves have dominantly horizontal particle mo-
tions, we focus on Te,x.
The procedure for extracting the reflection coeffi-

cient of surface gravity waves is identical to the previ-
ous problem. To extract transmission coefficients, we
record ice surface displacement time series u and w at
some x > 0 that is sufficiently far from the ice shelf
edge. We then exploit the vastly different phase and
group velocities of the flexural gravity and extensional
Lamb wave modes by windowing the appropriate wave
arrivals in the time series. We then Fourier transform
these windowed time series in time and evaluate

(56)Tz,f (ω) = ŵ(x, ω)
A(ω) e−ikf x,

(57)Tx,e(ω) = û(x, ω)
A(ω) e−ikex.

3.3 Numerical simulations

In this studyweutilize the finite difference code FDMAP
(Dunham et al., 2011; Kozdon et al., 2012, 2013) that
couples an acoustic ocean in the presence of gravity to
an elastodynamic solid. We employ a Cartesian mesh
with uniform (but different) grid spacings in the x and
z directions. The method uses sixth-order central dif-
ferences in space in the interior (with reduced order
near boundaries and interfaces) and a third-order ex-
plicit Runge-Kutta method for time-stepping. Gravity is
accounted for using the method in Lotto and Dunham
(2015), for both the open-water region and at the top of
the sub-shelf water cavity.
We examine two model geometries. For the open

ocean with a floating ice shelf and subshelf cavity prob-
lem setup (Figure 1a), the domain extends from x =
−100 km to x = 300 km with the ice shelf edge located
at x = 0. In the x−direction the grid spacing is 200 m.
In the z−direction the domain is divided into 3 blocks.
From the seafloor, z = −H1 = −1 km, to the depth of
the ice-water interface, z = −(ρi/ρw)Hi = −0.368 km,
the grid spacing in the z−direction is 13.45 m (48 grid
points). From the depth of the ice-water interface, z =
−(ρi/ρw)Hi = −0.368 km, to the open-water free sur-
face z = 0, the grid spacing in the z−direction is 5.84 m
(64 grid points). From the open-water free surface z = 0
to the top of the ice shelf, z = (1 − ρi/ρw)Hi = 0.032
km, the grid spacing in the z−direction is 2.29m (14 grid
points). Characteristic-based absorbing boundary con-
ditions (Kozdon et al., 2012, 2013) are used on the left
and right sides of the domain. The simulation runs for
a total of 1700 s with time steps of 0.000615 s.
For the step change in water depth problem setup,

figure 1b, the domain extends from x = −400 km to
x = 400 km with the step changing occurring at x = 0.
In the x−direction the grid spacing is 200 m. In this
setupH1 = 1 km andH2 = 0.25 kmwith 10m grid spac-
ing in the z−direction. The simulation runs for a total
of 8000 s with time step of 0.003333 s.
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Table 1 Parameter values for dispersion analysis and sim-
ulations.

parameter symbol value
Density in ocean ρw 1000 kg/m3

Sound speed in ocean c0 1500 m/s
Density in ice ρi 920 kg/m3

P-wave speed in ice cp 2000 m/s
S-wave speed in ice cs 1000 m/s
Gravity g 9.8 m/s2

Open water ocean depth H1 1000 m
Sub-shelf ocean cavity H2 632 m
Ice thickness Hi 400 m

4 Reflection and transmission coeffi-
cients for a step change in water
depth

Before proceeding to the ice shelf reflection/transmis-
sion problem, we verify our model and procedure for
extractingR and T on a problemwith a known solution.
Specifically, we consider a step change in water depth,
from H1 to H2 at x = 0 (Figure 1b).
The reflection/transmission coefficients in the linear

long wave (LLW, k1H1 � 1 and k2H2 � 1) limit are well
known (Lamb, 1905):

(58)RLLW =
√

H1 −
√

H2√
H1 +

√
H2

,

and the transmission coefficient is

(59)TLLW = 2
√

H1√
H1 +

√
H2

.

These values are the anticipated limits for R and T in
the low frequency limit.
Exact closed form expressions for R and T are not

available outside the LLW limit, and instead the prob-
lem must be solved numerically or using approxima-
tions (Newman, 1965; Miles, 1967; Dingemans, 1997).
However, in the high frequency limit, surface gravity
waves will be confined to the water surface and will not
sense the change in water depth. Hence the high fre-
quency limits are R → 0, T → 1.

4.1 Simulation results
Our initial vertical sea surface displacement is a Gaus-
sian,

(60)η0(x) = A0 exp
(

−(x − x0)2

2σ2

)
,

where A0 = 1 m is the amplitude, x0 is the center of
the Gaussian and σ is the width of the Gaussian. We set
x0 = −15 km and σ = 1 km, which provides a wave
packet that includes dispersive surface gravity waves at
frequencies above the LLW limit. We use the eigen-
mode solution and Fourier transforms in the x direc-
tion (using FFTs on the simulation grid) to determine
the pressure and particle velocities in the water corre-
sponding to a wave packet propagating in the +x direc-
tion with surface amplitude (60). The initial conditions

are shown in figure 3 and time-domain simulation re-
sults are shown in figure 4. Normal dispersion is visible
at high frequencies. Because H2 < H1, the reflection
coefficient is positive and the transmission coefficient
is greater than unity.

4.2 Reflection and transmission coefficients

From the simulation data, we extract the simulation
reflection and transmission coefficients using (52) and
(53), respectively. Results are shown in figure 5. The
reflection and transmission coefficients match the LLW
solutions, given in (58) and (59), in the low frequency
limit, but differ at high frequency as seen in previous
studies (Newman, 1965; Miles, 1967; Dingemans, 1997).
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Figure 3 Simulation initial conditions: a) sea surface dis-
placement, b) pressure, c) horizontal particle velocity, d)
vertical particle velocity.

lin
ea

r l
on

g 
w

av
e 

sp
ee

d,

linear long wave speed,

Figure 4 Simulation results for the step change in water
depth problem, showing vertical displacement on the sur-
face (z = 0) through time.
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Figure 5 Reflection and transmission coefficients for the
step change in water depth problem, which approach the
linear long wave (LLW) solution in the low frequency limit.

5 Reflection and transmission coeffi-
cients for ice-covered water

Having verified our procedure for determining reflec-
tion and transmission coefficients from time-domain
simulations, we now turn to the problem of wave inter-
action with floating ice shelves (Figure 1a).

5.1 Simulation results
We use the same initial conditions for the wave packet
as used in the step change in depth problem. Inci-
dent surface gravity waves in the open water impact
the ice shelf, exciting both flexural gravity and exten-
sional Lambwaves. The flexural gravity waves are dom-
inantly expressed in the vertical components (figure 6)
and extensional Lamb waves are dominantly expressed
in the horizontal component (figure 7). We also show
the horizontal normal stress σxx in figure 8. The largest
stresses are carried by flexural gravity waves, not ex-
tensional Lamb waves. Because these waves are in the
long wavelength limit where plate theory is valid, equa-
tion (43) could also have been used to calculate stresses
fromflexural gravity waves at the ice shelf surface, after
Fourier transforming the simulation results.

5.2 Reflection and transmission coefficients
Following the procedure described in section 3.2,
we calculate reflection and transmission coefficients.
These propagating wave reflection/transmission results
are only valid away from the ice shelf edge, where addi-
tional evanescent modes contribute to the motions. Re-
sults are shown in Figure 9. We begin by explaining the
reflection and transmission of surface gravity andflexu-
ral gravity waves (Figure 9a), both quantified in terms of
the vertical displacement amplitude on the water or ice
surface. At low frequencies, the results match expecta-
tions from linear longwave theorywithout ice, illustrat-
ing that the additional inertia and elastic resistance to
flexure of the ice are negligible; because H2 < H1, the
transmission coefficient is greater than unity (T > 1) in

the low-frequency limit. As frequency increases, R and
T both decrease, as seen for the step change in depth
problem without ice (Figure 5). The decrease of R for
this problem arises from the shorter wavelength waves,
which involve motions of the water at depths of order
the wavelength, becoming less sensitive to the water
depth. In the high frequency limit, the waves simply
propagate across the step without reflection. In con-
trast, for the ice shelf problem, the reflection coefficient
begins increasing around 0.01 Hz as the stiffness and
inertia of the ice shelf begin to impede wave transmis-
sion. The anticipatedhigh frequency limit forR is unity,
meaning that surface gravity waves are fully reflected.
Next we examine transmission of extensional Lamb

waves, whichwe quantify in terms of the horizontal dis-
placement amplitude on the ice surface (Figure 9c,d).
The transmission coefficient increases as frequency de-
creases, passing through unity around 0.001 Hz. Trans-
mission coefficients larger than unity indicate that hor-
izontal displacements of the ice surface carried by ex-
tensional Lamb waves exceed vertical displacements of
the incident gravity waves. In the low frequency limit,
T diverges asω−1, a behavior that we explain in the next
section.

5.3 Mechanism for extensional Lamb wave
excitation

In this section we provide a quantitative theory for the
excitation of extensional Lamb waves by incident sur-
face gravity waves. The incident waves cause pres-
sure changes in the water column and these pressure
changes exert a horizontal force on the submerged por-
tion of the ice shelf edge. This excites extensional Lamb
waves. This conceptual mechanism was suggested by
Chen et al. (2018), whichwe extend quantitatively as fol-
lows.
Consider an incident, time-harmonic surface gravity

wave of amplitude A. The wave amplitude at the ice
shelf edge differs from A because of the superposition
of incident and reflected waves. By neglecting evanes-
cent modes, we approximate the amplitude at the edge
as (1 + R)A, where R is the frequency-dependent sur-
face gravity wave reflection coefficient. Next we esti-
mate the pressure change in the water column associ-
atedwith the surface gravitywaves as p = ρwg(1+R)IA,
where

(61)I(ω) = ρw

ρiHi

∫ 0

−(ρi/ρw)Hi

cosh(k(z + H1))
cosh(kH1) dz,

is the normalized integral of the depth-dependent pres-
sure changes from the eigenmode solution given in Ap-
pendix A and k is the wavenumber of surface gravity
waves at angular frequency ω. The normalization is
chosen so that I → 1 in the low frequency limit (kHi �
1) where pressure changes are approximately uniform
over the submerged portion of the shelf front. We find
that I ≈ 1 over frequencies of interest in this study. This
pressure change gives rise to a net horizontal force

(62)F = p
ρi

ρw
Hi

= ρig(1 + R)IAHi.
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Figure 6 (a) Vertical displacement and (b) vertical velocity on the open-water and ice surface. Surface gravity waves in the
open-water region are normally dispersed with the longest wavelengths traveling at the linear long wave speed

√
gH1. The

ice shelf response is dominated by anomalously dispersed flexural gravity waves, with the longest wavelengths traveling at
the linear long wave speed

√
gH2.
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Figure 7 (a) Horizontal displacement and (b) horizontal velocity on the open-water and ice surface. In addition to surface
gravity waves in the open-water region and flexural gravity waves in the ice-covered water, we also see extensional Lamb
waves. These have minimal dispersion, dominantly horizontal particle motions, and propagate around the plane stress P-
wave speed of ice.

Next we assume that this force generates an effectively
1D extensional Lamb wave with depth-independent
normal stress σxx and horizontal particle velocity vx.
The depth-independence of these fields holds asymp-
totically in the limit of horizontal wavelengths greatly
exceeding ice thickness, as evident from the eigenfunc-
tions in Appendix A. This limit is well justified for fre-
quencies of interest. The stress and particle velocity
are related by the extensional Lamb wave impedance:
−σxx = ρicpsvx, where we have assumed that the phase
velocity is approximately cps (Figure 2b). Force balance
requires F = −σxxHi, such that −σxx = ρig(1 + R)IA.
Inserting this into the impedance relation, we obtain
vx = (g/cps)(1 + R)IA. Finally, using vx = −iωux, we
obtain the extensional Lamb wave transmission coeffi-

cient (defined as the ratio ux/A)

(63)Tx,e(ω) = ig[1 + R(ω)]I(ω)
ωcps

.

This prediction, using the R(ω) derived from the sim-
ulations, is plotted in Figure 9c,d. There is excellent
agreement with the simulation-derived Tx,e(ω). We
note that in the low frequency limit (i.e., very long pe-
riod band), where the ice has negligible effect on gravity
wave propagation except bymodifying the water depth,
we can approximate R(ω) ≈ RLLW , which is indepen-
dent of frequency, and I(ω) ≈ 1. This reveals the Tx,e ∝
ω−1 divergence seen in our simulation results (Figure
9c,d).
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Figure 8 Tensile and compressional horizontal normal stresses (σxx) in the ice andminus pressure (−p) in the water, high-
light the propagating long wavelength extensional Lamb waves and shorter wavelength flexural gravity waves. The exten-
sional Lambwave exhibits symmetric stressing about the centerline of the ice shelf, whereas the flexural gravitywave exhibits
antisymetric stressing. The largest stress changes are carried by the flexural gravity waves.

5.4 Tilt contribution tohorizontal seismome-
ter measurements

Our theory and simulation results provide a predic-
tion of both horizontal and vertical displacements of
the ice shelf surface, which can be compared to seis-
mic observations. Here we combine previous results
to predict the frequency-dependent ratio of horizon-
tal to vertical displacements. We assume that hor-
izontal displacements are dominated by extensional
Lamb waves and that vertical displacements are dom-
inated by flexural gravity waves. The predicted dis-
placement ratio is therefore approximated as |ux|/|uz|≈
|Tx,e(ω)|/|Tz,f (ω)|. We focus on the low frequency limit
where the ice has minimal influence on flexural grav-
ity waves, except by reducing the water depth, so that
Tz,f (ω) can be approximated as the LLW transmission
coefficient (59). Similarly, the surface gravity wave
reflection coefficient can be approximated using (58).
Then, using these results in (63), and noting that for the
LLWproblem 1 + RLLW = TLLW , we find the predicted
horizontal-to-vertical displacement ratio

(64)
|ux|
|uz|

≈ g

ωcps
≈ 1 mHz

f
,

with the latter expression using the value of cps for our
simulation parameters. Thus vertical displacements
arepredicted tobe larger thanhorizontal displacements

for frequencies greater than ∼1mHz, whereas horizon-
tal displacements will be larger for lower frequencies.

This prediction is in apparent contradiction to obser-
vations, which can be found in power spectral density
plots for horizontal and vertical seismometer data in
Figure 3 of Bromirski et al. (2017). The observations
show larger horizontal motions not just in the very long
period band but also in the infragravity band. There
are several possible explanations for this discrepancy.
First, there could be some additional extensional Lamb
wave source that is unaccounted for in our model. Tur-
bulent drag along the base of the ice shelf during wave
motions in the sub-shelf cavity would provide an ad-
ditional horizontal force that would excite extensional
Lamb waves. Drag of this form is widely used in shal-
lowwater wavemodeling, with basal shear stress (drag)
being proportional to the square of horizontal veloc-
ity. Given that this is a nonlinear forcing mechanism,
frequency-dependent excitation of extensional waves
cannot be quantified without detailed modeling of the
broadband wavefield. We defer this to future work.
Another hypothesis is that the horizontal seismome-
ter components are not only measuring horizontal dis-
placements, but also include contributions from tilt.
Tilt effects are most important at low frequencies, and
studies of atmospheric coupling to the solid Earth have
identified tilt as important or even dominant at the fre-
quencies of interest to us (Rodgers, 1968; Tanimoto and
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Figure 9 (a) Simulation-derived reflection coefficient (blue) and flexural gravity wave vertical transmission coefficient (yel-
low) with linear long wave limits for the step depth change problem (red and purple). (b) Diagram illustrating extensional
Lambwave excitationbypressure changes exertedon the ice shelf faceby surface gravitywaves. (c andd) Simulation-derived
extensional Lamb wave horizontal transmission coefficient (green), the analytical prediction for the transmitted extensional
wave given in equation (63) (black dashed), and and flexural gravity wave tilt contribution to horizontal seismometer mea-
surements given by equation (65) (magenta).

Wang, 2018).
To explore this possibility, we follow Rodgers (1968)

by calculating the tilt contribution to horizontal seis-
mometer measurements as

(65)
u

h,tilt = − g

ω2
∂ŵ(x, ω)

∂x

= − igk

ω2 ŵ,

where the subscript h denotes the seismometer hori-
zontal component and ŵ is the vertical displacement of
the surface in the frequency domain. The final expres-
sion follows by assuming eikx dependence of the prop-
agating wave, where k is the wavenumber for a given
wave mode at angular frequency ω.
We calculate the tilt contribution from both exten-

sional Lamb and flexural gravity waves, taking ŵ from
our simulations as before, which we normalize by the
amplitude of the incident surface gravity wave. We
find that the tilt contribution from extensional Lamb
waves is negligible in comparison to the actual hori-
zontal displacements carried by these waves. In con-
trast, the tilt contribution from flexural gravity waves,
which is shown in Figure 9c,d, is larger than the hori-
zontal extensional Lamb wave displacements over the

entire frequency band of our study. Specifically, flex-
ural gravity wave tilt is an order of magnitude larger
than extensional Lamb wave horizontals at frequencies
∼0.001 Hz characterizing the very long period band.
This ratio decreases toward unity in the infragravity
wave band. Thus we conclude that horizontal compo-
nent seismometers are primarily measuring tilt from
flexural gravity waves, especially at low frequencies be-
low 0.0025 Hz.
Additional features of the seismic observations sup-

port this idea. Figure 9 of Chen et al. (2018) provides
cross-correlation-based seismograms, bandpassed to
0.002-0.004 Hz, showing move-out at the flexural grav-
ity wave speed on both vertical and horizontal compo-
nents. The beamforming dispersion analysis in their
Figure 8 shows larger power on the horizontal com-
ponent than the vertical component along the flexural
gravity wave dispersion curve at frequencies less than
0.02 Hz. This is inconsistent with the expected horizon-
tal to vertical ratio for flexural gravity waves, but at least
qualitatively consistent with our results in Figure 9.
To further test the tilt hypothesis, we perform a cross-

spectrum analysis at Ross Ice Shelf station DR10 (Fig-
ure 10a). Figure 10b and c shows coherence, normal-
ized between 0 and 1, between the two horizontal com-
ponents and the vertical component. The high coher-
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ence between north and vertical components, and low
coherence between east and vertical components, is
consistent with the primary direction of wave propaga-
tion being from the north (ice shelf edge) to the south.
The tilt model also predicts a phase shift. Our cross-
spectrum analysis uses the opposite sign convention
for time Fourier transforms as elsewhere in our study,
which reverses the sign of equation (65). After account-
ing for this, the predicted phase is π/2, which is consis-
tent with the data below 0.02 Hz (Figure 10d). There-
fore we conclude that tilt from flexural gravity waves
propagating away from the ice shelf edge provides a sig-
nificant contribution to the north-south horizontal seis-
mometer measurements at these low frequencies.

6 Conclusion
In this work we have modeled the wave response of the
ice shelf and sub-shelf ocean cavity to a surface gravity
wave that is incident from open water. This was done
using a depth-resolved 2D vertical cross-section model,
accounting for full elastodynamics of the ice shelf, in
contrast to most prior work that utilizes a bending plate
model for the shelf. We extract frequency-dependent
reflection and transmission coefficients from our time-
domain simulation results, in particular focusing on
the amplitude of transmitted flexural gravity and ex-
tensional Lamb waves. The incident waves cause pres-
sure changes in the water column at the ice shelf edge,
producing a time-varying horizontal force on the sub-
merged portion of the ice shelf edge, which excites ex-
tensional Lamb waves. A quantitative version of this
theory shows excellent agreement with our simulation
results.
Our model also provides a prediction of the horizon-

tal and vertical displacements of the ice shelf surface,
which are primarily controlled by extensional Lamb
waves and flexural gravity waves, respectively. The ver-
tical is predicted to exceed the horizontal at frequencies
greater than ∼0.001 Hz, which is not seen in seismic
data from theRoss Ice Shelf (Bromirski et al., 2017; Chen
et al., 2018). We attribute this discrepancy to the ex-
pression of tilt from flexural gravity waves on the hori-
zontal seismometer components, which ourmodel pre-
dicts will be larger than extensional Lamb wave hori-
zontal displacements at frequencies in the infragravity
wave band and lower. We validate this hypothesis by
cross-spectrum analysis of the Ross Ice Shelf seismic
data. This result implies that extensional Lamb wave
amplitudes are most likely smaller than previous stud-
ies have suggested. Ourmodeling suggests that stresses
imparted to the ice shelf by incident ocean waves are
primarily carried by flexural gravity waves. Even if they
play a smaller role in fracture processes than previous
thought, extensional Lamb waves are still valuable for
constraining the elastic properties of ice (Diez et al.,
2016; Chen et al., 2018).
Future extensions of thiswork are required to explore

more realistic geometries, finite-length ice shelves and
interaction with grounded ice, and the extension from
2D to 3D with obliquely incident waves. Nonetheless,
ourwork provides an important advance in understand-

ing the wave response of ice shelves to incident ocean
waves, a problem receiving growing attention due to the
possible role of wave-induced stresses in fracture and
calving.
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A Wavemodes in ice-covered water
In this appendix, we seek ei(kx−ωt) solutions for an elas-
tic ice shelf over an acoustic ocean with gravity. This
problem was solved by Press and Ewing (1951) for in-
finitely deep water and by Lipovsky (2018) for finite
depth (but incompressible) water. For simplicity we do
not use the hat notation for frequency-domain fields
that is used in the main text. The solution is developed
by solving for the response in the ice and water, sepa-
rately, to an imposed pressure P on the side bounding
the ice-water interface. For the ice, this means −σzz =
P , and for the water, this means p − ρgη = P . This
response includes the vertical velocity vz at the same
location, which defines the impedances of the ice and
water layers, Zi and Zw, defined as P/vz. Enforcing
interface conditions (12)-(14) is equivalent to matching
impedance: Zw = Zi, a convenient procedure used by
Biot (1952) for a related problem. For notational conve-
nience, the ei(kx−ωt) term is implied, and we denote the
water depth as H and ice thickness as 2h. Furthermore,
we place z = 0 at different locations when deriving the
water and ice response to simplify the solution.

A.1 Impedanceofacousticoceanwithgravity
The general solution in the water, with z = 0 being the
water surface, is (Kundu et al., 2015)

(66)p = A sinh(κz) + B cosh(κz),

(67)vx = k

ρwω
[A sinh(κz) + B cosh(κz)] ,

(68)vz = κ

iρwω
[A cosh(κz) + B sinh(κz)] ,

(69)η = A
κ

ρwω2 ,

where κ =
√

k2 − ω2/c2
0 and the coefficients A and B

are to be determined. Setting vz = 0 on z = −H gives
(70)A cosh(κH) − B sinh(κH) = 0.

Next we enforce p − ρwgη = P on z = 0 to obtain

(71)−gκ

ω2 A + B = P.

It follows that
(72)A = sinh(κH)

D0
P,

(73)B = cosh(κH)
D0

P,

(74)D0 = cosh(κH) − gκ

ω2 sinh(κH),

where D0 = 0 is the dispersion relation for wave
modes in an ocean with a free surface on top. The
impedance is

(75)Zw = iωρwD0

κ sinh(κH) .

A.2 Impedance of elastic ice shelf
Next we solve for the response of an elastic ice shelf of
thickness 2h. It is convenient to set z = 0 along the cen-
terline with boundary conditions enforced at z = ±h.
The displacements and traction components of stress
are

(76)ux = k
(
A1e−αz + A2eαz

)
+ iβ

(
B1e−βz − B2eβz

)
,

(77)uz = iα
(
A1e−αz − A2eαz

)
− k

(
B1e−βz + B2eβz

)
,

(78)σxz/µ = −2kα
(
A1e−αz − A2eαz

)
− i

(
k2 + β2) (

B1e−βz + B2eβz
)

,

(79)σzz/µ = −i
(
k2 + β2) (

A1e−αz + A2eαz
)

+ 2kβ
(
B1e−βz − B2eβz

)
,

for coefficients Ai, Bi and

(80)α =
√

k2 − ω2/c2
p

(81)β =
√

k2 − ω2/c2
s.

Note that symmetric modes will have A1 − A2 = 0 and
B1 + B2 = 0, whereas antisymmetric modes will have
A1 + A2 = 0 and B1 − B2 = 0.
Next we enforce σxz = 0 on z = ±h, σzz = 0 on z = h,

and σzz = −P on z = −h:

(82)−2kα
(
A1e−αh − A2eαh

)
− i

(
k2 + β2) (

B1e−βh + B2eβh
)

= 0,

(83)−2kα
(
A1eαh − A2e−αh

)
− i

(
k2 + β2) (

B1eβh + B2e−βh
)

= 0,

(84)−i
(
k2 + β2) (

A1e−αh + A2eαh
)

+ 2kβ
(
B1e−βh − B2eβh

)
= 0,

(85)
−i

(
k2 + β2) (

A1eαh + A2e−αh
)

+ 2kβ
(
B1eβh − B2e−βh

)
= −P

µ
.

Then form linear combinations of the resulting equa-
tions to highlight excitation of symmetric and antisym-
metric modes. Symmetric modes are determined by

(86)−2kα sinh(αh)(A1 + A2)
− i

(
k2 + β2)

sinh(βh)(B1 − B2) = 0,

(87)
−i

(
k2 + β2)

cosh(αh)(A1 + A2)

+ 2kβ cosh(βh)(B1 − B2) = − P

2µ
,
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and antisymmetric modes by

(88)
−2kα cosh(αh)(A1 − A2)

− i
(
k2 + β2)

cosh(βh)(B1 + B2) = 0,

(89)
−i

(
k2 + β2)

sinh(αh)(A1 − A2)

+ 2kβ sinh(βh)(B1 + B2) = − P

2µ
.

The determinants of the coefficient matrices provide
the dispersion relations for symmetric (DS = 0) and
antisymmetric (DA = 0) modes of an elastic layer
bounded by free surfaces:

(90)DS = 4k2αβ sinh(αh) cosh(βh)
−

(
k2 + β2)2 cosh(αh) sinh(βh),

(91)DA = 4k2αβ cosh(αh) sinh(βh)
−

(
k2 + β2)2 sinh(αh) cosh(βh).

Thedispersion relationsDS = 0 andDA = 0 aremore
often written as (e.g., Lamb, 1917; Achenbach, 1973,
2003)

(92)
tanh(βh)
tanh(αh) = 4k2αβ

(k2 + β2)2 (symmetric),

(93)
tanh(βh)
tanh(αh) =

(
k2 + β2)2

4k2αβ
(antisymmetric).

The coefficients are given by

(94)A1 + A2 =
i
(
k2 + β2)

sinh(βh)
DS

P

2µ
,

(95)B1 − B2 = −2kα sinh(αh)
DS

P

2µ
,

(96)A1 − A2 =
i
(
k2 + β2)

cosh(βh)
DA

P

2µ
,

(97)B1 + B2 = −2kα cosh(αh)
DA

P

2µ
,

and hence,

(98)A1 = i
(
k2 + β2) [

sinh(βh)
DS

+ cosh(βh)
DA

]
P

4µ
,

(99)A2 = i
(
k2 + β2) [

sinh(βh)
DS

− cosh(βh)
DA

]
P

4µ
,

(100)B1 = −2kα

[
sinh(αh)

DS
+ cosh(αh)

DA

]
P

4µ
,

(101)B2 = −2kα

[
− sinh(αh)

DS
+ cosh(αh)

DA

]
P

4µ
.

Next we calculate impedance of the ice as Zi = P/vz,
where vz = −iωuz is evaluated at z = −h:

(102)Zi = 2iρic
4
s

ω3αF
,

(103)F = sinh(αh) sinh(βh)
DS

+ cosh(αh) cosh(βh)
DA

.

A.3 Dispersion relation for coupled ice-water
system

The dispersion relation for the coupled system is ob-
tained by matching impedance, Zw = Zi, yielding

(104)
ωρwD0

κ sinh(κH) = 2ρic
4
s

ω3αF
.
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