
review.md 10/4/2022

1 / 3

PyRaysum pyraysum fraysum
fraysum pyraysum

pyraysum.prs
pyraysum pyraysum.plot

.plot() Model Seismogram
pyraysum fraysum

ObsPy Stream seis1 obspy.Stream
seis1.streams

fraysum.run_bare()
pyraysum.run()

review.md 10/4/2022

2 / 3

Model
Geometry RC Seismogram Geometry RC Seismogram

Model Geometry

RC

Seismogram
.streams .rfs

.model .geometry .rc
Seimogram obspy.Stream

Seismogram obspy.Stream
prs_parameters prs_parameters.model

SY(Z|N|E) RF(Z|N|E)

Seismogram PRSOutput
pyraysum.run()
Seismogram.streams Seismograms.rfs

obspy.Stream

__str__()
Model

__eq__() modl1 ==
modl2 Model

Model __add__()
model1 += [thickn, rho, vp, vs]

Model __getitem__() __setitem__()
change() modl1[0]

modl1[0] = [thickn, rho, vp, vs]

review.md 10/4/2022

3 / 3

modl1[0][1] = rho
modl1[0][1]

modl1[0] = [thickn, rho,
vp, vs] modl1[0] = {"thickn":thickn, "rho":rho, "vp":vp, "vs":vs}

modl1[0][1] = rho modl1[0]["rho"] = rho

Geometry.__str__() Model.__str__()
RC.__str__() Model Geometry
Seismogram __str__()

Model.plot()

REVIEWER B:

This article presents PyRaysum, a Python software for modeling ray-theoretical body-wave

propagation in dipping and/or anisotropic layered media based on the Fortran code

Raysum by Frederiksen and Bostock, 2000.

PyRaysum was developed to resolve the shortcoming of Raysum, like the formatting of

input files, reading and writing the output files, visualizing the output data, and to facilitate

its usage for beginners to streamline the modelling approach in optimization or

probabilistic search approaches.

I agree with the authors that the modernisation of older codes is an important step for the

progress of research. I am little concerned about the possible use that can be done; it is

frequent that users are not really aware of what the codes are doing; but this is nothing

that the authors can solve.

In my opinion the article is suitable for publication in Seismica; A few points need to be

addressed to make it clearer and to prove that it performs as well as or better than the

original code:

• Examples:

It is interesting to see that Pyraysum can reproduce the arrival times, (relative) amplitudes

and polarities as Raysum, and it’s good to see the example against previous work (e.g.

Porter et al., 2011). Anyways more significant and simple examples need to be shown in

order to convince old users that Pyraysum can really do its job. For example:

Make a model with one dipping interface and another with one inclined interface but with

+180 degrees srike and complementary angle. For example Model1: Interface dipping to

the E of 30 degrees; and Model 2: Interface dipping to the W of 60 degrees.

And similar for anisotropy: Model1: one horizontal layer with dipping anisotropy, positive

anisotropy with symmetry axis striking to the N and inclined of 30. Model 2 one horizontal

layer with dipping negative anisotropy having symmetry axis striking to S and inclined of

60.

• Performance:

A very important performance test is to check the time for performing the same inversion

with the original Raysum and with Pyraysum. The question is, How much time is the user

really saving?

Reply to Comments
We have now reached a decision regarding your submission to Seismica, "PyRaysum: So�ware for Modeling Ray-

theore cal Plane Body-wave Propaga on in Dipping Anisotropic Media". Based on both the reviews received,

your manuscript may be suitable for publica on a�er some revisions.

Both the reviewers asked some more discussion about the performance of the PyRaySum package in terms of

CPU me, to understand the di)erence in large-scale applica on of the code, with respect to the original one.

Reviewers also asked for few more tests and examples.

We thank the editor and the reviewers for their me invested in evalua ng our manuscript. In

response to their sugges ons, we have augmented the Examples sec on with more basic usage

examples and a new Figure 3. The Performance sec on now contains a paragraph with a

comparison against a classic Raysum work/ow and an updated Figure 6. In response to

Reviewer C we also changed the code base where we augmented double-underscore methods

and changed naming conven ons for a more intui ve user experience. Please 1nd the detailed

answers to the reviewers below.

We hope that our revised ar cle is suitable for publica on in Seismica.

Reviewer B

Bloch and Audet introduce PyRaysum, a Python wrapper for the well-established Raysum Fortran code for

"Modeling Ray-theore cal Plane Body-wave Propaga on in Dipping Anisotropic Media". PyRaysum is an easy-to-

use tool that brings several advantages over Raysum, most notably the convenient integra on with the scien 1c

Python stack.

My perspec ve for this review is that of a user who knows fairly li2le about modeling ray-theore cal body waves

in anisotropic media, but is interested in having easy-to-use tools available for explora on of ideas. My review

therefore largely focuses on the code itself and its documenta on.

Overall, I am impressed with the accessibility and presenta on of both the code and the documenta on. The

examples in the manuscript are convincing and easily reproducible. However, I believe there are some points that

should be addressed before being accepted for publica on, such as a somewhat confusing sec on 2, a slightly

lacking performance sec on, and poten ally some changes to the code. Below, I give my feedback on the

manuscript and code separately.

We thank the reviewer for their posi ve evalua on of our work. We have made substan al

improvements to the code base that led to an extended and cleaner User Interface sec on. As a

response also to Reviewer C we adopted the comparison with Raysum and demonstrate the

performance gain in an extended Performance sec on and an updated Figure 6.

Comments on the manuscript

39, 245, 247: Suggest to replace the urls by DOIs.

These URLs refer to the documenta on (github pages) that accompanies PyRaysum and are not

available as DOIs. We prefer to leave them as URLs unless we are directed otherwise by the

produc on editors at Seismica.

51 - 118: There is some confusion what the modules are and what the user interacts with. From a user viewpoint,

PyRaysum provides the packages pyraysum and fraysum . Sec on 2.1 decribes the package fraysum , whereas 2.2

and 2.3 describe the modules of the package pyraysum . This leads to some confusion about what is what. In the

examples, the user never interacts explictly with pyraysum.prs (impor ng classes is done directly from pyraysum)

or pyraysum.plot (plo?ng in Lis ng 2 is done via .plot() methods of Model and Seismogram). I suggest to

restructure this sec on slightly to be explicity that as a user, there are two packages to import from (pyraysum

and fraysum) and then describe them individually. The above is also relevant to the online documenta on, where

this same confusion arises.

We thank the reviewer for the sugges on. We split up the (now extended) pyraysum package

into three modules: frs, prs, and plot. frs provides func ons for the interac on with fraysum, prs

provides the object-oriented interface and plot bundles plo?ng func onali es. Addi onally, the

essen al object-oriented interface can be imported directly from pyraysum. We have re-

structured Sec on 2 User Interface to resemble this logic more closely, with fraysum and

pyraysum forma2ed as subsec ons, prs, frs, and plot as sub-subsec ons below pyraysum and the

essen al object-oriented interface as paragraphs within the sec on pyraysum. The novice user

may now import everything they need to get started from the top package level, while a more

experienced user may choose to explore the supplied modules for advanced func ons.

Lis ng 1: The comment # ObsPy Stream suggests that the output seis1 is an obspy.Stream , where only the

entries in seis1.streams are. See in comments on code below for more details.

We changed the confusing comment and adapted some of the suggested changes to the code

base to make the PyRaysum more accessible.

124: [][; ... looks like a \citep error to me.

Corrected.

182 - 213 + Figure 5: It would be most interes ng to see a comparison with Raysum. In the abstract, the authors

men on signi1cantly reduced overhead, which implies that their code should be faster than using Raysum in a

common pure Fortran work/ow. However, during the performance tests the authors do not compare against this.

Instead, the authors focus on comparing fraysum.run_bare() versus pyraysum.run() . I believe this is s ll useful for

the user to inform them about the trade-o) between performance and convenience of the two approaches, but a

direct Raysum comparison would be far more interes ng. S ll, the convenience of adap ng Raysum to Python is

obvious. But this could also help convince users of Raysum to switch to the authors Python implementa on in

addi on to the bene1ts such as automa c phase labelling.

We compared the execu on me of a typical Rasyum call with a comparable call to PyRaysum,

i.e., one that does not include any post-processing or bookkeeping. For small problems, where

the disk in-/output overhead is most signi1cant, the speedup is about 11-fold on our machine.

For larger problems, where more me is spent on the actual computa on, the performance gain

reduces to about 2-fold. Note that we have performed the more recent benchmark on a faster

server and that we now adopted the Fortran compiler /ag “-Ofast”, as the original Rasyum.

These changes again reduced the absolute execu on mes of our benchmarks. The rela ve

 mes remained constant.

Lis ngs 4-6: I believe these code snippets related to the performance sec on are probably not important enough

to include in the main text. They could be moved to an appendix or be moved en rely to the online

documenta on.

We agree and moved them to the appendix.

224: Ch[r]isto)el equa on

Corrected.

Comments on the code

The code was easy to install and runs without any issues. The code examples provided by the authors are

straighMoward and instruc ve. Overall, I was impressed with the presenta on and especially the extensive

documenta on of the code. I have some minor concerns with the naming of classes and that some expected

behaviour is missing. Addressing both of these would make the code more "pythonic" and easier to adapt, but is

not strictly necessary.

We are happy to hear that our e)orts resulted in a good user experience, and we thank the

reviewer for insis ng on a modern implementa on. We have adapted most of the proposed

changes and learned some more Python on the way.

Class naming

The most signi1cant code users will interface with when using PyRaySum are the classes Model , Geometry , RC ,

and Seismogram . The class names Geometry , RC , and Seismogram are a bit confusing.

Itʼs unfortunate that both Model and Geometry contain informa on about the geometry (model=medium

geometry, geometry=ray and sta on geometry). I donʼt have a great solu on for that, but this may be worth

thinking about some more.

The class name Geometry is inherited from the Raysum 1le with extension .geom, which is one of

the required input 1les describing the ray and sta on geometry. By s cking to this conven on,

the intent is to make it easier for seasoned Raysum users to adapt their exis ng work/ows to

our code. In the documenta on of the class and throughout the ar cle, we now chose a more

precise wording to emphasize that the name refers to the ray and sta on geometry.

Abbreviated class names (here RC) are confusing, I suggest to name it RunControl, RunParameters or something

similar.

We agree and changed the name, for the sake of brevity, to Control.

Seismogram contains more informa on than the seismograms, in fact synthe c seismograms are stored

in .streams , receiver func ons in .rfs in addi on to all parameters that generated the seismograms/rfs

in .model , .geometry , and .rc. Based on the naming, as a regular Python/obspy user, I was expec ng Seimogram

to behave like an obspy.Stream. One possible sugges on to dy this up could be to make Seismogram a subclass

of obspy.Stream with an addi onal parameter prs_parameters that would contain prs_parameters.model etc.

Synthe c seismograms and receiver func ons could then be iden 1ed by their channel name (e.g., SY(Z|N|E) and

RF(Z|N|E) , though this would clash with SEED channel naming conven ons). A di)erent way could be to rename

Seismogram to something more descrip ve of what this actually is, e.g., PRSOutput . This would also help with

the confusion the output of pyraysum.run() in Lis ng 1 in the manuscript (See comment above). At the very least,

I believe Seismogram.streams and Seismograms.rfs should probably be obspy.Stream subclasses and not lists, and

outputs for di)erent rays/sta ons should be iden 1ed by trace name not index in the lists.

We agree with the reviewer in that the old class name was confusing. We now renamed it

Result, as to avoid abbrevia ons. We prefer to have both .streams, as well as .rfs to be lists of

obspy.Stream, because list indexing allows the user to associate list elements to the similarly

constructed list elements of Geometry. In this way, a seismogram can easily be associated to a

speci1c ray. Using __ge tem__ methods, we now implemented a consistent indexing of Geometry

and Result in terms of ray indices. This concept is introduced in the main text of the ar cle and

documented in the code and online tutorials. We adopted the suggested naming of the

channels, where we assume a user who is aware of SEED naming conven ons is also able to

change these as needed.

Dunder methods

For some classes, the authors have implemented some of the expected dunder methods (e.g., __str__() for Model),

which is great for Python users. I suggest to expand this to other classes and to make it more consistent across

classes. Here some sugges ons and observed inconsistencies regarding this

There are no __eq__() methods to check for equality. By default (as is currently), modl1 == modl2 will check

whether theyʼre the same instance of Model (i.e., same memory address), not whether the models have the same

parameters. This also applies to the other classes.

We thank the reviewer by poin ng us towards the power of dunder methods and implemented

them widely. There are now __eq__() methods for the Model and Geometry classes where they

evaluate to True if all elements in the user a2ributes that refer to physical quan es are equal.

Model could have a __add__() method that would allow to add addi onal layers to an exis ng model, as in model1

+= [thickn, rho, vp, vs] .

We implemented the __add__() methods for Model and Geometry and documented their behavior

in the documenta on and the online tutorials.

Model could have __ge tem__() and __se tem__() methods to allow extrac ng and changing individual layers

instead of the current change() method. Iʼd expect modl1[0] to return all parameters of the 1rst layer and

modl1[0] = [thickn, rho, vp, vs] to change the values of the 1rst layer and modl1[0][1] = rho to change only its

density. The down-side of this would be that the user would need to remember that modl1[0][1] refers to

density. This could be helped by making layers into dic onaries at least for the user-facing logic. I.e, modl1[0] =

[thickn, rho, vp, vs] would become modl1[0] = {"thickn":thickn, "rho":rho, "vp":vp, "vs":vs} and modl1[0][1] = rho

would become modl1[0]["rho"] = rho . This would likely be a fairly signi1cant change to the current logic of the

code and requires some more thinking about poten al consequences for other parts of the code, but I believe

would ul mately bene1t the user by being a) more explicit and b) more natural to Python users.

We implemented __ge tem__() and __se tem__() methods for the Model and Geometry classes

and __ge tem__() for the Result. We demonstrate the behavior of Model.__se tem__() in the

expanded Examples sec on. We believe that implementa on of these methods substan ally

improved the intui veness of PyRaysum.

Geometry.__str__() does not have table headers, but Model.__str__() does.

The Geometry.__str__() method now has table headers as well.

RC.__str__() does have a di)erent table layout than Model ʼs and Geometry ʼs strings.

The layout was inspired by the format of the Raysum parameter 1le. We now implemented a

more human-readable format for onscreen print output and implemented a separate forma?ng

for 1le output.

Seismogram does not have any dunder methods, Iʼd expect at least __str__() to represent the most important

informa on about this model run.

The Results object now has a __str__() representa on, as well as a __len__() and __ge tem__(). A

__se tem__() method did not appear meaningful to us.

Plots

Model.plot(): Unclear what colors in middle plot mean (density? vp? vs? impedance?). Suggest to

have same depth axis also on the interfaces plot (right).

The panel now has a colorbar that indicates that the colors relates to vs. The same depth extend

on the interface plot is hard to achieve, as it requires the interfering axes(“equal”) op on, which

leads to a poor layout when combined.

Reviewer C

This ar cle presents PyRaysum, a Python so�ware for modeling ray-theore cal body-wave propaga on in

dipping and/or anisotropic layered media based on the Fortran code Raysum by Frederiksen and Bostock, 2000.

PyRaysum was developed to resolve the shortcoming of Raysum, like the forma?ng of input 1les, reading and

wri ng the output 1les, visualizing the output data, and to facilitate its usage for beginners to streamline the

modelling approach in op miza on or probabilis c search approaches.

I agree with the authors that the modernisa on of older codes is an important step for the progress of research. I

am li2le concerned about the possible use that can be done; it is frequent that users are not really aware of what

the codes are doing; but this is nothing that the authors can solve.

In my opinion the ar cle is suitable for publica on in Seismica; A few points need to be addressed to make it

clearer and to prove that it performs as well as or be2er than the original code:

We thank for the posi ve evalua on of our work. We have re1ned and more thoroughly tested

the func ons that allow PyRaysum to deal with legacy Raysum 1les and hope that it will be

useful to new users interested in the receiver func on method as well as experienced Raysum

users.

Examples:

It is interes ng to see that Pyraysum can reproduce the arrival mes, (rela ve) amplitudes and polari es as

Raysum, and it’s good to see the example against previous work (e.g. Porter et al., 2011). Anyways more

signi1cant and simple examples need to be shown in order to convince old users that Pyraysum can really do its

job. For example:

Make a model with one dipping interface and another with one inclined interface but with +180 degrees srike and

complementary angle. For example Model1: Interface dipping to the E of 30 degrees; and Model 2: Interface

dipping to the W of 60 degrees.

And similar for anisotropy: Model1: one horizontal layer with dipping anisotropy, posi ve anisotropy with

symmetry axis striking to the N and inclined of 30. Model 2 one horizontal layer with dipping nega ve anisotropy

having symmetry axis striking to S and inclined of 60.

We expanded the Examples sec on, where we now show the suggested instruc ve examples.

We hope that the combina on of narra on, code examples, and resul ng receiver func on

1gures allow to gain some intui on on what PyRaysum does. We use the now expanded

Examples sec on to showcase the new syntax suggested by Reviewer B to modify subsurface

models.

Performance:

A very important performance test is to check the me for performing the same inversion with the original

Raysum and with Pyraysum. The ques on is, How much me is the user really saving?

We compared the run me of a typical Rasyum run with a comparable run of PyRasyum. The

results are described in the second paragraph of the Performance sec on and shown in the

updated Figure 6. Our benchmarks indicate that, with our setup, the reduc on in computa onal

cost is 11- to 2-fold, depending on model complexity, mainly due to the reading/wri ng

overhead inherent to Raysum.

 Improvement:

I would like to see the test for anisotropy in the 1rst (upper) layer. Raysum for example cannot handle it, and it

would be fantas c if PyRaysum could overcome this issue.

Two examples of Sec on 3.2 Interac ve explora on of receiver func ons feature an anisotropic

topmost layer. During the work on PyRaysum, the original author of Raysum, Andrew

Frederiksen, discovered the bug that prevented the topmost layer to be anisotropic. It is now

1xed in the most recent version of Raysum as well as in PyRaysum. To 1x a local version of

Raysum, in raysum.f, search for the line:

call anisotroc(aa(1,1,1,1,2),rho(1),p(1,nseg))

and exchange the index “2” for “1” in variable “aa”.

