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Abstract High-rate global navigation satellite system (HR-GNSS) data records ground displacements and
can be used to identify earthquakes and slow slip events. One limitation of such data is the high amplitude,
cm-level noise whichmakes it difficult to identify processes that produce surface displacements smaller than
these values. Deep learning has proven adept at performingmany useful tasks in seismology and geophysics.
Herewe explore using deep learning to denoise HR-GNSS data. We develop three different convolutional neu-
ral networks with similar architectures but different targets. Training data are synthetic HR-GNSS records and
actual noise recordings that are superimposed to generate noisy signals. We train each of the three models
to output masks that can be used to reconstruct the true signal. We use a set of performance metrics that
quantify the models’ ability to denoise the testing data and find that denoising significantly improves the
signal-to-noise ratio and the ability to identify first arrivals. Finally, we test the models on HR-GNSS records
from the Ridgecrest earthquakes recorded at stations that have nearly colocated strong-motion sites that can
be used as ground-truth for the denoising results. We find that themodels greatly improve the signal-to-noise
ratios in these records andmake the P-wave onset clearly identifiable.

1 Introduction
High-rate Global Navigation Satellite System (HR-GNSS)
data record ground displacements at increments of ≥
1 Hz and are a type of geophysical measurement com-
monly used to identify and characterize earthquakes
and slip transients (Bock and Melgar, 2016; Larson,
2019). GNSS data can augment traditional seismic data
and are superior for some applications. For example,
long-period recordings of earthquakes contain diagnos-
tic information about earthquake magnitude (e.g., Mel-
gar et al., 2015). This property of GNSS is used ex-
tensively for down-stream applications such as earth-
quake early warning (e.g., Murray et al., 2018) and
tsunami early warning (e.g., Williamson et al., 2020).
Inertial recordings of earthquakes suffer from a well-
known magnitude saturation problem; recordings of
the first arriving seismic waves cannot distinguish be-
tween large and very largemagnitude earthquakes (e.g.,
Trugman et al., 2019). In contrast, GNSS faithfully
record ground motions at long-periods, including zero-
frequency static offsets, and do not suffer from this lim-
itation (e.g., Crowell et al., 2013). Additionally, for mod-
eling finite faults for the largest events it has become
commonplace to include HR-GNSS in post-processing
(e.g., Goldberg et al., 2020). The data provide funda-
mental constraints on total moment and on the spatial
distribution of slip. For large events it is expected that
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a credible rupture model will be capable of reproduc-
ing these kinds of observations (e.g., Satake and Hei-
darzadeh, 2017; Lay, 2018). As a final example, some
types of crustal deformations such as slow earthquakes
and fault creephave long duration source processes and
do not effectively generate seismic waves (e.g., Thomas
et al., 2016). These slow deformation processes are of-
ten identified by a gradual displacement of the Earth’s
surface, hence characterizationof these events relies on
GNSS data.

One of the main limitations of HR-GNSS data is the
high noise level of ∼1–2 cm both in post-processing and
in real-time (Geng et al., 2018; Melgar et al., 2020). This
limits the utility of HR-GNSS recordings to situations
where ground displacements are in excess of these am-
plitudes such as moderate to large earthquakes at local
to regional distances. Several factors contribute to the
high noise level of HR-GNSS data. This includes mea-
surement noise, the number and location of satellites,
model estimates of orbital errors, satellite and receiver
clocks, atmospheric delays, antenna effects, and mul-
tipath errors (Melbourne et al., 2021). Several meth-
ods have been proposed to eliminate particular forms
of noise. For example, sidereal filtering leverages re-
peating satellite-receiver geometries to correct for noise
resulting from multipath errors (i.e., when a transmit-
ted signal arrives at a receiver via an indirect path).
Simply stated this technique involves taking displace-
ments recorded during the previous orbital repeat pe-
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riod (the time since the satellite constellation was last
in the same configuration), applying a low pass filter
(e.g. 11 s corner frequency), and subtracting the filtered
displacement record from the displacement recorded
at the present time (e.g., Choi et al., 2004). Spatial fil-
tering targets common-mode noise that is highly cor-
related across GNSS stations in close spatial proximity
(Wdowinski et al., 1997). This technique simply aver-
ages detrended records on many nearby stations and
the resulting average is subtracted from each station.
Principal component analysis (e.g., Dong et al., 2006;
He et al., 2015) has been employed to remove long
period noise (0.2–0.1 cycles/year) and various match-
filtering approaches have also been employed to reduce
noise levels (Frank, 2016; Rousset et al., 2019). With re-
spect to HR-GNSS, there are a dearth of denoising tech-
niques that are both applicable to high rate data and
are efficient. For example, sidereal filtering is one of
the most commonly employed techniques but because
of the low-pass filtering, it does not apply to frequen-
cies higher than the chosen corner frequency. Addi-
tionally, Geng et al. (2017) noted that sidereal filtering
can also increase noise levels for periods between 20
and 33 s (those authors used a 10 s corner frequency).
While data-driven denoising strategies are capable of
mitigating high-frequency noise (e.g., Li et al., 2018),
as proposed, they involve multiple decompositions us-
ing techniques such as empirical mode decomposition,
which is known to be computationally time consuming.
Machine learning is adept at many commonly per-

formed tasks in seismology and crustal deformation.
For example, deep learning (DL) can identify and make
phase picks on small magnitude earthquakes (e.g., Zhu
and Beroza, 2019; Thomas et al., 2021). DL can recog-
nize crustal deformation patterns measured with HR-
GNSS data and accurately estimate the earthquake mo-
ment in real time (Lin et al., 2021). Additionally, and
of particular interest for the present study, DL methods
have been applied to denoise various types of geophys-
ical data. For example, Zhu et al. (2019) developed an
algorithm known as Deep Denoiser which they showed
drastically improved the signal-to-noise ratio (SNR) in
earthquake seismograms. We discuss this method in
more detail in Section 2. Additionally, Ende et al. (2021)
developed a methodology to denoise distributed acous-
tic sensing data. Since GNSS measures position and the
decomposition into components is arbitrary, noise is of-
ten correlated across components on the same station
similar to seismic noise. This suggests that deep learn-
ing may also be adept at denoising GNSS records.
Motivated by these recent results, herewe explore us-

ing DL to denoiseHR-GNSS records. In Section 2we dis-
cuss themethodology including the generation of train-
ing and testing data, network architectures, and the
training procedure. In Section 3 we discuss the results
of the methodologies including performance on both
the training data and real records from the 2019 Ridge-
crest, California earthquake sequence. In Section 4 we
discuss the successes and limitations of the methods,
potential applications, and future directions. Overall,
DL appears to be a promising path forward to increasing
the utility ofHR-GNSS data in rapidly identifying and as-

sessing source properties of intermediate to large mag-
nitude earthquakes and lowering the noise threshold of
HR-GNSS data for detecting small magnitude transient
slip events.

2 Methods

2.1 Training data for denoising
As a testbed for our proposed approach we focus on the
recent Ridgecrest, California earthquake sequence that
commenced in July, 2019. This energetic set of earth-
quakes included an M6.4 foreshock on a NE striking
fault plane, followed 34 hours later by an M7.2 main-
shock on an adjacent, conjugate fault striking NW (e.g.,
Ross et al., 2019; Goldberg et al., 2020). The GNSS net-
work surrounding Ridgecrest, shown in Fig. 1A and B,
includes multiple near-field stations close enough to
record static offsets in both the M6.2 and M7.2 events.
Both events were followed by energetic aftershock se-
quences that included four M5+ events (Fig. 1A and B;
Shelly, 2020).
To create an algorithm capable of separating signal

from noise we need many thousands of examples of
both signal (i.e., HR-GNSS displacement time series
from real earthquakes) and noise waveforms. For the
noise recordings, we use three-component timeseries
of real noise recorded on the 278 GNSS stations closest
to the Ridgecrest events, shown in Fig. 1A. These data
are from the Network of the Americas (NOTA) sites op-
erated by UNAVCO and the positions are true real-time
solutions produced and archived by UNAVCO (Hodgkin-
son et al., 2020). The timing of the noise waveforms
was selected at random times from days between June
1, 2019 to July 31, 2020 that did not have an earthquake
above M4.3. This magnitude is a conservative lower
bound for the size of an earthquake that onemay expect
to generate an observable signal in the GNSS data.
Obtaining a similar number of real “signal” wave-

forms over a range of magnitudes is challenging for
two reasons. First, unlike seismic data, which can have
SNRs of many orders of magnitude, the high noise floor
of GNSS data makes it such that even the largest am-
plitude displacements have relatively modest SNR and
still contain appreciable noise. Second, only large mag-
nitude earthquakes recorded in the near-field generate
signals of sufficientmagnitude to exceed the noise floor.
This is problematic because we would like to include
signals that are at or below the noise level (i.e., SNR≤ 1)
to train an algorithm capable of detecting small ampli-
tude displacements. These limitations prohibit using
real signals for training, and so we turn to generating
realistic, synthetic displacements.
The FakeQuakes code (Melgar et al., 2016) generates

stochastic ruptures using the assumption that slip on a
fault is distributed like a random field (Mai and Beroza,
2002). If the statistics of this field are known then ran-
dom draws can be made to generate arbitrarily large
numbers of ruptures. This approach is common in
strong motion seismology (e.g., Graves and Pitarka,
2010; Goulet et al., 2015). As is typical, we assume
a VonKarman correlation function (VKCF). The along-
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Figure1 Mapsof theRidgecrest area.  Panel A showsa regionalmapwithGNSS stations used for noise recordings (pink) and
synthetic signal recordings (blue) shown as inverted triangles. Ridgecrest earthquakes are outlined by the black square. The
locations of stations P570 (Fig. 14) and ISLK (Fig. 15) are annotated. Inset shows an outline of the state of California with the
region location indicated by the purple square.  Panel B shows a closeup of the Ridgecrest earthquake sequence. Events are
color coded according to their depth and scaled by magnitude. Focal mechanisms for the M7.1 and M6.4 are also shown.

strike and along-dip correlation lengths of the VKCF
control the predominant sizes and aspect ratios of as-
perities in the slip patterns. Meanwhile the Hurst ex-
ponent, H, of the VKCF determines the amount of
short-wavelength structure in between them. Mai and
Beroza (2002) proposed scaling laws for the correlation
lengths which depend on fault dimension, and fixed
H = 0.7. Here we use updated scaling laws from an
analysis of the U.S. Geological Survey’s database of fi-
nite faults (Melgar and Hayes, 2019) and we use H =
0.4. A full description of the stochastic approach can
be found in Melgar et al. (2016). Once the slip pat-
terns are created, kinematic rupture properties such
as rise time, rupture velocities, etc., are set following
Graves and Pitarka (2015). We assume a 1D layered
Earth model for Eastern California used in the South-
ernCalifornia EarthquakeCenter’s BroadbandPlatform
(Goulet et al., 2015) and produce the waveforms using a
frequency-wavenumber approach to generating elasto-
dynamic Green’s functions (GFs; Zhu and Rivera, 2002).
For this work we introduce an additional modification.
After comparing our kinematic rupturewaveformswith
HR-GNSS data from the Ridgecrest earthquakes we no-
ticed that many waveforms from the Ridgecrest earth-
quakes had significant “ringing” or long duration coda
that was not present in the synthetic waveforms. We
hypothesized that these waveforms were affected by ei-
ther site or basin effects. Since we are not using fully
3D GFs in order to produce waveforms with long dura-
tions we created an extra family of “soft layer” wave-
forms. We varied the thickness of the soft layer between
100 and 900 m and allowed shear wave speeds as slow as
100 m s−1 and as fast as 900 m s−1. These two families of
waveforms, the ones without and the ones with the soft
layers, are then used for training.
The FakeQuakes output is then three-component

ground displacement timeseries from earthquakeswith
magnitudes ranging from 4 to 7.2 that rupture the 3D
fault geometry of Goldberg et al. (2020). The displace-
ment timeseries from each earthquake are calculated at
the 180 synthetic GNSS station locations shown in blue
in Fig. 1B. The station distribution shown in Fig. 1B and
magnitude range were initially chosen so that the re-
sulting displacement timeseries are not dominated by
very small amplitude displacements and instead rep-
resent more uniform sampling of peak ground dis-
placement. At each station, displacement waveforms
are calculated at 1 sample/s for a 256 s window cen-
tered on the P-wave arrival expected from ray-tracing
through the velocity model. North, east, and vertical
displacements for 20 example “fakequakes” are shown
in Fig. 2A, B, and C respectively. Despite this selec-
tion of magnitudes and station locations, small mag-
nitude peak ground displacements (PGD) still domi-
nate the dataset so we implemented a culling proce-
dure such that we have a nearly uniform distribution of
PGD up to 1 m and then exponentially decreasing num-
bers of events with PGD > 1 m. Overall our dataset
includes 822 256 three-component signal records and
729 303 three-component noise records.

2.2 Network architecture

Convolutional neural networks (CNNs) are a deep learn-
ing architecture capable of efficiently extracting diag-
nostic information frommultidimensional images. The
essential component of any CNN is one or more convo-
lutional layers. In these layers, the user defines both
the number of filters and the filter size. The network
then convolves these filters with the layer input to cre-
ate a feature map which is further manipulated in sub-
sequent network layers. Filters can be defined a-priori
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Figure 2 GNSS displacement timeseries and PGD distribution. Panels A, B, and C show north, east, and vertical displace-
ments for 15 different simulated earthquakes, color coded by the example number. Panel D shows PGD distributions for all
“fakequake” displacement records in the dataset.

but most often they are learned during training. A U-
Net is a special case of a CNN with symmetric contract-
ing and expanding branches (Ronneberger et al., 2015).
The contracting branch includes repeated convolutions
with a 3x3 filter, rectified linear unit activation func-
tions (Agarap, 2018), and batch normalization. In the
contracting branch, each successive convolutional layer
has a stride of two and double the number of filters in
the previous layer. This results in feature maps that de-
crease in size but increase in number as network depth
increases. In the expanding branch, the filter number
is halved while the convolutions upsample their respec-
tive feature maps resulting in larger maps after each
successive convolutional layer. Skip connections also
feed outputs from the contracting branch to inputs of
the expanding branch at the same depth in the network,
skipping the deeper layers.
Zhu et al. (2019) employed a U-Net called Deep De-

noiser to denoise single channel seismic data. In their
denoising approach, the noisy signal, Y (t) is the sum of
a known signal, S(t), and known noise, N(t), or

(1)Y (t) = S(t) + N(t)

In the frequency domain, the short-time Fourier
Transform (STFT) of the noise, N(t, f), and the STFT of
the signal, S(t, f), are summed to represent the STFT of
the noisy signal

(2)Y (t, f) = S(t, f) + N(t, f)

Then the signal mask is defined as

(3)MS(t, f) = 1
1 + |N(t,f)|

|S(t,f)|

And the noise mask is defined as

(4)MN (t, f) =
|N(t,f)|
|S(t,f)|

1 + |N(t,f)|
|S(t,f)|

Each mask has the same dimensions as the input
STFTs and takes on values between 0 and 1. The net-
work is trained to output an estimate of the signal and
noisemasks, M̂S(t, f) and M̂N (t, f). From these, the es-
timated signal, Ŝ(t, f) can be obtained by multiplying
Y (t, f) by the respectivemask and inverse transforming

(5)Ŝ(t) = STFT −1
{

Y (t, f)M̂S(t, f)
}

Similarly, the estimated noise, N̂(t, f) can be ob-
tained by multiplying Y (t, f) by the noise mask and in-
verse transforming

(6)N̂(t) = STFT −1
{

Y (t, f)M̂N (t, f)
}

Zhu et al. (2019) showed that Deep Denoiser could re-
liably denoise seismic signals, resulting in significant
increases in SNR in the denoisedwaveforms thereby im-
proving earthquake detection capabilities.
Motivated by the results of Zhu et al. (2019), we de-

velop a similar U-Net, which can be accessed in the
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repository linked in the Data Availability section, with
some noteworthy modifications. First, Deep Denoiser
operated on single channel seismic data. For accurate
denoising of HR-GNSS data, we anticipate that using all
three channels as network input will significantly im-
prove the results given the higher noise levels on the
vertical channels and the fact that noise is very highly
correlated across channels. As such, each network we
present here has inputs derived from three component
HR-GNSS data. Second, a notable attribute of Deep De-
noiser is that it can distort signal amplitudes during the
denoising process, reducing their true amplitudes (Tibi
et al., 2021). For some applications, such as earthquake
detection and arrival time picking, this amplitude dis-
tortion is not a limitation. However, if denoising of
HR-GNSS were to be used for early-warning or source
studies, amplitude distortion could underpredict early
earthquake magnitude estimates. As such we explore
three different model variations, described in the next
section.

2.3 Inputs, outputs, andmodel variations

The inputs to each of our networks are generated in the
following way. The HR-GNSS data we employ here is
sampled at 1 Hz. The noise and signal records described
above are 256 s long originally. Leaving the training data
in the original form, with the P-wave pick in the mid-
dle, would bias the resulting CNN to assign noise prior
to the middle of each window and signal thereafter. As
such, we use a data generator during training which ap-
plies the following modifications to the data prior to in-
put to the network. First, we randomly select a set of
N signal timeseries and N noise timeseries, where N is
the batch size. These timeseries are added to simulate
noisy signals. Second, we randomly select a start-time
in the first half of each trace and include only 128 s of
data beginning at that time. This has the effect of ran-
domly shifting the earthquake onset in time such that
it can occur at any point during the window. The signal
can also be shifted such that thewindow ismostly or en-
tirely noise. The combinations of signal and noise and
the time-shifting are data augmentation strategies that
significantly increase the size of the training dataset.
Third, we compute the STFT of the signal timeseries,
the noise timeseries, and the noisy signal timeseries
which results in complex, 2D time-frequency represen-
tations of the timeseries for each component. To com-
pute the STFT we use a segment length of 31 and 30
points of overlap between segments. The real and imag-
inary parts of the noisy signal are normalized by divid-
ing the STFTs for each component by the maximum of
their absolute value. This accounts for the differences
in amplitude of the input data which can vary over sev-
eral orders of magnitude. The final input to the CNN is
six channels (the real and complex parts of the STFT for
the north, east, and vertical components), each with di-
mension 16 × 128.
We train three differentmodel versions to denoise the

HR-GNSS data. In the first model, which we will call
Model 1, we adopt an approach very similar to Deep De-
noiser (Zhu et al., 2019) The only modifications are that

the network ingests six channels of data and we pre-
dict only one signal mask for each channel. The noise
mask can be determined by taking the complement of
the signalmask. ForModel 1, the activations on thefinal
layer are sigmoids to accommodate the three channel
mask outputs (in the one-component version of Deep
Denoiser, the final layer activations were softmax func-
tions). To determine the estimated signal from the input
signal, we simply use equation 5.
Model 2 ismotivatedbyModel 1’s limitations. Namely

that by using a real-valuedmask, we cannot account for
phase differences between signal and noise which can
result in amplitude distortion. As such, in the final layer
we use linear activation functions and the model pre-
dicts the real and imaginary parts of the complex val-
ued S(t, f) normalized by the maximum absolute value
of Y (t, f). We can obtain the signal estimate by mul-
tiplying the output by the maximum absolute value of
Y (t, f), which can be calculated from the input data,
and inverse transforming.
Finally, in Model 3, we explore predicting the ratio

S(t, f)/Y (t, f). Model 3 was also motivated by the de-
sire to account for phase differences and minimize am-
plitude distortion but employs a similar masking tech-
nique as Deep Denoiser. Because this ratio can be infi-
nite, we convert the complex representation of the STFT
to amplitude and phase and train the network to output
the scaled amplitude and phase ratios. Specifically the
first output is defined as

(7)A(S(t, f), N(t, f)) = ln (|S(t/f)/Y (t/f)|+ε)

where ε is a small magnitude constant added to ensure
that the target is never infinite; we set ε = 10−9. Direct
prediction of the phase is challenging inmachine learn-
ing because of the modular property of angular mea-
surements. To address this modularity, we use targets
for phase prediction defined as

(8)φ1(S(t, f), N(t, f)) = cos(θ)

and

(9)φ2(S(t, f), N(t, f)) = sin(θ)

where

(10)θ = tan−1
(

Im(S(t, f)/Y (t, f))
Re(S(t, f)/Y (t, f))

)
The functions A, φ1, and φ2 are the targets for each

component resulting in nine total predictions for the
third model. Like Model 2, Model 3 employs linear acti-
vation functions and the estimated signal can be deter-
mined using equations 7-10.
Finally, to explore how variations in network size af-

fect performance we vary slightly the network architec-
ture by increasing the number of filters in the convolu-
tional layers by a factor of two.

2.4 Training
We train the three different models for 50 epochs each
using Tensorflow (Abadi et al., 2016). In all cases we set
aside 10 % of the signal and noise waveforms for testing
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and train using the remaining 90 %. For all networks,
we use the Adam optimization algorithm (Kingma and
Ba, 2014) with a learning rate of 0.0001, we also use a
drop rate of 0.2. All models used a mean-squared error
loss function on all targets.

2.5 Performancemetrics
We use three different metrics to quantify model per-
formance. First, we employ the normalized cross-
correlation coefficient to measure the similarity be-
tween the signal and the model predicted signal, de-
noted as CC. CC varies between+1when two signals are
exactly correlated and−1when they are exactly anticor-
related. We note that the normalized cross-correlation
does not account for amplitude differences between sig-
nals. This choice was deliberate such that the inherent
amplitude distortion does not bias the result. Second,
we compute the SNR using

(11)SNR = max(|signal|)
2 ∗ σnoise

Here max(|signal|) is the maximum absolute value of
the signal waveform and σnoise is the standard deviation
of the noise evaluated on the time window prior to the
P-wave arrival. This metric has a value of ∼1 when the
signal and noise amplitudes are equal, and is greater (or
less) than one when the signal amplitude exceeds (or is
less than) the noise amplitude. We note that some other
commonmeasures of SNRutilized on seismic data often
employ the standard deviation in both the numerator
and denominator but this metric does not properly ac-
count for the static offsets that represent signal in GNSS
data. We also note that the SNR metric can become in-
finite if the σnoise approaches zero. When we use SNR
to quantify general attributes of the waveforms prior to
denoising, the numerator of equation 11 is evaluated on
the signal waveforms alone while the denominator is
evaluated on the noise. We also quantify the change in
SNR, ∆SNR, between noisy and denoised waveforms.
We evaluate ∆SNR by computing SNR on the noisy sig-
nal (i.e., signal + noise) and on the denoised signal and
subtracting the two. For all SNR calculations, we re-
quire that signal and noise be at least 10 s in duration.
Third, we use the Euclidean or L2 distance as ameasure
of the difference between the signal and the noisy sig-
nal or the denoised signal. TheL2 distance between two
vectors x and y, with components xi and yi respectively,
is defined as

(12)L2(x, y) =
√∑

i

(xi − yi)2

As an additional test of applying our simulated train-
ing data to real HR-GNSS records, we compare the orig-
inal HR-GNSS records, denoised HR-GNSS records, and
displacements derived from strong motion accelero-
grams recorded during the Ridgecrest, California earth-
quake sequence. These GNSS and strong motion sta-
tions are the only closely located pairs in proximity
to the Ridgecrest earthquakes. For small to moder-
ate ground motions, the strong-motion accelerograms

can be used to estimate the three-component ground
displacements. For extremely strong ground motions,
baseline offsets make the displacement records inac-
curate, sometimes by widely large amounts, at periods
longer than ∼10 s (e.g., Melgar et al., 2013).
We focus our analysis on two site pairs: P570 and

WOR,which are separated by 3.5 km and are 59 km from
the M7.1 mainshock, and ISA and ISLK, which are 62 m
apart and 80.5 km from the mainshock. We take strong
motion records fromWOR and ISA, integrate twice and
correct for gain. We then bandpass filter the strong
motion data, raw HR-GNSS, and denoised HR-GNSS be-
tween 3 and 15 s for comparison. The results of this
analysis are described further in Section 3.

3 Results

3.1 Denoising examples
For each model we select from the testing dataset as
denoising examples two records with peak signal am-
plitudes below 4 cm, since the denoising process will
be most useful for these low amplitude signals, and
one higher amplitude signal with peak amplitude above
4 cm. As such, the low and higher amplitude signals
have different characteristics. For example, the low
amplitude signals are typically dominated by transient
seismic wave arrivals and have low-amplitude or zero
static offset, whereas the higher amplitude signals con-
tain transient features in addition to large amplitude
permanent offsets. We also selected examples to show-
casemodel performance on different types of noise, tar-
geting samples with varying amplitude and frequency
content.
Example denoising results are shown in Figs 3-11.

Figs 3-4 show a low-amplitude example from Model 1.
Each row in thefigures correspond to adifferent compo-
nent: north, east, and vertical. The first column shows
the signal waveform in blue and the summed signal and
noise in gray. The annotation indicates the SNR of the
noisy signal. The second column shows the target sig-
nal mask, MS(t, f), while the third column shows the
model predicted mask, M̂S(t, f). The fourth column is
identical to thefirst but includes the denoisedwaveform
in magenta with the CC and ∆SNR.
Figs 3-5 show the performance of Model 1 for multi-

ple examples. In Fig. 3, the SNR has comparable values
of 2.4 and 1.9 on the north and east components, and
lower value of 0.4 on the vertical. After applying Model
1 to denoise, the resulting waveforms have a high CC
with the known signal on the horizontals and denois-
ing also recovering much of the signal character for the
vertical component, which has CC = 0.674 between
the true and denoised vertical components. All com-
ponents have significant improvements in SNR. Fig. 4
shows another low-amplitude example similar to Fig. 3
but with more complex signal character. The model
still recovers much of it, i.e., arrival time, amplitudes,
and frequency content, on all three components. Such
low amplitudes, like that on the vertical, are sometimes
not recoverable (i.e., themodel predicts noise) however
the model can utilize higher amplitude signals on the
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Figure 3 Example denoising usingModel 1. Panels A-D, E-H, and I-L correspond to the north, east, and vertical components
respectively. The first column shows the signal timeseries (blue) and the noisy signal timeseries (i.e., signal+noise) in gray.
The SNR and L2 distance from equations 11 and 12 respectively are annotated. The second column is the target mask, MS ,
for each component. The third column shows the predicted mask for each component. The fourth column shows the signal
(blue), noisy signal (gray), and denoised signal (magenta) along with the CC between the signal and denoised signal and the
∆SNR between the noisy and denoised signals.

Figure 4 Example denoising using Model 1. Panels are the same as those in Fig. 3.

7 SEISMICA | volume 2.1 | 2023



SEISMICA | RESEARCH ARTICLE | Deep learning for denoising HR-GNSS data

higher amplitude components to recover some signal
character on the components with lower amplitude sig-
nals (this is also apparent in Fig. 5). Figs 3 and 4 contain
two noteworthy features. First, the signal amplitudes
are sometimes underpredicted by Model 1 (see Fig. 3D,
H and L and Fig. 4D and H). Second, sometimes the
static offset is not well predicted by the model but in-
stead fluctuates with the amplitude of the noisy signal
(Panel L in Fig. 3). We discuss these properties more
in Section 4. Finally, Fig. 5 shows a higher amplitude
demonstration of Model 1 (note the difference in scale
between Figs 3-4 and Fig. 5). Denoising essentially does
not modify the large amplitude signals on the horizon-
tal components. The main benefit of denoising is to
both reduce the amplitude of the noise prior to the first
arrivals and to increase the SNR on components with
lower signal.
Since themasks predicted byModels 2 and 3 are com-

plex valued, in Figs 6-11 we only show the time do-
main representations of the noisy signal, signal, and es-
timated signal (panels D, H, and L of Figs 3-5). Figs 6
and 7 show low amplitude denoising examples using
Model 2. In Fig. 6, the three components have SNRs of
0.46, 1.22, and 0.95. Despite low SNR, denoising suc-
cessfully recovers signal on all components with high
CC between all original and estimated signals. Fig. 7 is
similar to Fig. 6 showing another example of retrieval
of the signal when SNR is low. In particular, the vertical
component is well recovered in Fig. 7 despite the high-
amplitude and low frequency character of the noise
(Fig. 7C). Also note that on the horizontal components,
there is constructive interference between the signal
and noise (Fig. 7B). In some cases, such as the later ar-
rivals on the north component and the east component,
Model 2 is able to successfully partition signal and noise
and predicts the true signal amplitude (Fig. 6A and B).
In other cases, such as the vertical component in this
same example (Fig. 6C), Model 2 can underpredict the
signal amplitudes and long term signal character, such
as static offset can be influenced by noise. Fig. 8 is a
high amplitude example with complex signal character.
Model 2 performs well, particularly in predicting the
low amplitude vertical component.
Figs 9-11 show examples of denoising using Model 3.

Figs 9 and 10 show significant improvements in hori-
zontal SNR even given the relatively low amplitude of
the signals. Additionally both examples have high cor-
relations between the true and predicted signals on the
horizontal components. While Model 3 generally suc-
ceeds on the east component in Fig. 11, the model fails
to predict the static offset in the denoised north and ver-
tical signals causing them to deviate from the true static
offset. This is commonly observed in Model 3. Figs S1-
S10 show the performance of all three models on some
common examples.

3.2 Model performance on the testing data

To evaluate the overall performance of each model on
the testing dataset (N = 82 226) we compute the CC be-
tween the true and denoised signals as a function of the
SNR.We thenbin the data by SNRand compute the 10th,

50th, and 90th percentiles of the CCs for the signals con-
tained in each bin. We also compute the median CC be-
tween the noisy and true signals as a function of SNR.
The results are shown in Fig. 12 which includes pan-
els for individual components and all signals combined.
While many horizontal components have SNR > 6, we
chose this particular cutoff to highlight model behavior
at lower amplitudes. As expected, model performance
improves significantly with SNR. At very low SNR, there
is a large spread in CC for all models. For SNRs of 0.5
to 2, the models have significantly larger CCs than the
noisy data with the true signal. As SNR increases fur-
ther, this difference diminishes as the noise becomes a
smaller fraction of the overall signal and CCs become
high approaching 1 at very large SNR. For all compo-
nents, Models 1 and 3 have median CCs of 0.51 and 0.41
for an SNR of 0.5. These values increase to 0.78 and
0.74 at an SNR of 1. Model 2 has better performance
with a CC = 0.70 at SNR = 0.5 and CC = 0.89 at
SNR = 1. For the horizontal components alone, we
note that the percentiles are determined from a smaller
numbers of events. This is because the horizontal com-
ponents typically have larger amplitudes for the strike-
slip geometry thatwe considered in this study and lower
noise levels than the vertical components, hence there
are fewer horizontal records that satisfy the SNR < 6
criterion. Additionally, we note that at very low SNR
(i.e., those < 1), the vertical components typically have
higher CC than the horizontal components. This is due
to two factors. First, the models can use higher am-
plitude information recorded on the horizontal compo-
nents to make predictions about content on the vertical
component despite the higher amplitude noise. These
predictions often result in higher CC than that between
the true and noisy waveforms. Second, the high ampli-
tudenoise in thenoisywaveforms can result in lowerCC
with the true signal than does a prediction with a near
zero value prior to the first arrival and a low amplitude
signal, even if the predicted signal departs significantly
from the true signal.
Similar to Fig. 12, Fig. 13 shows the L2 distances be-

tween the true and denoised signals as a function of the
SNR. The data are binned by SNR and we compute the
10th, 50th, and 90th percentiles of the L2 distances for
the signals contained in each bin. The black line shows
the distribution of L2 distances between the noisy sig-
nal and true signal, while the colored lines show the dis-
tances between the true signal and those estimated us-
ing Models 1, 2, and 3. For all models and components,
denoising results in smaller L2 distances between the
true signal and denoised signal than the noisy data in-
dependent of SNR. On the horizontal components, the
distances between denoised and true signals are small
at low SNR because the denoising algorithm generally
predicts noise (i.e., zero amplitude true signal) in these
scenarios. As the SNR increases and the models make
more non-zero signal predictions the L2 distances in-
crease until, at intermediate to high SNR they plateau.
In this region, model distances are still less than the
original distances likely due to the zero amplitude pre-
diction of themodels prior to thefirst arrivals. The over-
all larger distances on the vertical result from thehigher
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Figure 5 Higher amplitude example denoising using Model 1. Panels are the same as those in Fig. 3.

Figure 6 Example denoising usingModel 2. Panels A-C correspond to the north, east, and vertical components respectively.
Each panel shows the signal timeseries (blue), the noisy signal timeseries (i.e. signal+noise) in gray, and the denoised signal
in pink. The SNR (equation 11), CC, L2 distance (equation 12), and∆SNR between the noisy and denoised signals are anno-
tated.

Figure 7 Example denoising using Model 2. Panels are the same as those in Fig. 6.
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Figure 8 Higher amplitude example denoising using Model 2. Panels are the same as those in Fig. 6.

Figure 9 Example denoising usingModel 3. Panels A-C correspond to the north, east, and vertical components respectively.
Each panel shows the signal timeseries (blue), the noisy signal timeseries (i.e. signal+noise) in gray, and the denoised signal
in pink. The SNR (equation 11), CC, L2 distance (equation 12), and∆SNR between the noisy and denoised signals are anno-
tated.

Figure 10 Example denoising using Model 3. Panels are the same as those in Fig. 9.

amplitude noise that is generally present in HR-GNSS
data and the lower amplitude signals that result from
the choice to simulate earthquakes on strike-slip fault
systems.

3.3 Application to the 2019 Ridgecrest earth-
quakes

As a performance test of our trained models, we ap-
ply the denoising algorithms to the Ridgecrest earth-
quake sequence. While the aftershocks of these events
included a number of intermediate magnitude earth-
quakes, determining how well the denoising models

perform is hampered by lack of knowledge of what the
true signal is. GNSS sites with nearby strongmotion sta-
tions obviate this issue; the strong-motion data can be
used to estimate true ground motions.

Denoising results at P570 and WOR are shown in
Fig. 14. The model successfully identifies the arrival
time (vertical black line) and suppresses noise prior to
the first arrivals (SNRs are shown in bottom right of
each panel). All models also successfully predict sig-
nal amplitudes, particularly on the vertical component.
The SNR is significantly improved in the denoised ver-
sions of all components. The models generally do well
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Figure 11 Example denoising using Model 3. Panels are the same as those in Fig. 9.

Figure 12 CC as a function of SNR. The median value of the CC between the true signal and noisy signal is shown in black.
Median CC values between the true signal and signals denoised by Models 1, 2, and 3 are indicated by the blue, grey, and
pink lines respectively. The shaded areas represent the region between the 10th and 90th percentiles that contain 80 % of
the testing data and have the same color coding as the median CC.

Figure 13 L2 distances as a function of SNR. The median value of the L2 distance between the true signal and noisy signal
is shown in black. Median L2 values between the true signal and signals denoised by Models 1, 2, and 3 are indicated by the
blue, grey, and pink lines respectively. The blue, grey, and pink shaded areas represent the region between the 10th and 9-th
percentiles that contain 80 % of the testing data for Models 1, 2, and 3 respectively.

early on (∼35–60 s) however the coda is not well pre-
dicted i.e., the noisy GNSS better predicts these later
arrivals (∼60–80 s). Performance is similar for the ISA
and ISLK station pair shown in Fig. 15. Themodels sup-
press noise prior to the first arrivals, predict phase and
amplitude well early in the wave train, and then trend
toward zero amplitude prediction for the later coda ar-

rivals. Results for the M6.4 are shown in Figs S11 and
S12. We will discuss this more in the following section.

Finally, as denoising may be applied to HR-GNSS in
real time, we explored the false positive rate of Mod-
els 1, 2, and 3 on additional 10 000 noise waveforms.
The results of this exercise is shown in Fig. S13. The
false positive rate at a decision threshold of 1 cm PGD
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Figure 14 Comparison of recordings of the M7.1 Ridgecrest earthquake at strong motion station WOR and GNSS station
P570. GNSSand integratedstrongmotiondataare shownasdashedandsolidblack lines respectively. GNSSrecordsdenoised
by Models 1, 2, and 3 are shown in blue, grey, and pink respectively. Vertical black line shows the theoretical P-wave arrival
time. SNRs of the original HR-GNSS data, Models 1, 2, and 3 are shown in the bottom right.

is 2.05 %, 2.51 %, and 0.16 % for Models 1, 2, and 3 re-
spectively. The false positive rate at a decision thresh-
old of 2 cm PGD is 0.4 %, 0.53 %, and 0.06 % for Models
1, 2, and 3 respectively. These values are far smaller
than the PGD of the noise waveforms themselves. Ad-
ditionally, they could be further reduced by consider-
ing waveform character atmultiple stations as all earth-
quake early warning algorithms do.

4 Discussion
As is evident in Figs 12 and 13, denoising HR-GNSS data
offers significant improvements over utilizing noisy
records. On all components, the median performance
of Model 1, Model 2, and Model 3 exceeds that of the
noisy records for all SNRs for both the CC and distance
based performance metrics. Generally the models are
excellent at suppressing noise prior to the first arrivals
making identification of earthquake onsetsmore appar-
ent. P-waves are almost always well below the GNSS
noise, and, as shown in Figs 14 and 15, the P-wave ar-
rival is clear in the denoised GNSS waveforms. Addi-
tionally,models can recover signalswith amplitudes be-
tween 5 mm and 1 cm, i.e., with SNR < 1. Because of
our choice tomodel strike-slipmotion on vertical faults,
the horizontal components are typically larger than the
vertical. Additionally the vertical component generally
has higher noise levels. Despite this, the models often

predict well the timing and amplitude on the vertical
component by utilizing information on the horizontal
components to inform its character. The greatest im-
provements in CC are between SNRs of slightly below 1
to 3. At high SNR, applying denoising does not result in
significant improvements as expected. At low SNR, am-
plitudes on all three components diminish, the model
generally predicts zero amplitude signal on all compo-
nents.
Models 2 and 3 were motivated by the amplitude dis-

tortion inherent in Model 1 which was originally devel-
oped for seismic data (Zhu et al., 2019). After assessing
theperformanceof allmodelswefind thatModel 2, sim-
ple direct amplitudeprediction, generally performsbet-
ter than Models 1 and 3. It does not suffer from the am-
plitude distortion and is better at predicting both ring-
ing and static offsets than theothermodels. Bybothper-
formance metrics utilized here, it performs better at all
SNRs than Model 1 and Model 3.
The main shortcoming of the models are the mis-

predictions of static offsets apparent in Figs 3L, 6C,
11A, and 11C. These mispredictions in some cases re-
sult from the noise character; the model predicts the
average noise level as the static offset so noisewith com-
plex character in the presence of a static offset can re-
sult in a nonstationary prediction (e.g., Fig. 6C). In other
cases thesemispredictions appear to result from the fre-
quency decomposition as is apparent from the oscilla-
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Figure 15 Comparison of recordings of theM7.1 Ridgecrest earthquake at strongmotion station ISA andGNSS station ISLK.
GNSS and integrated strong motion data are shown as dashed and solid black lines respectively. GNSS records denoised by
Models 1, 2, and 3 are shown in blue, grey, and pink respectively. Vertical black line shows the theoretical P-wave arrival time.
SNRs of the original HR-GNSS data, Models 1, 2, and 3 are shown in the bottom right.

tions in Fig. 11A and C that are unrelated to noise char-
acter and the overshoot in Fig. 11A that is reminiscent of
Gibbs phenomenon. In the application of themodels to
the Ridgecrest data, themain shortcoming of themodel
was the misprediction of the lower amplitude, later ar-
riving coda. We note that the amplitudes of these ar-
rivals were < 1 cm measured on the horizontal compo-
nents. This may simply be too low SNR for the model
to detect these arrivals. Incorporating more long dura-
tion low amplitude data may improve denoising in this
scenario.

The single station algorithmswe have developed here
show promise for denoising HR-GNSS data. However,
we made a number of decisions in the process of de-
veloping the models that might not make them more
generally applicable. First, we utilized noise data from
NOTA sites closest to the Ridgecrest earthquakes pro-
cessed by UNAVCO. GNSS noise is network and process-
ing algorithm dependent. Application to a different lo-
cationor to a different processing algorithmwill require
re-training. Second, we simulated earthquakes on pre-
dominantly vertically dipping strike-slip faults. The re-
sulting crustal deformation patterns are clearly not rep-
resentative of earthquakes in other tectonic environ-
ments and simulation of such events would be needed
for an all-purpose denoiser. Third, by utilizing “Fake-
quakes” to generate our synthetic earthquake database
wemake the assumption that theparameterizations and

design choices therein are representative of real earth-
quakes. Fourth, by utilizing a 1D velocity structure
we neglect 3D wave propagation effects. We have at-
tempted to obviate this by including some simulations
with soft layers that mimic basin resonance apparent
in the two Ridgecrest examples we showed but this is
a shortcut that could be improved upon with fully 3D
GFs. Finally, wemade a number of design choices in the
deep learning implementation of denoising that could
be improved upon. For example, the frequency decom-
position technique may not be the best approach, other
architectures may work better than the traditional CNN
we employed here, etc.

While we have demonstrated that the models we de-
veloped are capable of denoising HR-GNSS data, their
main limitation in our opinion, is that they are sin-
gle station algorithms that do not utilize information
from multiple stations. Certain types of GNSS noise,
such as common mode errors, are highly correlated
on nearby stations. For example, Fig. 16 shows nor-
malized cross-correlations of noise windows prior to
the M6.4 Ridgecrest earthquake. The 120 s of noise
recorded on station P811 prior to the start of the event
is cross-correlatedwith the same timewindow recorded
on nearby stations. CC values between P811 and CCCC
(55.5 km ) are 0.81. CC values decrease to smaller values
of 0.52–0.53 on stations P091 (168 km), ISLK (70.2 km),
P595 (82.3 km), and P570 (73.9 km). Developing other
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Figure 16 Comparison of recordings of the M6.4 Ridge-
crest earthquake (blue timeseries) on stations with
hypocentral distances up to 70 km. Noise windows in
the 120 s prior to the start time of the M6.4 Ridgecrest
earthquake (start time is vertical grey line, moveout is
dashed pink line) are cross-correlated with noise recorded
on P811. Station names and CC values are annotated on
the right.

GNSS denoising algorithms that are network based, in-
clude information from many stations, and can lever-
age the similarity of noise character on nearby stations
will undoubtedly bemore successful than the single sta-
tion approachdevelopedhere. Such analgorithmwould
have a number of applications. For example, the identi-
fication of small magnitude slip transients that are typi-
cally challenging to detect inGNSS data but have limited
to no seismic expression (e.g., Rousset et al., 2019), first
arrivals of large magnitude earthquakes that, if rapidly
identified, decrease the latency of early warning sys-
tems (e.g., Lin et al., 2021), and the incorporation of far-
field, lower SNR GNSS data to constrain earthquake slip
inversions.

5 Conclusions

The goal of this work was to explore the performance of
single station, three component denoising algorithms
on high-rate GNSS data. Single station denoising algo-

rithms have been developed for seismic records, but
their application toGNSSdata has not been explored. To
this end, we adapted frameworks proposed for denois-
ing seismic data to perform on GNSS data by modifying
such algorithms to work on three component data and
proposing two additional slightly modified approaches
that attempt to overcome amplitude distortion inher-
ent in seismic algorithms. Earthquake metrics derived
from HR-GNSS such as PGD rely heavily on signal am-
plitudes so it’s important for any denoising algorithm
to preserve amplitude information. After training three
machine learning models on synthetic data designed to
simulate the 2019 Ridgecrest earthquake sequence, we
find that denoising can significantly improve the SNR
of HR-GNSS waveforms. The denoised waveforms ef-
fectively suppress noise prior to the first arrivals mak-
ing themmore apparent. Additionally, small amplitude
signals with SNR at or lower than noise levels can be
identified and characterized. Also, because the three
models utilize all three components, we are often able
to recover much of the signal character on components
with low SNR (such as the vertical) by utilizing signal
character on the horizontal components. Overall this
approach to denoising is promising and if employed in
real-timemay reduce the latency and improve the accu-
racy of early warning algorithms.
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